The Anatomy of Memory: an Interactive Overview of the Parahippocampal– Hippocampal Network
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Position–Theta-Phase Model of Hippocampal Place Cell Activity Applied to Quantification of Running Speed Modulation of Firing Rate
Position–theta-phase model of hippocampal place cell activity applied to quantification of running speed modulation of firing rate Kathryn McClaina,b,1, David Tingleyb, David J. Heegera,c,1, and György Buzsákia,b,1 aCenter for Neural Science, New York University, New York, NY 10003; bNeuroscience Institute, New York University, New York, NY 10016; and cDepartment of Psychology, New York University, New York, NY 10003 Edited by Terrence J. Sejnowski, Salk Institute for Biological Studies, La Jolla, CA, and approved November 18, 2019 (received for review July 24, 2019) Spiking activity of place cells in the hippocampus encodes the Another challenge in understanding this system is the dynamic animal’s position as it moves through an environment. Within a interaction between the rate code and phase code. As these codes cell’s place field, both the firing rate and the phase of spiking in combine, different formats of information are conveyed simulta- the local theta oscillation contain spatial information. We propose a neously in place cell spiking. The interaction can produce unin- – position theta-phase (PTP) model that captures the simultaneous tuitive, although entirely predictable, results in traditional analyses expression of the firing-rate code and theta-phase code in place cell of place cell activity. These practical challenges have hindered the spiking. This model parametrically characterizes place fields to com- pare across cells, time, and conditions; generates realistic place cell effort to explain variability in hippocampal firing rates. A com- simulation data; and conceptualizes a framework for principled hy- putational tool is needed that accounts for the well-established pothesis testing to identify additional features of place cell activity. -
Beta Oscillations and Hippocampal Place Cell Learning During
Beta Oscillations and Hippocampal Place Cell Learning during Exploration of Novel Environments Stephen Grossberg1 1Department of Cognitive and Neural Systems Center for Adaptive Systems, and Center of Excellence for Learning in Education, Science and Technology Boston University 677 Beacon St Boston, Massachusetts 02215 [email protected] Telephone: 617-353-7858/7 Fax: 617-353-7755 http://www.cns.bu.edu/~steve July 29, 2008 Revised: November 24, 2008 CAS/CNS-TR-08-003 Hippocampus, in press Running head: Beta Oscillations during Hippocampal Place Cell Learning Corresponding author: Stephen Grossberg, [email protected] Keywords: grid cells, category learning, spatial navigation, adaptive resonance theory, entorhinal cortex 1 Abstract The functional role of synchronous oscillations in various brain processes has attracted a lot of experimental interest. Berke et al. (2008) reported beta oscillations during the learning of hippocampal place cell receptive fields in novel environments. Such place cell selectivity can develop within seconds to minutes, and can remain stable for months. Paradoxically, beta power was very low during the first lap of exploration, grew to full strength as a mouse traversed a lap for the second and third times, and became low again after the first two minutes of exploration. Beta oscillation power also correlated with the rate at which place cells became spatially selective, and not with theta oscillations. These beta oscillation properties are explained by a neural model of how place cell receptive fields may be learned and stably remembered as spatially selective categories due to feedback interactions between entorhinal cortex and hippocampus. This explanation allows the learning of place cell receptive fields to be understood as a variation of category learning processes that take place in many brain systems, and challenges hippocampal models in which beta oscillations and place cell stability cannot be explained. -
Distinct Hippocampal Functional Networks Revealed by Tractography-Based Parcellation
