Anomalous Pulmonary and Systemic Venous Drainage by A

Total Page:16

File Type:pdf, Size:1020Kb

Anomalous Pulmonary and Systemic Venous Drainage by A Thorax: first published as 10.1136/thx.11.2.119 on 1 June 1956. Downloaded from Thorax (1956), 11, 119. ANOMALOUS PULMONARY AND SYSTEMIC VENOUS DRAINAGE BY A. A. FITZGERALD PEEL, K. BLUM, J. C. C. KELLY, AND T. SEMPLE From the Victoria Infirmary, Glasgow (RECEIVED FOR PUBLICATION NOVEMBER 26, 1955) In Abbott's (1936) necropsy series of 1,000 cases coronary sinus, either with or without a connexion of congenital heart disease, anomalies of the great to the right superior vena cava through a left veins were found in 13. Of these nine had innominate vein; and (b) those in which the left abnormal major systemic veins and four had superior vena cava receives one or more pulmon- anomalous pulmonary veins. This classical series ary veins. In group 2 no right superior vena cava is based on findings before such modern methods is present. It will be noted that in group 1 (b) as angiocardiography and cardiac catheterization arterial blood enters the superior vena cava, but were widely used. Taussig (1947) differentiates groups 1 (a) and 2 involve systemic veins alone cases in which some pulmonary veins drain into and do not lead to an arterio-venous shunt. A the right atrium from those in which all pulmonary veno-arterial shunt occurs only in those cases, veins do so. She regards anomalies of the apparently few in number, in which the left superior and inferior venae cavae as rare and superior vena cava enters the left atrium. copyright. difficult to diagnose. She records one case in Examples have been described by McCotter (1916), which both superior and inferior venae cavae Rodriguez Diaz, Castellanos, and Garcia Faes entered the left atrium, one in which there was (1949), Mankin and Burchell (1953), and Feindt no inferior vena cava, and two in which a left- and Hauch (1953). Rarely the inferior vena cava sided vena cava entered the left side of a common enters the left atrium, producing a veno-arterial http://thorax.bmj.com/ atrium. She concludes that anomalies of the shunt (Taussig, 1947; Gardner and Cole, 1955). superior and inferior venae cavae rarely constitute A persistent left superior vena cava is most the sole malformation, and that only the coexist- often found as an additional abnormality in ing cardiac malformation permits diagnosis. patients with some other form of cardiac mal- With improved diagnostic methods many more formation. Brown (1952) reports a case of aortic examples of abnormal venous drainage are being coarctation with a single left superior vena cava. recognized and reported. A survey of the litera- Winter (1954) has reviewed the literature and ture suggests that, for practical purposes, these added 30 new cases. In 28 of the 30 cases the may be divided into three groups: left superior vena cava persisted in its entirety, on September 26, 2021 by guest. Protected (1) Anomalies involving the systemic veins while in two it persisted only in part. Anomalous alone. drainage of pulmonary veins was found in three (2) Anomalies involving the pulmonary veins of these cases: on the other hand a septal defect alone. was present in 25. Other associated anomalies (3) Anomalies involving both systemic and pul- were aortic septal defect, Fallot's tetralogy, truncus veins and associated with arteriosus, coarctation of the aorta, patent ductus monary pulmonary arteriosus, and pulmonary stenosis. Campbell and systemic communications. Deuchar (1954) found 46 examples in their series of cases of congenital heart disease. In 18 of these ANOMALIES INVOLVING SYSTEMIC VEINS ALONE there was partial or complete transposition of the Of these the most common is a persistent left viscera, and 13 of them had either proved or superior vena cava. McManus (1941) differen- suspected pulmonary stenosis; in four instances tiated two main groups of cases. In group 1 both the inferior vena cava was absent. In the remain- right and left superior venae cavae persist; this ing 28 cases the heart and abdominal viscera were group is further subdivided into (a) those in which normally placed, but various additional abnormali- the left superior vena cava is connected to the ties were present. In most of their cases the left Thorax: first published as 10.1136/thx.11.2.119 on 1 June 1956. Downloaded from 120 A. A. FITZGERALD PEEL, K. BLUM, J. C. C. KELLY, and T. SEMPLE superior vena cava joined the coronary sinus to of recorded cases had mounted to 45, to which reach the right atrium. They have not seen an Keith, Rowe, Viad, and O'Hanley (1954) added example in which it entered a normal left atrium, another 14. Yet another case has been added by but have seen it open into a common atrium or Arthurton, Gibson, and Woodwark (1954). into the left half of an atrium with a large septal Jorgens, LaBree, Adams, and Rigler (1952) first defect. Anomalous pulmonary venous drainage described the radiological features of venous was noted in one of their cases only. They do not drainage anomalies, demonstrating a persistent consider