OICETS) Project

Total Page:16

File Type:pdf, Size:1020Kb

OICETS) Project 2 Overview of the Optical Inter-orbit Communications Engineering Test Satellite (OICETS) Project ARAI Katsuyoshi The Optical Inter-orbit Communications Engineering Test Satellite (OICETS “KIRARI”) is an experimental technology satellite aiming the orbital demonstration of optical communication with the ESA (European Space Agency) ARTEMIS (Advanced Relay and TEchnology Mission Satellite) geosynchronous satellite. Its main orbit demonstrations are laser acquisition and tracking technology, on-orbit performance degradation of optical devise and system, and future international inter-orbit operation of optical communications technology. OICETS started the project in 1995, was launched at Baikonur in August 2005, after the AR- TEMIS geosynchronous orbit acquisition. OICETS made success of two world first demonstra- tions in the laser optical communications. One was two-way communication with ESA ARTE- MIS in 2005. Another was communication with the NICT ground station in 2006. This paper describes the overview of OICETS project such as development status, key technologies and launch and experimental results. Keywords Optical Inter-orbit communication, Low earth orbit satellite - optical ground station, Laser, International inter-orbit operation, International cooperation 1 Introduction ture technology for the efficient transmission of a tremendous amount of observation data. Radio wave communications support vari- Just like optical fibers for communication net- ous space activities. They are used for exam- works on the ground, laser beams can be used ple to transmit remote sensing data from an in space to transmit a large volume of data. earth observatory satellite, transmit images of Inter-orbit communication technology, distant planets from an exploration satellite, which is used between a low earth orbit satel- and exchange information between satellites lite, such as an earth observatory satellite or in orbit. As earth observation from space and International Space Station (ISS), and data re- other space activities become more active, the lay satellites (geostationary satellite), are im- resolution of observation sensors mounted in portant technologies to support various space earth observatory satellites should be im- activities including the acquisition of observa- proved and the data volume should increase tion data from earth observatory satellites or [1]. However, due to a limitation of the fre- the continual securing of communication lines quencies that can be used for space communi- from the ISS. Optical inter-orbit communica- cations, radio wave interference is becoming a tion technology using laser beams is a key problem. Optical communications using laser technology for future data relay satellites as it beams has therefore attracted attention as a fu- not only improves the speed and capacity of ARAI Katsuyoshi 5 data transmission drastically but also reduces test satellite for elementary technologies for the size and weight of communication antenna. the load map of satellite communications and In-orbit optical communication technology broadcasting. using laser beams has drawn attention as a fu- Figure 1 shows an image of optical inter- ture technology. To demonstrate it, the Japan orbit communications between the OICETS Aerospace Exploration Agency (JAXA) began and ARTEMIS and Fig. 2 that of an optical to develop the Optical Inter-orbit Communica- communications experiment with an optical tions Engineering Test Satellite (OICETS). ground station. The configuration of the The satellite was expected to play a role as a OICETS in orbit and its major performance Fig.1 Image of optical inter-orbit communica- Fig.2 Image of optical communications experi- tions experiment between the OICETS ment made with an optical ground station and ARTEMIS. (The satellite on the near of the National Institute of Information and side is the OICETS) Communications Technology (NICT) Dimensions Satellite body: 0.78 m × 1.1 m × 1.5 m (height) Total height including optical antenna: 2.93 m Total length including solar array paddle: 9.36 m Weight About 570 kg at launch Orbit Circular orbit: Altitude: 610-550 km Orbital inclination: About 98° Designed life 1 year Fig.3 Confi guration and major performance of the OICETS on orbit 6 Journal of the National Institute of Information and Communications Technology Vol. 59 Nos. 1/2 2012 details are presented in Fig. 3. advanced experience. The ARTEMIS was launched in July 2001 but it turned out that the 2 Development history deployment of the geostationary satellite to or- bit was significantly delayed due to trouble In an administrative meeting between Ja- with the launch vehicle. Since it was necessary pan and ESA in 1992, discussions started for a to see whether the ARTEMIS could be made joint experiment of optical communications. geostationary, the Space Activities Commis- Optical inter-orbit communications