URANUS MAGNETOSPHERE and MOONS INVESTIGATOR (Umami)

Total Page:16

File Type:pdf, Size:1020Kb

URANUS MAGNETOSPHERE and MOONS INVESTIGATOR (Umami) 51st Lunar and Planetary Science Conference (2020) 2277.pdf URANUS MAGNETOSPHERE AND MOONS INVESTIGATOR (UMaMI). C. M. Elder1, T. A. Nordheim1, D. A. Patthoff2, E. Leonard1, R. J. Cartwright3, C. Cochrane1, C. Paranicas4, M. Tiscareno3, A. Masters5, D. Hemingway6, M. M. Sori7,8, H. Cao9, R. T. Pappalardo1, B. J. Buratti1, I. De Pater10, W. M. Grundy11, M. Showalter3, W. Kurth12, I. Jun1, J. I. Moses13, K. L. Aplin14, J. Casani1, 1Jet Propulsion Laboratory, California Institute of Technology, 2Planetary Science Institute, 3SETI Institute, 4Applied Physics Laboratory, 5Imperial College, 6Carnegie Institution, 7University of Arizona, 8Purdue University, 9Harvard University, 10University of California, Berkeley, 11Lowell Observatory, 12University of Iowa, 13Space Science Institute, 14Bristol University. Introduction: The five largest satellites of Uranus combination for a mission. Uranus itself would also be exhibit tantalizing evidence of surfaces that have been observed when possible, but instruments and the orbital active in geologically recent time, including fractures, tour would be optimized to study the magnetosphere, ridges (Figure 1), relaxed craters [e.g. 2], and evidence moons, and rings. UMaMI’s main science goals are: for volatiles that should not be stable over geologic 1. Moons: Determine if the Uranian satellites host timescales [e.g. 3]. These moons could have had subsur- subsurface oceans, search for signs of ongoing en- face oceans earlier in their histories and could possibly dogenic activity, and determine to what extent the still host them today [2]. The orbits of most of the Ura- surfaces are modified by exogenic processes (e.g. nian moons and rings reside inside the Uranian magne- charged particle bombardment and irregular satel- tosphere and their surfaces are therefore continuously lite dust accumulation). exposed to magnetospheric plasma and energetic parti- 2. Rings: Understand the formation and evolution of cles. Uranus is also a prime location to study magneto- the Uranian rings and their interactions with the sat- sphere and solar wind interactions as the combination of ellites. Uranus’s large obliquity of 97.9° and its highly tilted 3. Magnetosphere: Characterize the structure and dy- (59°) and offset (0.35 RUranus) magnetic field leads to a namics of the Uranian magnetosphere, including its configuration where the magnetospheric interaction interaction with the solar wind and the Uranian with the solar wind varies considerably over both diur- moons. nal and seasonal timescales. Uranus’s ring system is These focused goals could be achieved within the also unique in the solar system, comprised of narrow but New Frontiers cost-cap. Such a mission would be com- dense and sharp-edged rings. A mission to investigate plementary to a variety of outer solar system Flagship the Uranian system should be a high priority in the next class missions. For example a Flagship class mission to decade to advance our knowledge of this unique and in- Neptune could address many outstanding questions re- triguing planetary system. lated to ice giants and Triton. However, Triton is most UMaMI: The Uranus Magnetosphere and Moons likely a captured Kuiper Belt Object whose capture de- Investigator (UMaMI) is a mission concept that would stroyed much of Neptune’s native satellite system [e.g. aim to study the magnetosphere, moons, and rings of 4], so we must visit Uranus to study a primordial ice gi- Uranus. These three systems interact with each other in ant satellite system. Alternatively, if a Flagship mission significant and measurable ways making them a natural to an ice-giant were not recommended for the next Figure 1: Voyager 2 image mosaics of (a) Enceladus (d=504 km), (b) Miranda (d=472 km), and (c) Ariel (d=1158 km) including night-side illumination by Uranus shine [1]. Cratered regions (red arrows) and boundaries of isolated recent resurfacing (blue arrows) highlighted in each figure. Miranda and Ariel show evidence of partial resurfac- ing, similar to Enceladus. Image credit: NASA/JPL/Caltech/USGS. 51st Lunar and Planetary Science Conference (2020) 2277.pdf decade, UMaMI would provide an opportunity to ad- window that could capitalize on a Jupiter gravity assist dress a focused subset of the science objectives of a falls from 2030 to 2034 [5]. Using this Jupiter gravity Flagship