the presence of a left superior vena cava left superior vena cava and also drainage of pul- to be of much practical importance, but suggest monary veins into the superior vena cava. Snellen that, if it is suspected, cardiac catheterization is and Albers (1952) describe partial pulmonary best carried out from the right side, and, if dis- drainage into the superior vena cava, right atrium, covered at operation, that ligation should not be and left innominate vein, and total pulmonary performed. On the other hand, Rodriguez Diaz drainage into the superior vena cava, coronary and his co-workers have ligated a left superior sinus, right atrium, left innominate vein and the vena cava which drained into the left atrium with portal vein. They draw attention to a " figure of an excellent result. Difficulties may be encountered eight" appearance in the postero-anterior radio- with catheterization if the atrium is entered graph, and stress the frequency of right bundle through the coronary sinus from a left superior branch block due to coexisting atrial septal de- vena cava (McMichael and Mounsey, 1951). fect. Tori (1952) reports a case in which a right pulmonary vein opened into the superior vena ANOMALIES OF PULMONARY VEINS ALONE cava, while Odman (1953) describes a patient with Anomalies may consist of an abnormal number high coarctation of the aorta in whom a persistent of pulmonary veins or abnormal termination of left superior vena cava received pulmonary veins some or all pulmonary veins (Kugel and Poschl, and joined the left atrium. 1954). Provided there is no pulmonary-systemic A symposium from the Mayo Clinic on pulmon-copyright. venous communication, the condition appears to ary-systemic venous connexions includes interest- be of academic importance only. We know of ing papers by Edwards (1953), Swan, Burchell, one patient who was found at pneumonectomy for and Wood (1953) and Mankin and Burchell (1953). right-sided bronchiectasis to have a shrunken lung Edwards emphasizes the important distinction be- with normal stem bronchus, a hypoplastic pulmon- tween total and partial pulmonary-systemic venous http://thorax.bmj.com/ ary artery, and no right pulmonary veins (Bar- connexion. In total pulmonary-systemic venous clay, 1955). connexion both veno-arterial and arterio-venous shunts are present; the prognosis is poor, most of ANOMALIES INVOLVING PULMONARY-SYSTEMIC the patients dying in infancy. In partial pulmon- VENOUS COMMUNICATION ary-systemic venous connexion there is an arterio- These necessarily involve an arterio-venous shunt venous shunt but not necessarily a veno-arterial which may or may not be associated with a veno- shunt; many patients reach adult life. Necropsies were performed at the Mayo Clinic in 135 cases; arterial shunt elsewhere. In striking contrast to on September 26, 2021 by guest. Protected anomalies which are confined to the systemic or associated malformations included mitral atresia, to the pulmonary veins alone, they cause an altera- Fallot's tetralogy, cor biloculare with subpulmonic tion in the mechanics of the circulation; they may stenosis, and atresic common pulmonary veins. profoundly change the clinical picture and the A method of demonstrating the pulmonary prognosis of coexisting cardiac malformations; drainage pathway by arterial dilution curves is and they often produce a characteristic radio- described by Swan and others (1953). The dilu- logical picture. Anomalous pulmonary venous tion pattern of an indicator (T 1824) is recorded drainage may be total or partial. In the former during its initial circulation after injection into case, all the pulmonary veins drain into the right the vena cava, pulmonary vein, right pulmonary atrium, either directly or via a systemic vein. artery, or left pulmonary artery. Differences in In partial anomalous pulmonary venous drainage, the recorded patterns will demonstrate the some pulmonary veins enter the left atrium in the presence or absence of anomalous drainage from normal manner while others enter a systemic vein abnormal venous connexions. In patients who or the right atrium. also have an atrial septal defect with a large pul- Brody (1942) found six cases of total anomalous monary blood flow, it can sometimes be shown venous drainage recorded in the literature and that the blood draining from the right lung is added a seventh of his own. By 1954 the number shunted preferentially across the defect. By this Thorax: first published as 10.1136/thx.11.2.119 on 1 June 1956. Downloaded from ANOMALOUS PULMONARY AND SYSTEMIC VENOUS DRAINAGE 121 method, Swan demonstrated partial drainage of (1953) described additional cases but furnished no the right lung into the inferior vena cava in one new information. case in which there was no other circulatory de- Gardner and Oram (1953) have published four fect. In another case cardiac catheterization with cases with a persistent left superior vena cava arterial dilution curves showed (1) union of the which was joined by pulmonary veins; they right pulmonary vein with a persistent left superior correspond to McManus's group 1 (b).