Brain Struct Funct DOI 10.1007/s00429-015-1084-x ORIGINAL ARTICLE Distinct hippocampal functional networks revealed by tractography-based parcellation 1 2,5 3 2,4 Areeba Adnan • Alexander Barnett • Massieh Moayedi • Cornelia McCormick • 2,5 2,5 Melanie Cohn • Mary Pat McAndrews Received: 27 February 2015 / Accepted: 7 July 2015 Ó Springer-Verlag Berlin Heidelberg 2015 Abstract Recent research suggests the anterior and pos- parahippocampal, inferior temporal and fusiform gyri and terior hippocampus form part of two distinct functional the precuneus, predicted interindividual relational memory neural networks. Here we investigate the structural under- performance. These findings provide important support for pinnings of this functional connectivity difference using the integration of structural and functional connectivity in diffusion-weighted imaging-based parcellation. Using this understanding the brain networks underlying episodic technique, we substantiated that the hippocampus can be memory. parcellated into distinct anterior and posterior segments. These structurally defined segments did indeed show dif- Keywords DTI Á fMRI Á Hippocampus Á Recognition ferent patterns of resting state functional connectivity, in that memory Á Networks the anterior segment showed greater connectivity with temporal and orbitofrontal cortex, whereas the posterior segment was more highly connected to medial and lateral Introduction parietal cortex. Furthermore, we showed that the posterior hippocampal connectivity to memory processing regions, There is a growing consensus for the specialization of hip- including the dorsolateral prefrontal cortex, pocampal function along the anterior–posterior axis, arising out of differential involvement in large-scale brain networks (Poppenk et al. 2013). Functional neuroimaging has shown A. Adnan, A. Barnett and M. Moayedi contributed equally to this work and share first authorship. -
May-Britt Moser Norwegian University of Science and Technology (NTNU), Trondheim, Norway
Grid Cells, Place Cells and Memory Nobel Lecture, 7 December 2014 by May-Britt Moser Norwegian University of Science and Technology (NTNU), Trondheim, Norway. n 7 December 2014 I gave the most prestigious lecture I have given in O my life—the Nobel Prize Lecture in Medicine or Physiology. Afer lectures by my former mentor John O’Keefe and my close colleague of more than 30 years, Edvard Moser, the audience was still completely engaged, wonderful and responsive. I was so excited to walk out on the stage, and proud to present new and exciting data from our lab. Te title of my talk was: “Grid cells, place cells and memory.” Te long-term vision of my lab is to understand how higher cognitive func- tions are generated by neural activity. At frst glance, this seems like an over- ambitious goal. President Barack Obama expressed our current lack of knowl- edge about the workings of the brain when he announced the Brain Initiative last year. He said: “As humans, we can identify galaxies light years away; we can study particles smaller than an atom. But we still haven’t unlocked the mystery of the three pounds of matter that sits between our ears.” Will these mysteries remain secrets forever, or can we unlock them? What did Obama say when he was elected President? “Yes, we can!” To illustrate that the impossible is possible, I started my lecture by showing a movie with a cute mouse that struggled to bring a biscuit over an edge and home to its nest. Te biscuit was almost bigger than the mouse itself. -
Neurodynamics and Connectivity During Facial Fear Perception
www.nature.com/scientificreports OPEN Neurodynamics and connectivity during facial fear perception: The role of threat exposure and signal Received: 23 June 2017 Accepted: 9 January 2018 congruity Published: xx xx xxxx Cody A. Cushing1, Hee Yeon Im1,2, Reginald B. Adams Jr.3, Noreen Ward1, Daniel N. Albohn3, Troy G. Steiner3 & Kestutis Kveraga 1,2 Fearful faces convey threat cues whose meaning is contextualized by eye gaze: While averted gaze is congruent with facial fear (both signal avoidance), direct gaze (an approach signal) is incongruent with it. We have previously shown using fMRI that the amygdala is engaged more strongly by fear with averted gaze during brief exposures. However, the amygdala also responds more to fear with direct gaze during longer exposures. Here we examined previously unexplored brain oscillatory responses to characterize the neurodynamics and connectivity during brief (~250 ms) and longer (~883 ms) exposures of fearful faces with direct or averted eye gaze. We performed two experiments: one replicating the exposure time by gaze direction interaction in fMRI (N = 23), and another where we confrmed greater early phase locking to averted-gaze fear (congruent threat signal) with MEG (N = 60) in a network of face processing regions, regardless of exposure duration. Phase locking to direct-gaze fear (incongruent threat signal) then increased signifcantly for brief exposures at ~350 ms, and at ~700 ms for longer exposures. Our results characterize the stages of congruent and incongruent facial threat signal processing and show that stimulus exposure strongly afects the onset and duration of these stages. When we look at a face, we can glean a wealth of information, such as age, sex, health, afective state, and atten- tional focus. -