were ex- sion decided in August 2001 to postpone the pected to be used for data relay satellites and launch of the OICETS. hence mutual operability was important (be- However it turned out that, after ESA cause the space agencies could share the com- worked hard, the ARTEMIS was able to be munication service by making a common put into the geostationary orbit in the begin- communication method). In this situation, ac- ning of 2003. Then, JAXA made a proposal to tual in-orbit demonstration of the technology the Space Activities Commission for launch- in a practical situation was required and inter- ing the OICETS in 2005, considering the fact national collaboration was needed to conduct that the optical communication device in the the project in a limited schedule and utilize ARTEMIS would end its design life in 5 years costs efficiently. (in July 2006). The Commission checked if Technological coordination began in 1993 the initial significance and purpose were still using ESA’s geostationary satellite ARTE- maintained in the project and discussed the va- MIS. In December 1994, the commissioner of lidity of the project including the launch vehi- ESA and the president of the National Space cle. As a result it was appreciated once again Development Agency of Japan (currently that the initial significance of the demonstra- JAXA) exchanged a MOU with each other tion of optical inter-orbit communications in about optical inter-orbit communications ex- space was still valid, that early demonstrations periments, which was the start of the joint ex- of optical communications in space were still periment project to be conducted through in- important for future technologies of Japan, and ternational cooperation. that the techniques could be applied to high- JAXA began the development of the precision ranging and other technologies. On OICETS in 1995 and the detailed technologi- the other hand, the discussion on the launch cal coordination with ESA. Although interna- vehicle was continued in order to select the tional technological coordination was difficult, most appropriate launch method with an aim JAXA learned a lot from Europe which had to launching the OICETS in 2005. Through Fig.4 OICETS development schedule (from start of development to launch) ARAI Katsuyoshi 7 the discussions on the selection of the launch sion rate, reduces transmission power, and vehicle, it was found that the first stage of the softens requirements for receivers. J-Ⅰ rocket could not be used due to an accident (2) The size, weight and power consumption with the H-ⅡA rocket No. 6, and H-ⅡA rocket of communication devices can be reduced. could not be used as it was to be used to (3) The attitude is highly stable due to low at- launch another satellite, M-V rocket could not titude disturbances from the operation of small be used due to a launch environment problem, optical antenna. and GX rocket could not be used as it was still (4) EMI (electromagnetic interference) can be under development. In this difficult situation, reduced. the possibility of using a foreign rocket was (5) The systems are highly resistant to interfer- examined as the second best way. In these dis- ence and interception of communications and cussions, the actual flight record and reliability advantageous in terms of communication of the rocket launching, the compatibility of confidentiality. the schedule, and delivery problems of the sat- ellite were taken into account. As a conse- Figure 5 compares actual radio wave com- quence, a plan for launching the satellite with munications satellites and optical inter-orbit the Russia-Ukraine Dnepr rocket from the communications satellites. Baikonur Cosmodrome in 2005 was proposed To take advantage of optical inter-orbit in December 2004 to the Space Activities communications, there are some technical Commission, which then approved the propos- problems to be solved. The maximum distance al. Figure 4 shows the development schedule between a geostationary satellite and a low of the OICETS from the start of development earth orbit satellite is 40,000 km. For satellites to the launch. that are far away from each other to transmit and receive laser beams to a precision of sev- 3 Demonstration experiment in eral micro radians, high-precision optical de- orbit vices and technology for their accurate control are necessary. We demonstrated with the Compared to radio wave communication OICETS the key element technologies, systems, optical communication systems have checked performance degradation in the space the following advantages: environment, and obtained data for practical (1) High antenna gain increases data transmis- use. Fig.5
Recommended publications
  • SPACE RESEARCH in POLAND Report to COMMITTEE