Recommended publications
  • Prep for Practical II
    Images for Practical II BSC 2086L "Endocrine" A A B C A. Hypothalamus B. Pineal Gland (Body) C. Pituitary Gland "Endocrine" 1.Thyroid 2.Adrenal Gland 3.Pancreas "The Pancreas" "The Adrenal Glands" "The Ovary" "The Testes" Erythrocyte Neutrophil Eosinophil Basophil Lymphocyte Monocyte Platelet Figure 29-3 Photomicrograph of a human blood smear stained with Wright’s stain (765). Eosinophil Lymphocyte Monocyte Platelets Neutrophils Erythrocytes "Blood Typing" "Heart Coronal" 1.Right Atrium 3 4 2.Superior Vena Cava 5 2 3.Aortic Arch 6 4.Pulmonary Trunk 1 5.Left Atrium 12 9 6.Bicuspid Valve 10 7.Interventricular Septum 11 8.Apex of The Heart 9. Chordae tendineae 10.Papillary Muscle 7 11.Tricuspid Valve 12. Fossa Ovalis "Heart Coronal Section" Coronal Section of the Heart to show valves 1. Bicuspid 2. Pulmonary Semilunar 3. Tricuspid 4. Aortic Semilunar 5. Left Ventricle 6. Right Ventricle "Heart Coronal" 1.Pulmonary trunk 2.Right Atrium 3.Tricuspid Valve 4.Pulmonary Semilunar Valve 5.Myocardium 6.Interventricular Septum 7.Trabeculae Carneae 8.Papillary Muscle 9.Chordae Tendineae 10.Bicuspid Valve "Heart Anterior" 1. Brachiocephalic Artery 2. Left Common Carotid Artery 3. Ligamentum Arteriosum 4. Left Coronary Artery 5. Circumflex Artery 6. Great Cardiac Vein 7. Myocardium 8. Apex of The Heart 9. Pericardium (Visceral) 10. Right Coronary Artery 11. Auricle of Right Atrium 12. Pulmonary Trunk 13. Superior Vena Cava 14. Aortic Arch 15. Brachiocephalic vein "Heart Posterolateral" 1. Left Brachiocephalic vein 2. Right Brachiocephalic vein 3. Brachiocephalic Artery 4. Left Common Carotid Artery 5. Left Subclavian Artery 6. Aortic Arch 7.