class mission. assist would result in arrival at Uranus in the mid-2040s Science Objectives and Measurements: UMaMI [5, 7], just before Uranus’ next equinox. would achieve its goals through 12 specific objectives Conclusion: There are many outstanding questions listed in Table 1. The instruments required are a high about the Uranian system and addressing these ques- resolution camera with color filters, a magnetometer, a tions with an orbiter should be a high priority for the plasma spectrometer, an energetic particle detector, and next decade. By focusing on the magnetosphere, moons, a visible and infrared (VIR) spectrometer. In all cases, rings, and their interactions, a subset of the objectives instruments with significant flight heritage would be for a Flagship class mission at Uranus could be achieved sufficient to meet our requirements. within the New Frontiers cost-cap. This would be com- TiminG: A mission to the Uranian system should be plementary to a more comprehensive Flagship class a high-priority in the next decade due to both launch op- mission at Neptune or if the decadal committee does not portunities and the tilt of Uranus relative to the sun. select an ice giant system as a Flagship target, UMaMI Over its 85-year orbital period, Uranus’ large obliquity would ensure that a focused subset of the outstanding (97.9°) results in extreme variations in the insolation ice giant system questions would be addressed. conditions of the satellites and the interactions between AcknowledGements: The information presented the magnetosphere and the solar wind. Voyager 2 flew about the UMaMI concept is pre-decisional and is pro- by the Uranian system just after southern solstice. Ar- vided for planning and discussion purposes only. riving within ~10 years of equinox (2049) would enable References: [1] Stryk, T. and Stooke, P.J. (2008) important comparisons to Voyager 2 measurements and LPSC, 39, Abstract #1362. [2] Smith, B.A. et al. (1986) illumination conditions ideal for observing the geology Science 233, 43-64. [3] Cartwright, R.J. et al. (2018) Ic- of the moons. It is also important to consider a mission arus, 314, 210-231. [4] Agnor, C.B. and Hamilton, D.P. to Uranus soon, because of limited opportunities for Ju- (2006) Nature, 441, 192. [5] Hofstadter, M. et al. (2017) piter gravity assists. Without an available Jupiter gravity Ice giants pre-decadal survey mission study report, JPL assist, the mission must rely on Solar Electric Propul- D-100520. [6] Elder, C.M. et al. (2018) Acta Astro- sion (SEP) to reach Uranus, and this greatly increases nautica, 148, 1-11. [7] Jarmak, S. et al. (in press) Acta the cost of the mission [5, 6] potentially putting a New Astronautica. Frontiers class mission out of reach. The next launch Science Goal Science Objective Instrument 1. To what extent is the Uranian magnetosphere driven by the solar wind vs mag/plasma/energetic internal processes? particles 2. Are the major moons sources of magnetospheric plasma? mag/plasma 3. To what extent are the major moons weathered by magnetospheric mag/plasma/energetic particles? particles 4. Do any of the major moons have an exosphere? If so, how do they camera/mag/plasma/ener interact with the magnetosphere? getic particle Magnetosphere 5. Do the major moons have conducting subsurface oceans? If so, how does mag/plasma/energetic this affect moon-magnetosphere interactions? particles 6. Are any of the major moons currently geologically active? What are their camera/VIR geologic histories? What are the relative ages among the moons and among Moons spectrometer/mag different units on each individual moon? 7. What are the internal structures of the major moons? camera/radio science 8. What are the endogenic and exogenic process that modify the surfaces of camera and VIR the moons? Does material from the irregular satellites mantle the major spectrometer moons? What is the source of the CO 2 ice detected on the major moons? 9. What is the origin and structure of the µ ring? camera/VIR spectrometer 10. Do the rings have the same composition as the nearby moons/moonlets? VIR spectrometer Rings 11. What causes the structure of the narrow, dense rings? Are they self- camera sustaining? Table 1: Science objectives for the UMaMI mission and the instruments that would be used to achieve them. “Major moons” refers to Miranda, Ariel, Umbriel, Titania, and Oberon; “mag”=magnetometer; “plasma”=plasma spectrom- eter; “energetic particles”=energetic particle detector. .