    SPACE RESEARCH IN POLAND Report to COMMITTEE ON SPACE RESEARCH (COSPAR) 2020 Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Report to COMMITTEE ON SPACE RESEARCH (COSPAR) ISBN 978-83-89439-04-8 First edition © Copyright by Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Warsaw, 2020 Editor: Iwona Stanisławska, Aneta Popowska Report to COSPAR 2020 1 SATELLITE GEODESY Space Research in Poland 3 1. SATELLITE GEODESY Compiled by Mariusz Figurski, Grzegorz Nykiel, Paweł Wielgosz, and Anna Krypiak-Gregorczyk Introduction This part of the Polish National Report concerns research on Satellite Geodesy performed in Poland from 2018 to 2020. The activity of the Polish institutions in the field of satellite geodesy and navigation are focused on the several main fields: • global and regional GPS and SLR measurements in the frame of International GNSS Service (IGS), International Laser Ranging Service (ILRS), International Earth Rotation and Reference Systems Service (IERS), European Reference Frame Permanent Network (EPN), • Polish geodetic permanent network – ASG-EUPOS, • modeling of ionosphere and troposphere, • practical utilization of satellite methods in local geodetic applications, • geodynamic study, • metrological control of Global Navigation Satellite System (GNSS) equipment, • use of gravimetric satellite missions, • application of GNSS in overland, maritime and air navigation, • multi-GNSS application in geodetic studies. Report
    [Show full text]
  • Lasercom Uncertainty Modeling and Optimization Simulation (LUMOS)
    Clements, E. et al. (2019): JoSS, Vol. 8, No. 1, pp. 815–836 (Peer-reviewed article available at www.jossonline.com) www.adeepakpublishing.com www. JoSSonline.com Lasercom Uncertainty Modeling and Optimization Simulation (LUMOS): A Statistical Approach to Risk-Tolerant Systems Engineering for Small Satellites Emily Clements, Jeffrey Mendenhall, and David Caplan MIT Lincoln Laboratory Lexington, Massachusetts US Kerri Cahoy Massachusetts Institute of Technology Cambridge, Massachusetts US Abstract In contrast to large-budget space missions, risk-tolerant platforms such as nanosatellites may be better posi- tioned to exchange moderate performance uncertainty for reduced cost and improved manufacturability. New uncertainty-based systems engineering approaches such as multidisciplinary optimization require the use of inte- grated performance models with input distributions, which do not yet exist for complex systems, such as laser communications (lasercom) payloads. This paper presents our development of a statistical, risk-tolerant systems engineering approach and apply it to nanosatellite-based design and architecture problems to investigate whether adding a statistical element to systems engineering enables improvements in performance, manufacturability, and cost. The scope of this work is restricted to a subset of nanosatellite-based lasercom systems, which are particu- larly useful given current momentum to field Earth-observing nanosatellite constellations and increasing chal- lenges for data retrieval. We built uncertainty-based lasercom
    [Show full text]
  • Japanese SLR Challenges
    13-0507 Japanese SLR Challenges S. Nakamura (1), S. Kasho (1), K. Akiyama (1), H. Hashimoto (1), H. Kunimori (2), M. Sato (3), S. Watanabe (3), T. Otsubo (4) (1) Japan Aerospace Exploration Agency (2) National Institute of Information and Communications Technplogy (3) Japan Coast Guard (4) Hitotsubashi University [email protected] Abstract. Since 1986 in which AJISAI was lounched, JAXA, NICT, Hitotshubashi Univ. JCG, and GSI made a local consortim whose purpose is share orbital data and analysical results. In 2010, when GSI pulled out of an agreement, AJISAI consortium has restructured as Japanese ILRS committee. Example of its activities is evaluation of prediction file of ETS-8 before starting ILRS campaign, evaluation of long term tred of AJISAI spin rate, and shareing operational know-how and how to fix mechanical failure. Additionary, this workshop has been organized as well. Introduction In Japan, there are 3 SLR stations in Japan, KOGC (NICT), SISL (JCG) and GMSL (JAXA), and well known analysis center, HIT-U. Moreover, there were collaborative work among them since AJISAI launched in 1986, but no paper and no presentation about Japan activities. Taking LW18 opportunity, we summarize Japan activities. Present status, Topics and Future Plan of each organization First of all, we summarize Japanese 3 SLR stations in Table 1. Since KOGC-SISL-GMSL has good base line, about 1000km which is longer than meteological changing scale, each SLR station compensate each other. Moreover, for GEO/QZSS tracking, we have succeeded precise orbit determination by simultaneous tracking. Table 1, Japanese SLR stations Site Code Organization Location Mission of Organization KOGC NICT Tokyo Research for optical communication SISL JCG Wakayama Prefecture Marine cartography and geodesy GMSL JAXA Kagoshima Prefecture Satellite Operation (1) Koganei (KOGC, NICT) Past 1996 KSP 4 station, ADEOS-RIS Experiment, Join ILRS 2006 ADEOS-II 2008 ALOS, OICETS Optical Communication 2008 ETS-VIII, Technical development by domestic product 2010 QZS-1.