    [Show full text]
  • The Anatomy of Th-E Blood Vascular System of the Fox ,Squirrel
    THE ANATOMY OF TH-E BLOOD VASCULAR SYSTEM OF THE FOX ,SQUIRREL. §CIURUS NlGER. .RUFIVENTEB (OEOEEROY) Thai: for the 009m of M. S. MICHIGAN STATE COLLEGE Thomas William Jenkins 1950 THulS' ifliillifllfllilllljllljIi\Ill\ljilllHliLlilHlLHl This is to certifg that the thesis entitled The Anatomy of the Blood Vascular System of the Fox Squirrel. Sciurus niger rufiventer (Geoffroy) presented by Thomas William Jenkins has been accepted towards fulfillment of the requirements for A degree in MEL Major professor Date May 23’ 19500 0-169 q/m Np” THE ANATOMY OF THE BLOOD VASCULAR SYSTEM OF THE FOX SQUIRREL, SCIURUS NIGER RUFIVENTER (GEOFFROY) By THOMAS WILLIAM JENKINS w L-Ooffi A THESIS Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Zoology 1950 \ THESlSfi ACKNOWLEDGMENTS Grateful acknowledgment is made to the following persons of the Zoology Department: Dr. R. A. Fennell, under whose guidence this study was completed; Mr. P. A. Caraway, for his invaluable assistance in photography; Dr. D. W. Hayne and Mr. Poff, for their assistance in trapping; Dr. K. A. Stiles and Dr. R. H. Manville, for their helpful suggestions on various occasions; Mrs. Bernadette Henderson (Miss Mac), for her pleasant words of encouragement and advice; Dr. H. R. Hunt, head of the Zoology Department, for approval of the research problem; and Mr. N. J. Mizeres, for critically reading the manuscript. Special thanks is given to my wife for her assistance with the drawings and constant encouragement throughout the many months of work.
    [Show full text]
  • Vessels and Circulation
    CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels.
    [Show full text]
  • Anatomy and Physiology in Relation to Compression of the Upper Limb and Thorax
    Clinical REVIEW anatomy and physiology in relation to compression of the upper limb and thorax Colin Carati, Bren Gannon, Neil Piller An understanding of arterial, venous and lymphatic flow in the upper body in normal limbs and those at risk of, or with lymphoedema will greatly improve patient outcomes. However, there is much we do not know in this area, including the effects of compression upon lymphatic flow and drainage. Imaging and measuring capabilities are improving in this respect, but are often expensive and time-consuming. This, coupled with the unknown effects of individual, diurnal and seasonal variances on compression efficacy, means that future research should focus upon ways to monitor the pressure delivered by a garment, and its effects upon the fluids we are trying to control. More is known about the possible This paper will describe the vascular Key words effects of compression on the anatomy of the upper limb and axilla, pathophysiology of lymphoedema when and will outline current understanding of Anatomy used on the lower limbs (Partsch and normal and abnormal lymph drainage. It Physiology Junger, 2006). While some of these will also explain the mechanism of action Lymphatics principles can be applied to guide the use of compression garments and will detail Compression of compression on the upper body, it is the effects of compression on fluid important that the practitioner is movement. knowledgeable about the anatomy and physiology of the upper limb, axilla and Vascular drainage of the upper limb thorax, and of the anatomical and vascular It is helpful to have an understanding of Little evidence exists to support the differences that exist between the upper the vascular drainage of the upper limb, use of compression garments in the and lower limb, so that the effects of these since the lymphatic drainage follows a treatment of lymphoedema, particularly differences can be considered when using similar course (Figure 1).
    [Show full text]
  • What Is Venous Thoracic Outlet Syndrome?
    Venous Thoracic Outlet Syndrome An In-Depth Guide for Patients and Healthcare Providers By: Holly Grunebach, MSPH, PA-C, Ying-Wei Lum, MD, MPH Division of Vascular Surgery and Endovascular Therapy Johns Hopkins Hospital 600 N Wolfe St, Halsted 668 Baltimore, MD 21287 1. What is venous thoracic outlet syndrome? Venous thoracic outlet syndrome is a condition that occurs when the subclavian vein is compressed by the first rib and the subclavius/anterior scalene muscle resulting in a blood clot. The anterior scalene is a muscle located in the neck that attaches to the first rib in the area known as the thoracic outlet. Typically, the structures that control the function of the arm including the subclavian artery, subclavian vein and the nerves of the brachial plexus are able to pass through this area without incident. (Figure) In the case of venous thoracic outlet syndrome the veins are compressed which results in a blood clot. 2. What causes venous thoracic outlet syndrome? Venous thoracic outlet syndrome occurs over time as the subclavian vein is compressed by the subclavius/anterior scalene muscle and first rib with arm use. With the arms in an extended or overhead position, the space around the structures within the thoracic outlet space narrows. In thoracic outlet syndrome this space becomes so narrow that compression of the subclavian vein occurs triggering blood clot formation. 3. What are signs and symptoms of venous thoracic outlet syndrome? Persistent swelling with pain and color change in the arm is typical in patients with venous thoracic outlet syndrome. These symptoms are usually persistent and unable to be relieved with other conservative treatments.