Specific Changes in Hippocampal Spatial Codes Predict Spatial
Behavioural Brain Research 169 (2006) 168–175 Short communication Specific changes in hippocampal spatial codes predict spatial working memory performance Corey B. Puryear, Michael King, Sheri J.Y. Mizumori ∗ Department of Psychology, Box 351525, University of Washington, Seattle, WA 98195, United States Received 7 July 2005; received in revised form 8 October 2005; accepted 18 December 2005 Available online 2 February 2006 Abstract This study examined the relationship between hippocampal place fields and spatial working memory. Place cells were recorded while rats solved a spatial working memory task in light and dark testing conditions. Rats made significantly more errors when tested in darkness, and although place fields changed in multiple ways in darkness, only changes in place field specificity predicted the degree of impaired spatial memory. This finding suggests that more spatially distinct place fields may contribute to hippocampal-dependent mnemonic functions. © 2006 Elsevier B.V. All rights reserved. Keywords: Place cells; Place fields; Behavior; Spatial learning; Single units Hippocampal (HPC) damage in several animal species environment that caused place fields to be out of register rel- impairs the ability to learn tasks that depend on the use of ative to their standard configuration also resulted in a decrease allocentric spatial information [1,5,19]. Furthermore, numerous in rats’ performance on a continuous alternation task [10].In electrophysiological studies have demonstrated that the firing contrast, other manipulations that cause a robust reorganization rates of HPC pyramidal cells (place cells) are strongly modu- of place fields do not always affect rats’ performance of HPC- lated by the spatial location (place field) of the rat within the dependent spatial tasks [2,8]. -
Rebecca D. Burwell, Ph.D. Curriculum Vitae
Rebecca D. Burwell, Ph.D. Curriculum Vitae Rebecca D. Burwell, Ph.D. Professor of Psychology and Neuroscience Department of Cognitive, Linguistic, and Psychological Sciences Brown University [email protected] Professional Appointments: Professor of Psychology (secondary appointment in Neuroscience), Brown University, 2006- present Professor of Neuroscience (secondary appointment), Brown University, 2006-present Associate Professor of Neuroscience (secondary appointment), Brown University, 2003-2006 Associate Professor of Psychology, Brown University, 2002-2006 Assistant Professor of Psychology, Brown University, 1996-2002 Postdoctoral Fellow and Lecturer, Center for Behavioral Neuroscience, The State University of New York at Stony Brook, 1993-1996 Postdoctoral Research Associate, Laboratory for Neuronal Structure and Function, The Salk Institute for Biological Studies, 1992-1993 Education Ph.D., The University of North Carolina at Chapel Hill, 1992 Experimental and Biological Psychology Program Thesis title: The Effects of Aging on Brain Dopamine Systems and Behavior M.A., The University of North Carolina at Chapel Hill, 1989 Clinical Psychology Program Thesis title: The Relationship Between Age-related Deficits in Spatial Learning and Diurnal Rhythms B.A., Southern Methodist University, 1974 Academic Honors National Merit Scholarship, 1971-1974 University Scholarship, SMU, 1973-1974 James R. Kenan Fellowship, UNC, 08/87-05/88 NSF Predoctoral Fellowship, 06/88-05/91 APA Division 20 Student Research Award, 1991 NIH Predoctoral Fellowship, 06/91-08/92 NIMH Postdoctoral Fellowship, 12/92-11/94 McDonnell-Pew Fellowship to Cold Spring Harbor Biology of Memory Course, Summer 1993 NIMH Postdoctoral Fellowship, 03/95-02/96 Salomon Award: The Postrhinal Cortex and Context Conditioning, 1997-1999 NSF Career Development Award: Cognitive Functions of the Postrhinal Cortex, 1999-2003 Karen T. -
Area 7 Pdf, Epub, Ebook