    [Show full text]
  • Communications Technologies in Space Applications in the Future
    Communications Technologies in Space Applications in the Future Dr. TACHIKAWA Keiji President Japan Aerospace Exploration Agency www.jaxa.jp n October 1, 2003, the National Space Development the “Galileo Project,” a global Agency of Japan (NASDA), the National Aerospace navigation satellite system, an O Laboratory of Japan (NAL) and the Institute of initiative launched by the Euro- Space and Astronautical Science (ISAS) were merged into pean Union and the European one independent administrative institution: the Japan Aero- Space Agency (ESA). Under such space Exploration Agency (JAXA). However, immediately circumstances, it is essential chal- after the merger, JAXA had to face the successive failures of lenges for JAXA how to promote space development activi- H-II A and M-V launch vehicles and the operational anomaly ties of Japan and how to expand space applications. Hence- with the Advanced Earth Observing Satellite-II (ADEOS-II: forth, JAXA is to develop a concrete implementation plan for Midori-II). Subsequently, during a year and a half after the realizing Japan’s long-term vision. merger, JAXA was forced to concentrate all our energy on With respect to JAXA’s R&D on communications tech- the accident investigation into the causes of these failures. nologies in space applications, JAXA has been implementing On February 26, 2005, JAXA successfully launched the two projects; i) Engineering Test Satellite-VIII (ETS-VIII) Multi-functional Transport Satellite-1 Replacement having two Large Deployable Antenna Reflectors (19 m × 17 (MTSAT-1R: Himawari 6) using the H-IIA Launch Vehicle m each) to demonstrate mobile satellite communication sys- No. 7 (H-IIA F7) and also successfully launched the M-V tem technology; and ii) the Wideband InterNetworking Launch Vehicle with the X-ray Astronomy Satellite engineering test and Demonstration Satellite (WINDS) to (ASTRO-E: Suzaku) onboard.
    [Show full text]
  • Atmospheric Influence on a Laser Beam Observed on the OICETS – ARTEMIS Communication Demonstration Link
    Atmos. Meas. Tech., 3, 1233–1239, 2010 www.atmos-meas-tech.net/3/1233/2010/ Atmospheric doi:10.5194/amt-3-1233-2010 Measurement © Author(s) 2010. CC Attribution 3.0 License. Techniques Atmospheric influence on a laser beam observed on the OICETS – ARTEMIS communication demonstration link A. Loscher¨ ESA/ESTEC, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands Received: 18 March 2010 – Published in Atmos. Meas. Tech. Discuss.: 10 May 2010 Revised: 26 July 2010 – Accepted: 20 August 2010 – Published: 14 September 2010 Abstract. In 2006 bi-directional optical inter-satellite com- the limits concerning the capacity of X-band downlink sys- munication experiments were conducted between the Japan tems. One possible solution would be the use of optical Aerospace Exploration Agency (JAXA) Optical Inter-orbit terminals, increasing the bandwidth significantly, in a di- Communications Engineering Test Satellite (OICETS) and rect Earth observation satellite-to-ground or Earth observa- the European Space Agency (ESA) multi-purpose telecom- tion satellite-to-relay-satellites-to-ground configuration. The munications and technology demonstration satellite (Ad- links themselves are potentially a source of information con- vanced Relay and Technology MISsion) ARTEMIS. On 5 cerning Earth’s atmosphere depending on the transmission April 2006, an experiment was successfully carried out by geometry. maintaining the inter-satellite link during OICETS’s setting The Optical Inter-orbit Communications Engineering Test behind the Earth limb until the signal was lost. This setup Satellite (OICETS, Japanese name KIRARI) (Jono et al., resembles an occultation observation where the influence 2006) was developed by the Japan Aerospace Exploration of Earth’s atmosphere is evident in the power fluctuations Agency (JAXA) and launched into a circular Low Earth Or- recorded at ARTEMIS’s (and OICETS’s) receiver.