Recommended publications
  • A Wunda-Full World? Carbon Dioxide Ice Deposits on Umbriel and Other Uranian Moons
    Icarus 290 (2017) 1–13 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus A Wunda-full world? Carbon dioxide ice deposits on Umbriel and other Uranian moons ∗ Michael M. Sori , Jonathan Bapst, Ali M. Bramson, Shane Byrne, Margaret E. Landis Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA a r t i c l e i n f o a b s t r a c t Article history: Carbon dioxide has been detected on the trailing hemispheres of several Uranian satellites, but the exact Received 22 June 2016 nature and distribution of the molecules remain unknown. One such satellite, Umbriel, has a prominent Revised 28 January 2017 high albedo annulus-shaped feature within the 131-km-diameter impact crater Wunda. We hypothesize Accepted 28 February 2017 that this feature is a solid deposit of CO ice. We combine thermal and ballistic transport modeling to Available online 2 March 2017 2 study the evolution of CO 2 molecules on the surface of Umbriel, a high-obliquity ( ∼98 °) body. Consid- ering processes such as sublimation and Jeans escape, we find that CO 2 ice migrates to low latitudes on geologically short (100s–1000 s of years) timescales. Crater morphology and location create a local cold trap inside Wunda, and the slopes of crater walls and a central peak explain the deposit’s annular shape. The high albedo and thermal inertia of CO 2 ice relative to regolith allows deposits 15-m-thick or greater to be stable over the age of the solar system.
    [Show full text]
  • The Subsurface Habitability of Small, Icy Exomoons J
    A&A 636, A50 (2020) Astronomy https://doi.org/10.1051/0004-6361/201937035 & © ESO 2020 Astrophysics The subsurface habitability of small, icy exomoons J. N. K. Y. Tjoa1,?, M. Mueller1,2,3, and F. F. S. van der Tak1,2 1 Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen, The Netherlands e-mail: [email protected] 2 SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen, The Netherlands 3 Leiden Observatory, Leiden University, Niels Bohrweg 2, 2300 RA Leiden, The Netherlands Received 1 November 2019 / Accepted 8 March 2020 ABSTRACT Context. Assuming our Solar System as typical, exomoons may outnumber exoplanets. If their habitability fraction is similar, they would thus constitute the largest portion of habitable real estate in the Universe. Icy moons in our Solar System, such as Europa and Enceladus, have already been shown to possess liquid water, a prerequisite for life on Earth. Aims. We intend to investigate under what thermal and orbital circumstances small, icy moons may sustain subsurface oceans and thus be “subsurface habitable”. We pay specific attention to tidal heating, which may keep a moon liquid far beyond the conservative habitable zone. Methods. We made use of a phenomenological approach to tidal heating. We computed the orbit averaged flux from both stellar and planetary (both thermal and reflected stellar) illumination. We then calculated subsurface temperatures depending on illumination and thermal conduction to the surface through the ice shell and an insulating layer of regolith. We adopted a conduction only model, ignoring volcanism and ice shell convection as an outlet for internal heat.