AREA 7 PDF, EPUB, EBOOK Matthew Reilly | 512 pages | 17 Feb 2003 | St Martin's Press | 9780312983222 | English | New York, United States Area 7 PDF Book Schofield gets back to Area 7, but the prisoners that were there for scientific research get out, and make the remaining Air Force and Marines fight to the death. Return to Play Activities Waiver. Apr 30, Alex rated it it was amazing Shelves: in Original Title. Please reference the Developmental Disabilities Services Coverage and Limitations Handbook for more details on services offered under this program. Friday 9 October Forever glad the bears survived. Thursday 20 August Bellingham Bay Fishery see 1 below for boundaries Aug. This is the second book I've read by Matthew Reilly and just like Ice Station the first book in the Scarecrow series it's an action packed read from start to finish! Most of these people die. Melbourne , Victoria , Australia. Monday 29 June Parahippocampal gyrus anterior Entorhinal cortex Perirhinal cortex Postrhinal cortex Posterior parahippocampal gyrus Prepyriform area. Friday 29 May And in the process, he wrote a story that definitely gave me something to worry about. Shane Schofield 4 books. Why, because they have access to many of the installations containing some of this countries greatest tactical assets: high tech planes and ballistic missiles. Area 7 Shane Schofield 2 by Matthew Reilly. For smelt: Jig gear may be used 7 days a week. Sunday 5 July Visual cortex 17 Cuneus Lingual gyrus Calcarine sulcus. Trump trailing behind Biden in funding, weeks before Election Day, new filings show. This book SHOULD be read only if you are waiting in the airport to catch a long-delayed flight, or while pursuing some other similar pursuit. -
Phase Precession of Medial Prefrontal Cortical Activity Relative to the Hippocampal Theta Rhythm
HIPPOCAMPUS 15:867–873 (2005) Phase Precession of Medial Prefrontal Cortical Activity Relative to the Hippocampal Theta Rhythm Matthew W. Jones and Matthew A. Wilson* ABSTRACT: Theta phase-locking and phase precession are two related spike-timing and the phase of the concurrent theta phenomena reflecting coordination of hippocampal place cell firing cycle: place cell spikes are ‘‘phase-locked’’ to theta with the local, ongoing theta rhythm. The mechanisms and functions of both the phenomena remain unclear, though the robust correlation (Buzsaki and Eidelberg, 1983). Thus, the spikes of a between firing phase and location of the animal has lead to the sugges- given neuron are not distributed randomly across the tion that this phase relationship constitutes a temporal code for spatial theta cycle. Rather, they consistently tend to occur information. Recent work has described theta phase-locking in the rat during a restricted phase of the oscillation. Further- medial prefrontal cortex (mPFC), a structure with direct anatomical and more, in CA1, CA3, and the dentate gyrus, phase- functional links to the hippocampus. Here, we describe an initial char- locking to the local theta rhythm is accompanied by acterization of phase precession in the mPFC relative to the CA1 theta rhythm. mPFC phase precession was most robust during behavioral the related phenomenon of phase precession: each epochs known to be associated with enhanced theta-frequency coordi- neuron tends to fire on progressively earlier phases of nation of CA1 and mPFC activities. Precession was coherent across the the concurrent theta cycle as an animal moves through mPFC population, with multiple neurons precessing in parallel as a func- its place field (O’Keefe and Recce, 1993). -
A Survey of Entorhinal Grid Cell Properties
A Survey of Entorhinal Grid Cell Properties Jochen Kerdels Gabriele Peters October 18, 2018 University of Hagen - Chair of Human-Computer Interaction Universit¨atsstrasse1, 58097 Hagen - Germany Abstract About a decade ago grid cells were discovered in the medial entorhinal cortex of rat. Their peculiar firing patterns, which correlate with periodic locations in the environment, led to early hypothesis that grid cells may provide some form of metric for space. Subsequent research has since uncovered a wealth of new insights into the characteristics of grid cells and their neural neighborhood, the parahippocampal-hippocampal region, calling for a revision and refinement of earlier grid cell models. This survey paper aims to provide a comprehensive summary of grid cell research published in the past decade. It focuses on the functional characteristics of grid cells such as the influence of external cues or the alignment to envi- ronmental geometry, but also provides a basic overview of the underlying neural substrate. 