    [Show full text]
  • NEC Space Business
    Japan Space industry Workshop in ILA Berlin Airshow 2014 NEC Space Business May 22nd, 2014 NEC Corporation Kentaro (Kent) Sakagami (Mr.) General Manager Satellite Systems and Equipment, Global Business Unit E-mail: [email protected] NEC Corporate Profile Company Name: NEC Corporation Established: July 17, 1899 Kaoru Yano Nobuhiro Endo Chairman of the Board: Kaoru Yano President: Nobuhiro Endo Capital: ¥ 397.2 billion (As of Mar. 31, 2013) Consolidated Net Sales: ¥ 3,071.6 billion (FY ended Mar. 31, 2013) Employees: 102,375 (As of Mar. 31, 2013) Consolidated Subsidiaries: 270 (As of Mar. 31, 2013) Financial results are based on accounting principles generally accepted in Japan Page 2 © NEC Corporation 2014 NEC Worldwide: “One NEC” formation in 5 regions Marketing & Service affiliates 77 in 32 countries Manufacturing affiliates 8 in 5 countries Liaison Offices 7 in 7 countries Branch Offices 7 in 7 countries Laboratories 4 in 3 countries North America Greater China NECJ EMEA APAC Latin America (As of Apr. 1, 2014) Page 3 © NEC Corporation 2014 NEC in EMEA 1 NEC in Germany NEC Deutschland GmbH NEC Display Solutions Europe NEC Laboratories Europe (Internal division of NEC Europe Ltd.) NEC Tokin Europe NEC Scandinavia AB in Espoo, 2 NEC in Netherlands Finland NEC Logistics Europe NEC Nederland B.V. NEC Neva Communications Systems NEC Scandinavia AB in Oslo, Norway NEC in the U.K. 3 NEC Scandinavia AB NEC Europe Ltd. NEC Capital (UK) plc NEC in the UK NEC Technologies (UK) NEC in Netherlands NEC Telecom MODUS Limited 3 2 NEC (UK) Ltd.
    [Show full text]
  • Conference Report Report of ICSOS2009
    Conference Report Report of ICSOS2009 National Institute of Information and Communications Technology (NICT) Morio Toyoshima 1. Abstract 2. Main technical topics he International Conference on Space Optical The ICSOS2009 deals with the optical technologies TSystems and Applications 2009 (ICSOS2009) relating to space applications. The technical topics was held in Miraikan (National Museum of Emerging are listed as follows: Science and Innovation; see Fig. 1) from February 4 to ・ Systems and applications: 6, 2009. This conference had the following present and future laser communication systems objectives: (1) to provide a forum for discussion on the and scenarios realization and demonstration of space optical laser communication technologies for technologies including terrestrial optical and terahertz next-generation applications frequency technologies that are already used or space-based and terrestrial-based optical applicable in the future and (2) to build a community systems regarding these fields. This conference was novel optical systems for laser beams organized by the National Institute of Information and small satellite systems for laser Communications Technology (NICT) in Japan. This communications report describes the results of the ICSOS2009. space lidar systems imaging systems ・ Devices, components, and subsystems: novel optical devices for space-based applications optoelectronic subsystems and components laboratory demonstration hardware ・ Basic link technology: atmospheric propagation, transmission effects, and compensation techniques modulation formats for space-based systems trade-offs between optical and microwave (RF) systems Fig. 1. Photograph of Miraikan (National Museum new mm-wave/THz communication devices of Emerging Science and Innovation) and systems quantum optical communication and Space Japan Review, No. 61, April / May 2009 1 cryptography conference in Japan since the International Workshop standardization.