    [Show full text]
  • Moons in Orbit by Katie Clark
    Name: ______________________________ Moons in Orbit by Katie Clark Did you know that other planets have moons, too? These moons are called satellites. A satellite is something that orbits, or moves around a planet. Some of these moons are small. Some of these moons are big. Some of them are really amazing! Mars is our closest neighbor who has a moon —in fact, Mars has two of them! Mars’ moons are named Phobos and Deimos. These moons are shaped like potatoes! Phobos gets closer to Mars each time it rotates around the planet. This means that one day it could crash into Mars! Jupiter has over sixty moons. Ganymede is the largest out of any of the planets’ moons. It is bigger than the planet Mercury! Another amazing moon is Io. It is full of volcanoes! Saturn has big rings around it. These rings are made of moons that broke apart, and still orbit the planet. Saturn has fifty-three moons! Uranus has a famous moon, too. Titania is known for earthquakes! Some of Titania’s fault lines are a thousand miles long! All together Uranus has twenty-seven moons. The planet Neptune was named after a god of the sea. Scientists named Neptune’s moons after other sea gods! Triton was the first moon of Neptune that scientists found. It rotates in a different direction from the planet. Neptune has thirteen moons. Mercury and Venus are the only two planets in our solar system that don’t have moons. They are so close to the sun that any moons would be pulled away by the sun’s gravity.
    [Show full text]
  • Deep Space Chronicle Deep Space Chronicle: a Chronology of Deep Space and Planetary Probes, 1958–2000 | Asifa
    dsc_cover (Converted)-1 8/6/02 10:33 AM Page 1 Deep Space Chronicle Deep Space Chronicle: A Chronology ofDeep Space and Planetary Probes, 1958–2000 |Asif A.Siddiqi National Aeronautics and Space Administration NASA SP-2002-4524 A Chronology of Deep Space and Planetary Probes 1958–2000 Asif A. Siddiqi NASA SP-2002-4524 Monographs in Aerospace History Number 24 dsc_cover (Converted)-1 8/6/02 10:33 AM Page 2 Cover photo: A montage of planetary images taken by Mariner 10, the Mars Global Surveyor Orbiter, Voyager 1, and Voyager 2, all managed by the Jet Propulsion Laboratory in Pasadena, California. Included (from top to bottom) are images of Mercury, Venus, Earth (and Moon), Mars, Jupiter, Saturn, Uranus, and Neptune. The inner planets (Mercury, Venus, Earth and its Moon, and Mars) and the outer planets (Jupiter, Saturn, Uranus, and Neptune) are roughly to scale to each other. NASA SP-2002-4524 Deep Space Chronicle A Chronology of Deep Space and Planetary Probes 1958–2000 ASIF A. SIDDIQI Monographs in Aerospace History Number 24 June 2002 National Aeronautics and Space Administration Office of External Relations NASA History Office Washington, DC 20546-0001 Library of Congress Cataloging-in-Publication Data Siddiqi, Asif A., 1966­ Deep space chronicle: a chronology of deep space and planetary probes, 1958-2000 / by Asif A. Siddiqi. p.cm. – (Monographs in aerospace history; no. 24) (NASA SP; 2002-4524) Includes bibliographical references and index. 1. Space flight—History—20th century. I. Title. II. Series. III. NASA SP; 4524 TL 790.S53 2002 629.4’1’0904—dc21 2001044012 Table of Contents Foreword by Roger D.
    [Show full text]
  • Patent Infringement in Outer Space in Light of 35 U.S.C. § 105
    THIS VERSION DOES NOT CONTAIN PARAGRAPH/PAGE REFERENCES. PLEASE CONSULT THE PRINT OR ONLINE DATABASE VERSIONS FOR PROPER CITATION INFORMATION. ARTICLE PATENT INFRINGEMENT IN OUTER SPACE IN LIGHT OF 35 U.S.C. § 105: FOLLOWING THE WHITE RABBIT DOWN THE RABBIT LOOPHOLE THEODORE U. RO* MATTHEW J. KLEIMAN** KURT G. HAMMERLE*** * Theodore (Ted) Ro is an intellectual property attorney at Johnson Space Center, working for the National Aeronautics and Space Administration. Mr. Ro has a Bachelor of Science degree in aerospace engineering from Texas A&M University as well as a master’s degree in industrial engineering and a Doctor of Jurisprudence from the University of Houston. Mr. Ro primarily practices in the area of intellectual property law, including patent prosecu- tion and patent licensing. ** Matthew Kleiman is Corporate Counsel at the Draper Laboratory in Cambridge, MA. Mr. Kleiman also chairs the Space Law Committee of the ABA Section on Science & Tech- nology Law and teaches Space Law at Boston University School of Law. Mr. Kleiman earned his Bachelor of Arts degree from Rutgers University and Doctor of Jurisprudence from Duke University. *** Kurt G. Hammerle is an intellectual property attorney for the National Aeronautics and Space Administration at the Lyndon B. Johnson Space Center located in Houston, TX. Mr. Hammerle earned a Bachelor of Science degree in mechanical engineering from Virginia Polytechnic Institute & State University in 1988 and a Doctor of Jurisprudence from the Marshall-Wythe School of Law at the College of William & Mary in 1991. The views expressed herein are those of the authors’ and not of the National Aeronautics and Space Administration, Draper Laboratory or any other organization.