    [Show full text]
  • The Cardiovascular System
    11 The Cardiovascular System WHAT The cardiovascular system delivers oxygen and HOW nutrients to the body tissues The heart pumps and carries away wastes blood throughout the body such as carbon dioxide in blood vessels. Blood flow via blood. requires both the pumping action of the heart and changes in blood pressure. WHY If the cardiovascular system cannot perform its functions, wastes build up in tissues. INSTRUCTORS Body organs fail to function properly, New Building Vocabulary and then, once oxygen becomes Coaching Activities for this depleted, they will die. chapter are assignable in hen most people hear the term cardio- only with the interstitial fluid in their immediate Wvascular system, they immediately think vicinity. Thus, some means of changing and of the heart. We have all felt our own “refreshing” these fluids is necessary to renew the heart “pound” from time to time when we are ner- nutrients and prevent pollution caused by vous. The crucial importance of the heart has been the buildup of wastes. Like a bustling factory, the recognized for ages. However, the cardiovascular body must have a transportation system to carry system is much more than just the heart, and its various “cargoes” back and forth. Instead of from a scientific and medical standpoint, it is roads, railway tracks, and subways, the body’s important to understand why this system is so vital delivery routes are its hollow blood vessels. to life. Most simply stated, the major function of the Night and day, minute after minute, our tril- cardiovascular system is transportation. Using lions of cells take up nutrients and excrete wastes.
    [Show full text]
  • Blood Vessels and Circulation
    19 Blood Vessels and Circulation Lecture Presentation by Lori Garrett © 2018 Pearson Education, Inc. Section 1: Functional Anatomy of Blood Vessels Learning Outcomes 19.1 Distinguish between the pulmonary and systemic circuits, and identify afferent and efferent blood vessels. 19.2 Distinguish among the types of blood vessels on the basis of their structure and function. 19.3 Describe the structures of capillaries and their functions in the exchange of dissolved materials between blood and interstitial fluid. 19.4 Describe the venous system, and indicate the distribution of blood within the cardiovascular system. © 2018 Pearson Education, Inc. Module 19.1: The heart pumps blood, in sequence, through the arteries, capillaries, and veins of the pulmonary and systemic circuits Blood vessels . Blood vessels conduct blood between the heart and peripheral tissues . Arteries (carry blood away from the heart) • Also called efferent vessels . Veins (carry blood to the heart) • Also called afferent vessels . Capillaries (exchange substances between blood and tissues) • Interconnect smallest arteries and smallest veins © 2018 Pearson Education, Inc. Module 19.1: Blood vessels and circuits Two circuits 1. Pulmonary circuit • To and from gas exchange surfaces in the lungs 2. Systemic circuit • To and from rest of body © 2018 Pearson Education, Inc. Module 19.1: Blood vessels and circuits Circulation pathway through circuits 1. Right atrium (entry chamber) • Collects blood from systemic circuit • To right ventricle to pulmonary circuit 2. Pulmonary circuit • Pulmonary arteries to pulmonary capillaries to pulmonary veins © 2018 Pearson Education, Inc. Module 19.1: Blood vessels and circuits Circulation pathway through circuits (continued) 3. Left atrium • Receives blood from pulmonary circuit • To left ventricle to systemic circuit 4.