    [Show full text]
  • Introduction of NEC Space Business (Launch of Satellite Integration Center)
    Introduction of NEC Space Business (Launch of Satellite Integration Center) July 2, 2014 Masaki Adachi, General Manager Space Systems Division, NEC Corporation NEC Space Business ▌A proven track record in space-related assets Satellites · Communication/broadcasting · Earth observation · Scientific Ground systems · Satellite tracking and control systems · Data processing and analysis systems · Launch site control systems Satellite components · Large observation sensors · Bus components · Transponders · Solar array paddles · Antennas Rocket subsystems Systems & Services International Space Station Page 1 © NEC Corporation 2014 Offerings from Satellite System Development to Data Analysis ▌In-house manufacturing of various satellites and ground systems for tracking, control and data processing Japan's first Scientific satellite Communication/ Earth observation artificial satellite broadcasting satellite satellite OHSUMI 1970 (24 kg) HISAKI 2013 (350 kg) KIZUNA 2008 (2.7 tons) SHIZUKU 2012 (1.9 tons) ©JAXA ©JAXA ©JAXA ©JAXA Large onboard-observation sensors Ground systems Onboard components Optical, SAR*, hyper-spectral sensors, etc. Tracking and mission control, data Transponders, solar array paddles, etc. processing, etc. Thermal and near infrared sensor for carbon observation ©JAXA (TANSO) CO2 distribution GPS* receivers Low-noise Multi-transponders Tracking facility Tracking station amplifiers Dual- frequency precipitation radar (DPR) Observation Recording/ High-accuracy Ion engines Solar array 3D distribution of TTC & M* station image
    [Show full text]
  • Index of Astronomia Nova
    Index of Astronomia Nova Index of Astronomia Nova. M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS, 883 DOI 10.1007/978-3-319-03416-4, © Springer International Publishing Switzerland 2014 Bibliography Books are classified in sections according to the main themes covered in this work, and arranged chronologically within each section. General Mechanics and Geodesy 1. H. Goldstein. Classical Mechanics, Addison-Wesley, Cambridge, Mass., 1956 2. L. Landau & E. Lifchitz. Mechanics (Course of Theoretical Physics),Vol.1, Mir, Moscow, 1966, Butterworth–Heinemann 3rd edn., 1976 3. W.M. Kaula. Theory of Satellite Geodesy, Blaisdell Publ., Waltham, Mass., 1966 4. J.-J. Levallois. G´eod´esie g´en´erale, Vols. 1, 2, 3, Eyrolles, Paris, 1969, 1970 5. J.-J. Levallois & J. Kovalevsky. G´eod´esie g´en´erale,Vol.4:G´eod´esie spatiale, Eyrolles, Paris, 1970 6. G. Bomford. Geodesy, 4th edn., Clarendon Press, Oxford, 1980 7. J.-C. Husson, A. Cazenave, J.-F. Minster (Eds.). Internal Geophysics and Space, CNES/Cepadues-Editions, Toulouse, 1985 8. V.I. Arnold. Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics (60), Springer-Verlag, Berlin, 1989 9. W. Torge. Geodesy, Walter de Gruyter, Berlin, 1991 10. G. Seeber. Satellite Geodesy, Walter de Gruyter, Berlin, 1993 11. E.W. Grafarend, F.W. Krumm, V.S. Schwarze (Eds.). Geodesy: The Challenge of the 3rd Millennium, Springer, Berlin, 2003 12. H. Stephani. Relativity: An Introduction to Special and General Relativity,Cam- bridge University Press, Cambridge, 2004 13. G. Schubert (Ed.). Treatise on Geodephysics,Vol.3:Geodesy, Elsevier, Oxford, 2007 14. D.D. McCarthy, P.K.