    [Show full text]
  • The Surface Compositions of Pluto and Charon ⇑ D.P
    Icarus 246 (2015) 82–92 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus The surface compositions of Pluto and Charon ⇑ D.P. Cruikshank a, , W.M. Grundy b, F.E. DeMeo c, M.W. Buie d, R.P. Binzel e, D.E. Jennings f, C.B. Olkin d, J.W. Parker d, D.C. Reuter f, J.R. Spencer d, S.A. Stern d, L.A. Young d, H.A. Weaver g a NASA Ames Research Center, Moffett Field, CA 94035, United States b Lowell Observatory, Flagstaff, AZ 86001, United States c Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, United States d Southwest Research Institute, Boulder, CO 80302, United States e Massachusetts Institute of Technology, Cambridge, MA 02139, United States f NASA Goddard Spaceflight Center, Greenbelt, MD 20771, United States g Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723, United States article info abstract Article history: The surface of Pluto as it is understood on the eve of the encounter of the New Horizons spacecraft Received 6 January 2014 (mid-2015) consists of a spatially heterogeneous mix of solid N2,CH4, CO, C2H6, and an additional Revised 15 May 2014 component that imparts color, and may not be an ice. The known molecular ices are detected by Accepted 16 May 2014 near-infrared spectroscopy. The N ice occurs in the hexagonal crystalline b-phase, stable at T > 35.6 K. Available online 6 June 2014 2 Spectroscopic evidence for wavelength shifts in the CH4 bands attests to the complex mixing of CH4 and N2 in the solid state, in accordance with the phase diagram for N2 +CH4.
    [Show full text]
  • Uranian and Saturnian Satellites in Comparison
    Compara've Planetology between the Uranian and Saturnian Satellite Systems - Focus on Ariel Oberon Umbriel Titania Ariel Miranda Puck Julie Cas'llo-Rogez1 and Elizabeth Turtle2 1 – JPL, California Ins'tute of Technology 2 – APL, John HopKins University 1 Objecves Revisit observa'ons of Voyager in the Uranian system in the light of Cassini-Huygens’ results – Constrain planetary subnebula, satellites, and rings system origin – Evaluate satellites’ poten'al for endogenic and geological ac'vity Uranian Satellite System • Large popula'on • System architecture almost similar to Saturn’s – “small” < 200 Km embedded in rings – “medium-sized” > 200 Km diameter – No “large” satellite – Irregular satellites • Rela'vely high albedo • CO2 ice, possibly ammonia hydrates Daphnis in Keeler gap Accre'on in Rings? Charnoz et al. (2011) Charnoz et al., Icarus, in press) Porco et al. (2007) ) 3 Ariel Titania Oberon Density(kg/m Umbriel Configuraon determined by 'dal interac'on with Saturn Configura'on determined by 'dal interac'on within the rings Distance to Planet (Rp) Configuraon determined by Titania Oberon Ariel 'dal interac'on with Saturn Umbriel Configura'on determined by 'dal interac'on within the rings Distance to Planet (Rp) Evidence for Ac'vity? “Blue” ring found in both systems Product of Enceladus’ outgassing ac'vity Associated with Mab in Uranus’ system, but source if TBD Evidence for past episode of ac'vity in Uranus’ satellite? Saturn’s and Uranus’ rings systems – both planets are scaled to the same size (Hammel 2006) Ariel • Comparatively low
    [Show full text]
  • Returning Samples from Icy Enceladus Peter Tsou1, Ariel Anbar2, Donald E