    [Show full text]
  • A Case of the Bilateral Superior Venae Cavae with Some Other Anomalous Veins
    Okaiimas Fol. anat. jap., 48: 413-426, 1972 A Case of the Bilateral Superior Venae Cavae With Some Other Anomalous Veins By Yasumichi Fujimoto, Hitoshi Okuda and Mihoko Yamamoto Department of Anatomy, Osaka Dental University, Osaka (Director : Prof. Y. Ohta) With 8 Figures in 2 Plates and 2 Tables -Received for Publication, July 24, 1971- A case of the so-called bilateral superior venae cavae after the persistence of the left superior vena cava has appeared relatively frequent. The present authors would like to make a report on such a persistence of the left superior vena cava, which was found in a routine dissection cadaver of their school. This case is accompanied by other anomalies on the venous system ; a complete pair of the azygos veins, the double subclavian veins of the right side and the ring-formation in the left external iliac vein. Findings Cadaver : Mediiim nourished male (Japanese), about 157 cm in stature. No other anomaly in the heart as well as in the great arteries is recognized. The extracted heart is about 350 gm in weight and about 380 ml in volume. A. Bilateral superior venae cavae 1) Right superior vena cava (figs. 1, 2, 4) It measures about 23 mm in width at origin, about 25 mm at the pericardiac end, and about 31 mm at the opening to the right atrium ; about 55 mm in length up to the pericardium and about 80 mm to the opening. The vein is formed in the usual way by the union of the right This report was announced at the forty-sixth meeting of Kinki-district of the Japanese Association of Anatomists, February, 1971,Kyoto.
    [Show full text]
  • Double Left Brachiocephalic Veins with Persistent Left Superior Vena Cava: a Case Report 지속 좌측 상대정맥과 동반된 중복 좌측 팔머리 정맥: 증례 보고
    Case Report pISSN 1738-2637 / eISSN 2288-2928 J Korean Soc Radiol 2014;71(2):55-57 http://dx.doi.org/10.3348/jksr.2014.71.2.55 Double Left Brachiocephalic Veins with Persistent Left Superior Vena Cava: A Case Report 지속 좌측 상대정맥과 동반된 중복 좌측 팔머리 정맥: 증례 보고 O Hyun Kwon, MD, Ji Kyoung Lim, MD, Jae Kyo Lee, MD, Mi Soo Hwang, MD Department of Radiology, Yeungnam University College of Medicine, Daegu, Korea Anomalous left brachiocephalic vein (ALBCV) is a rare condition of the major tho- racic veins. It is usually associated with a congenital cardiac anomaly. Most reports Received January 10, 2014; Accepted May 29, 2014 on ALBCV are on aberrant left BCV, and there are few reports on double left BCV. Corresponding author: Jae Kyo Lee, MD Persistent left superior vena cava (PLSVC) is also a rare vascular anomaly that is Department of Radiology, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, caused by the failure of the left anterior cardinal vein to regress. To our knowledge, Daegu 705-717, Korea. double left BCV with PLSVC has not been reported. Here, we report a case of double Tel. 82-53-620-3047 Fax. 82-53-653-5484 left BCV with PLSVC in a 72-year-old male patient with no previous cardiac abnor- E-mail: [email protected] mality. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Index terms License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distri- Anomalous Left Brachiocephalic Vein bution, and reproduction in any medium, provided the Double Left Brachiocephalic Veins original work is properly cited.