    [Show full text]
  • 8. Free-Space Optical Links for Space Communication Networks Alberto Carrasco-Casado1, Ramon Mata-Calvo2
    Alberto Carrasco-Casado, Ramon Mata-Calvo “Free-space optical links for space communication networks” https://doi.org/10.1007/978-3-030-16250-4_34 8. Free-space optical links for space communication networks 1 2 Alberto Carrasco-Casado , Ramon Mata-Calvo 1. Space Communications Laboratory NICT – National Institute of Information and Communications Technology, Tokyo (Japan) 2. Institute of Communications and Navigation DLR – German Aerospace Center, Oberpfaffenhofen-Wessling (Germany) Abstract Future spacecraft will require a paradigm shift in the way the information is transmitted due to the continuous increase in the amount of data requiring space links. Current radiofrequency-based communication systems impose a bottleneck in the volume of data that can be transmitted back to Earth due to technological as well as regulatory reasons. Free-space optical communication has finally emerged as a key technology for solving the increasing bandwidth limitations for space communication while reducing the size, weight and power of satellite communication systems, and taking advantage of a license-free spectrum. In the last few years, many missions have demonstrated in orbit the fundamental principles of this technology proving to be ready for operational deployment, and we are now witnessing the emergence of an increasing number of projects oriented to exploit space laser communication (lasercom) in scientific and commercial applications. This chapter describes the basic principles and current trends of this new technology. Table of Contents:
    [Show full text]
  • Executive Comment
    EXECUTIVE COMMENT Communication Technology in Space Application Dr. Keiji Tachikawa Japan Aerospace Exploration Agency (JAXA) Academic Background: 1962 Bachelor of Engineering, University of Tokyo 1978 M.B.A., Massachusetts Institute of Technology 1981 Doctor of Engineering, University of Tokyo Business Career: 1962 Nippon Telegraph & Telephone Public Corporation (NTT) 1997 Senior Executive Vice President, NTT DoCoMo, Inc. 1998 President and CEO, NTT DoCoMo, Inc. 2001 Commissioner, Space Activities Commission 2004 President, JAXA On October 1, 2003, the Institute of Space and Astronautical Science (ISAS), the National Aerospace Laboratory of Japan (NAL) and the National Space Development Agency of Japan (NASDA) were merged into one independent administrative institution: the Japan Aerospace Exploration Agency (JAXA). Unfortunately however, we had to cope with the accidents of the failure of H-IIA Launch Vehicle No. 6 (H-IIA F6) and sudden operational anomaly of Midori-II (Advanced Earth Observing Satellite II, ADEOS-II) soon thereafter. We had to concentrate all our energy on the accident investigation into the causes of these failures for the first one and half years since the establishment. In the end, JAXA finally got back on track again with successful launch of Himawari-6 (MTSAT-1R) by H-IIA F7 on February 26, 2005 followed by equally successful launch of an X-ray astronomy satellite "Suzaku" (ASTRO-EII) by M-V F6 on July 10, 2005. It is still fresh in our memories that the Space Shuttle Discovery was successfully launched for the Return to Flight mission on July 26, 2005, with impressive accomplishments by our Mission Specialist Soichi Noguchi during the flight.
    [Show full text]
  • Data Products for the OCTL to OICETS Optical Link Experiment J
    Data Products for the OCTL to OICETS Optical Link Experiment J. Kovalik*, A. Biswas, K. Wilson, M. Wright, T. Roberts Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 ABSTRACT JPL has developed a series of software and hardware tools to analyze and record data from a 50Mb/s down and 2 Mb/s up bi-directional optical link with the LUCE terminal onboard the LEO OICETS satellite. This paper presents the data products for this experiment including the system architecture and analysis of the actual data received. Keywords: OICETS, optical communications, data products 1. INTRODUCTION 1.1 OICETS to OCTL Experiment (OTOOLE) The Jet Propulsion Laboratory (JPL) undertook an experiment in May and June 2009 to perform a bi-directional optical communications link between the Laser Utilizing Communications Equipment (LUCE) payload on the Optical Inter- orbit Communications Engineering Test Satellite (OICETS) and the Optical Communications Telescope Laboratory (OCTL) located at JPL’s Table Mountain Facility (TMF) near Wrightwood, California. The experiment was a collaboration between JPL, the National Institute of Information and Communications Technology (NICT) which controlled the optical communications payload and the Japan Aerospace Exploration Agency (JAXA) which controlled the OICETS satellite. The experiment consisted of 4 separate links that took place on May 21, June 2, June 4 and June 11, 2009. Each link occurred between 3 and 4 o’clock in the morning local time and lasted a few minutes. The 9 μrad [1] LUCE laser downlink transmitted 80 mW of average laser power with a 50 Mb/s On-Off-Key (OOK) PN 15 Pseudo Random Bit Sequence (PRBS) to the OCTL telescope.
    [Show full text]