    Workshop on the Habitability of Icy Worlds (2014) 4034.pdf Returning Samples from Icy Enceladus Peter Tsou1, Ariel Anbar2, Donald E. Brownlee3, John Baross3, Daniel P. Glavin4, Christopher Glein5, Isik Kanik6, Christopher P. McKay7, Hajime Yano8, Peter Williams2 and Kathrin Atwegg9 1Sample Exploration Systems, 2Arizona State University, 3University of Washington, 4NASA Goddard Space Flight Center, 5Carnegie Institution of Washington, 6Jet Propulsion Laboratory California Institute of Technology, 7Ames Research Center, 8Japan Aerospace of Exploration Agency, Institute of Space and Astronautical Science, 9 University of Bern. Email: [email protected]. Introduction: From the first half century of space acids, determining the sequences of any oligomers, exploration, we have returned samples only from the assessing chirality and chemical disequilibrium, and Moon, comet Wild 2, the Solar Wind and the asteroid measuring isotope ratios, we can formulate a new set Itokawa. The in-depth analyses of these samples in of hypotheses to address many of the key science ques- terrestrial laboratories have yielded detailed chemical tions required for investigating the stage of extraterres- information that could not have been obtained without trial life at Enceladus beyond the initial four factors of the returned samples. While obtaining samples from habitability. At a broader level, Enceladus is offering Solar System bodies is transformative science, it is us a unique opportunity to search for new insights into rarely done due to cost and complexity. The discovery the puzzling transition between the ubiquitous prebio- by Cassini of geysers on Enceladus and organic mate- tic chemistry of asteroids and comets, and the bioche- rials in the ejected plumes indicates that there is an mistry at the root of all known life.
    [Show full text]
  • United States Space Program Firsts
    KSC Historical Report 18 KHR-18 Rev. December 2003 UNITED STATES SPACE PROGRAM FIRSTS Robotic & Human Mission Firsts Kennedy Space Center Library Archives Kennedy Space Center, Florida Foreword This summary of the United States space program firsts was compiled from various reference publications available in the Kennedy Space Center Library Archives. The list is divided into four sections. Robotic mission firsts, Human mission firsts, Space Shuttle mission firsts and Space Station mission firsts. Researched and prepared by: Barbara E. Green Kennedy Space Center Library Archives Kennedy Space Center, Florida 32899 phone: [321] 867-2407 i Contents Robotic Mission Firsts ……………………..........................……………...........……………1-4 Satellites, missiles and rockets 1950 - 1986 Early Human Spaceflight Firsts …………………………............................……........…..……5-8 Projects Mercury, Gemini, Apollo, Skylab and Apollo Soyuz Test Project 1961 - 1975 Space Shuttle Firsts …………………………….........................…………........……………..9-12 Space Transportation System 1977 - 2003 Space Station Firsts …………………………….........................…………........………………..13 International Space Station 1998-2___ Bibliography …………………………………..............................…………........…………….....…14 ii KHR-18 Rev. December 2003 DATE ROBOTIC EVENTS MISSION 07/24/1950 First missile launched at Cape Canaveral. Bumper V-2 08/20/1953 First Redstone missile was fired. Redstone 1 12/17/1957 First long range weapon launched. Atlas ICBM 01/31/1958 First satellite launched by U.S. Explorer 1 10/11/1958 First observations of Earth’s and interplanetary magnetic field. Pioneer 1 12/13/1958 First capsule containing living cargo, squirrel monkey, Gordo. Although not Bioflight 1 a NASA mission, data was utilized in Project Mercury planning. 12/18/1958 First communications satellite placed in space. Once in place, Brigadier Project Score General Goodpaster passed a message to President Eisenhower 02/17/1959 First fully instrumented Vanguard payload.