    [Show full text]
  • Subclavian Vein Catheterization
    SUBCLAVIAN VEIN CATHETERIZATION WILLIAM: K. NOWILL, M.D. AND FRANCISB. H~BEla, M.D.* SUBCLAVIANVENEPUNCTUlqE was first described by Aubaniac in 1952.1 There have been a number of reports since then by DeBoscoli, 2 Regnault, 3 Keeri-Szanto, 4 Lemoine and Tastet, 5 Michaux, s and Piscitelli. 7 Keeri-Szanto reported a series of subclavian vein punctures performed at autopsy, with success of 94 per cent of 139 attempts. Asbbaugh in 1963 described 19 patients in whom subclavian catheters were used, and included among the advantages of this technique the ability to infuse blood and fluids rapidly, to monitor central venous pressure and to adminster hypertonic solutions without producing phlebitis or venous thrombosis. He reported four patients who had catheters in place for fourteen days or more. However, the catheters were changed every three days from one side to the other. He reported only one complication, that of pneumothorax in one patient. He listed other potential complications including division of the catheter, failure to insert the catheter into the vein, haemothorax, hydrothorax, septicaemia, and vein thrombosis. In 1963, Davidson is reported the use of this technique in 100 patients, the youngest of whom was three and one-half yearsl He reported six failures. He also reported the use of the supraclavicular route in 130 patients with no fail- ures. In 1965, Matz n reported six patients who developed complications with this technique, five being pneumothorax and one a hydrothorax. Also in 1965, Smith, Modell, Gaub and Moya TM reported that eight of 200 patients developed complications with this technique.
    [Show full text]
  • Blood Vessels, Flow, and Regulation Overview of Circulation
    Circulation: Blood Vessels, Flow, and Regulation Adapted From: Textbook Of Medical Physiology, 11th Ed. Arthur C. Guyton, John E. Hall Chapters 14, 15, 16, 17, 18, & 19 John P. Fisher © Copyright 2012, John P. Fisher, All Rights Reserved Overview of Circulation Introduction • Circulation allows transport of nutrients to the tissues, transport of waste away from the tissues, the movement of hormones, and the maintenance of fluid environment for overall survival and function of the cells • Overall circulation is divided into two portions • Systemic circulation • Pulmonary circulation © Copyright 2012, John P. Fisher, All Rights Reserved 1 Overview of Circulation Functional Parts of the Circulation • Arteries • Transport blood under high pressure • Arterioles • Acts as control valves through which blood is transported into the capillaries • Capillaries • Allows exchange of fluid, nutrients, electrolytes, hormones, and other substances • Venules • Collect blood from the capillaries • Veins • Conduits for transport of blood from tissues Guyton & Hall. Textbook of Medical Physiology, back to the heart and reservoir of blood 11th Edition © Copyright 2012, John P. Fisher, All Rights Reserved Overview of Circulation Functional Parts of the Circulation Vessel CSA V RT Aorta 2.5 cm2 33 cm/sec Small arteries 20.0 cm2 Arterioles 40.0 cm2 Capillaries 2500.0 cm2 0.3 mm/sec 1 - 3 sec Venules 250.0 cm2 Small Veins 80.0 cm2 Venae cavae 8.0 cm2 Guyton & Hall. Textbook of Medical Physiology, 11th Edition © Copyright 2012, John P. Fisher, All Rights Reserved
    [Show full text]
  • Anatomy and Physiology of the Cardiovascular System
    Chapter © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 5 NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Anatomy© Jonesand & Physiology Bartlett Learning, LLC of © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION the Cardiovascular System © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION OUTLINE Aortic arch: The second section of the aorta; it branches into Introduction the brachiocephalic trunk, left common carotid artery, and The Heart left subclavian artery. Structures of the Heart Aortic valve: Located at the base of the aorta, the aortic Conduction System© Jones & Bartlett Learning, LLCvalve has three cusps and opens© Jonesto allow blood & Bartlett to leave the Learning, LLC Functions of the HeartNOT FOR SALE OR DISTRIBUTIONleft ventricle during contraction.NOT FOR SALE OR DISTRIBUTION The Blood Vessels and Circulation Arteries: Elastic vessels able to carry blood away from the Blood Vessels heart under high pressure. Blood Pressure Arterioles: Subdivisions of arteries; they are thinner and have Blood Circulation muscles that are innervated by the sympathetic nervous Summary© Jones & Bartlett Learning, LLC system. © Jones & Bartlett Learning, LLC Atria: The upper chambers of the heart; they receive blood CriticalNOT Thinking FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Websites returning to the heart. Review Questions Atrioventricular node (AV node): A mass of specialized tissue located in the inferior interatrial septum beneath OBJECTIVES the endocardium; it provides the only normal conduction pathway between the atrial and ventricular syncytia.
    [Show full text]