1 Introduction The parahippocampal-hippocampal region (PHR-HF) of the mammalian brain hosts a variety of neurons whose activity correlates with a number of allocentric variables. For example, the activity of so-called place cells correlates with specific, mostly individual locations in the environment [50, 51], the activity of head direction cells correlates with the absolute head direction of an animal [66, 65], the activity of grid cells correlates with a regular lattice of allocentric locations [16, 22], the activity of border cells correlates with the proximity of an animal to specific borders in its environment [60, 59], and, finally, the activity of speed cells correlates with the current speed of an animal [32]. -
Are Place Cells Just Memory Cells? Memory Compression Leads to Spatial Tuning and History Dependence
bioRxiv preprint doi: https://doi.org/10.1101/624239; this version posted August 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Are place cells just memory cells? Memory compression leads to spatial tuning and history dependence Marcus K. Bennaa,b,c,1,2 and Stefano Fusia,b,d,1,2 aCenter for Theoretical Neuroscience, Columbia University; bMortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; cNeurobiology Section, Division of Biological Sciences, University of California, San Diego; dKavli Institute for Brain Sciences, Columbia University This manuscript was compiled on August 31, 2020 The observation of place cells has suggested that the hippocampus to what appears to be noise. Some of the components of plays a special role in encoding spatial information. However, place the variability probably depend on the variables that are cell responses are modulated by several non-spatial variables, and represented at the current time, but some others might depend reported to be rather unstable. Here we propose a memory model also on the recent history, or in other words, they might be of the hippocampus that provides a novel interpretation of place affected by the storage of recent memories. cells consistent with these observations. We hypothesize that the The model of the hippocampus we propose not only pre- hippocampus is a memory device that takes advantage of the corre- dicts that place cells should exhibit history effects, but also lations between sensory experiences to generate compressed rep- that their spatial tuning properties simply reflect an efficient resentations of the episodes that are stored in memory. -
Modulation of Brain Hyperexcitability: Potential New Therapeutic Approaches in Alzheimer’S Disease
International Journal of Molecular Sciences Review Modulation of Brain Hyperexcitability: Potential New Therapeutic Approaches in Alzheimer’s Disease Sofia Toniolo 1,2,*, Arjune Sen 3 and Masud Husain 1,2 1 Cognitive Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; [email protected] 2 Wellcome Trust Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX2 6AE, UK 3 Oxford Epilepsy Research Group, Nuffield Department Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, UK; [email protected] * Correspondence: sofi[email protected]; Tel.: +44-1865-271310 Received: 29 October 2020; Accepted: 5 December 2020; Published: 7 December 2020 Abstract: People with Alzheimer’s disease (AD) have significantly higher rates of subclinical and overt epileptiform activity. In animal models, oligomeric Aβ amyloid is able to induce neuronal hyperexcitability even in the early phases of the disease. Such aberrant activity subsequently leads to downstream accumulation of toxic proteins, and ultimately to further neurodegeneration and neuronal silencing mediated by concomitant tau accumulation. Several neurotransmitters participate in the initial hyperexcitable state, with increased synaptic glutamatergic tone and decreased GABAergic inhibition. These changes appear to activate excitotoxic pathways and, ultimately, cause reduced long-term potentiation, increased long-term depression, and increased GABAergic inhibitory remodelling at the network level. Brain hyperexcitability has therefore been identified as a potential target for therapeutic interventions aimed at enhancing cognition, and, possibly, disease modification in the longer term. Clinical trials are ongoing to evaluate the potential efficacy in targeting hyperexcitability in AD, with levetiracetam showing some encouraging effects.