    [Show full text]
  • Rest of the Solar System” As We Have Covered It in MMM Through the Years
    As The Moon, Mars, and Asteroids each have their own dedicated theme issues, this one is about the “rest of the Solar System” as we have covered it in MMM through the years. Not yet having ventured beyond the Moon, and not yet having begun to develop and use space resources, these articles are speculative, but we trust, well-grounded and eventually feasible. Included are articles about the inner “terrestrial” planets: Mercury and Venus. As the gas giants Jupiter, Saturn, Uranus, and Neptune are not in general human targets in themselves, most articles about destinations in the outer system deal with major satellites: Jupiter’s Io, Europa, Ganymede, and Callisto. Saturn’s Titan and Iapetus, Neptune’s Triton. We also include past articles on “Space Settlements.” Europa with its ice-covered global ocean has fascinated many - will we one day have a base there? Will some of our descendants one day live in space, not on planetary surfaces? Or, above Venus’ clouds? CHRONOLOGICAL INDEX; MMM THEMES: OUR SOLAR SYSTEM MMM # 11 - Space Oases & Lunar Culture: Space Settlement Quiz Space Oases: Part 1 First Locations; Part 2: Internal Bearings Part 3: the Moon, and Diferent Drums MMM #12 Space Oases Pioneers Quiz; Space Oases Part 4: Static Design Traps Space Oases Part 5: A Biodynamic Masterplan: The Triple Helix MMM #13 Space Oases Artificial Gravity Quiz Space Oases Part 6: Baby Steps with Artificial Gravity MMM #37 Should the Sun have a Name? MMM #56 Naming the Seas of Space MMM #57 Space Colonies: Re-dreaming and Redrafting the Vision: Xities in
    [Show full text]
  • Tectonic Deformation of Icy Surfaces: Application to Pluto and Charon
    Tectonic Deformation of Icy Surfaces: Application to Pluto and Charon. S.A. Kattenhorn, Department of Geo- logical Sciences, University of Idaho, Moscow, ID 83844-3022, [email protected]. Introduction: Spacecraft missions to the outer so- also been inferred on Enceladus [4]. Evolving tidal lar system have revealed a diverse range of icy moons, bulge heights driven by orbital recession (changing with surfaces sculpted by tectonism, cratering, mass distance to parent body) and internal differentiation wasting, thermally/compositionally driven endogenic (changing Love numbers) create explicit stress fields processes, and deposition of loose material to form that should be manifested in the deformation patterns regolith. Many icy surfaces are pervasively tectonized, [2]. Despinning will reduce flattening, providing an replete with fractures, faults, and significant topogra- additional source of stress. Tidal bulges may also mi- phy (e.g., Europa, Ganymede, Enceladus, Dione, Rhea, grate latitudinally in response to polar wander [5], pos- Titan, Miranda, Ariel, Titania, Triton). Such features sibly explaining fracture patterns on some icy moons. record a history of deformation in crosscutting rela- If tidal deformation stresses are too small to overcome tionships, with feature orientations indicating evolving the strength of the ice shell, ice shell thickening could stress conditions through time. Although extensional induce an isotropic tension [6] that augments other deformation appears to dominate, shear deformation sources of stress, helping to drive deformation. On (strike-slip faulting) and contractional deformation are Pluto and Charon, tectonic deformation could have also possible. The identification of surface deformation been driven by NSR, orbital recession, and despinning on Pluto and Charon, which have experienced stress [1]; however, all possibilities should be considered.
    [Show full text]
  • Lunar Word Search
    WORDLUNAR SEARCH Can you find the names of moons in our solar system that are hidden in this grid? Look for these moons in this word search: N R B U A E N C E L A D U S Ariel C D S O T S I L L A C O N I Callisto H E P H O B O S A A E O I P Deimos A D T C E A G H E U R O P A Dione R O T E E D H A I Y I R T C Enceladus O B E R O N M T N U R H I T Europa N O D A M A A A R Y M E T I Ganymede Iapetus R O I M N R R T S I M A A A Mimas O A O U O I T E O P T E N N Moon D O N M E M A T M O A O D I Oberon N M E L S N N H I E I R N E Phobos S U T E P A I Y E A P C U E Rhea I E M I M A S S D R E O U E Tethys Titan B A A N I H E R O O L A A O How much do you know about moons other than our own? Learn more about them—and get the answers to this puzzle—on page 3.
    [Show full text]