Neurodynamics and Connectivity During Facial Fear Perception
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Anatomy of the Temporal Lobe
Hindawi Publishing Corporation Epilepsy Research and Treatment Volume 2012, Article ID 176157, 12 pages doi:10.1155/2012/176157 Review Article AnatomyoftheTemporalLobe J. A. Kiernan Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada N6A 5C1 Correspondence should be addressed to J. A. Kiernan, [email protected] Received 6 October 2011; Accepted 3 December 2011 Academic Editor: Seyed M. Mirsattari Copyright © 2012 J. A. Kiernan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Only primates have temporal lobes, which are largest in man, accommodating 17% of the cerebral cortex and including areas with auditory, olfactory, vestibular, visual and linguistic functions. The hippocampal formation, on the medial side of the lobe, includes the parahippocampal gyrus, subiculum, hippocampus, dentate gyrus, and associated white matter, notably the fimbria, whose fibres continue into the fornix. The hippocampus is an inrolled gyrus that bulges into the temporal horn of the lateral ventricle. Association fibres connect all parts of the cerebral cortex with the parahippocampal gyrus and subiculum, which in turn project to the dentate gyrus. The largest efferent projection of the subiculum and hippocampus is through the fornix to the hypothalamus. The choroid fissure, alongside the fimbria, separates the temporal lobe from the optic tract, hypothalamus and midbrain. The amygdala comprises several nuclei on the medial aspect of the temporal lobe, mostly anterior the hippocampus and indenting the tip of the temporal horn. The amygdala receives input from the olfactory bulb and from association cortex for other modalities of sensation. -
Dissociable Large-Scale Networks Anchored in the Right Anterior Insula Subserve Affective Experience and Attention
NeuroImage 60 (2012) 1947–1958 Contents lists available at SciVerse ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Dissociable large-scale networks anchored in the right anterior insula subserve affective experience and attention Alexandra Touroutoglou a,b, Mark Hollenbeck a,b,c, Bradford C. Dickerson a,b,c,1, Lisa Feldman Barrett a,b,d,1,⁎ a Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA b Psychiatric Neuroimaging Research Program, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA c Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA d Department of Psychology, Northeastern University, Boston, Massachusetts, USA article info abstract Article history: Meta-analytic summaries of neuroimaging studies point to at least two major functional-anatomic subdivi- Received 12 November 2011 sions within the anterior insula that contribute to the detection and processing of salient information: a dor- Revised 25 January 2012 sal region that is routinely active during attention tasks and a ventral region that is routinely active during Accepted 4 February 2012 affective experience. In two independent samples of cognitively normal human adults, we used intrinsic Available online 13 February 2012 functional connectivity magnetic resonance imaging to demonstrate that the right dorsal and right ventral anterior insula are nodes in separable large-scale functional networks. Furthermore, stronger intrinsic con- Keywords: Dorsal anterior insula nectivity within the right dorsal anterior insula network was associated with better performance on a task Ventral anterior insula involving attention and processing speed whereas stronger connectivity within the right ventral anterior Intrinsic functional connectivity insula network was associated with more intense affective experience. -
Chemosensory Perception: a Review on Electrophysiological Methods in “Cognitive Neuro-Olfactometry”
chemosensors Review Chemosensory Perception: A Review on Electrophysiological Methods in “Cognitive Neuro-Olfactometry” Sara Invitto * and Alberto Grasso INSPIRE Laboratory of Cognitive and Psychophysiological Olfactory Processes, DiSTeBA, University of Salento and DrEAM Vito Fazzi Hospital, 73100 Lecce, Italy * Correspondence: [email protected] Received: 9 August 2019; Accepted: 10 September 2019; Published: 12 September 2019 Abstract: Various brain imaging techniques are available, but few are specifically designed to visualize chemical sensory and, in particular, olfactory processing. This review describes the results of quantitative and qualitative studies that have used electroencephalography (EEG) and magneto-encephalography (MEG) to evaluate responses to olfactory stimulation (OS). EEG and MEG are able to detect the components of chemosensory event-related potentials (CSERPs) and the cortical rhythms associated with different types of OS. Olfactory studies are filling the gaps in both the developmental field of the life cycle (from newborns to geriatric age) and the clinical and basic research fields, in a way that can be considered the modern “cognitive neuro-olfactometry”. Keywords: EEG; OERP; CSERP; olfactory stimulation; olfactory perception; chemical detection systems 1. Introduction to Electrophysiological Techniques and Chemical Perception Neuroimaging techniques allow us to investigate the neuronal mechanisms underlying information processing, and are an indispensable tool in efforts to gain a greater understanding -
Distinct Hippocampal Functional Networks Revealed by Tractography-Based Parcellation
Brain Struct Funct DOI 10.1007/s00429-015-1084-x ORIGINAL ARTICLE Distinct hippocampal functional networks revealed by tractography-based parcellation 1 2,5 3 2,4 Areeba Adnan • Alexander Barnett • Massieh Moayedi • Cornelia McCormick • 2,5 2,5 Melanie Cohn • Mary Pat McAndrews Received: 27 February 2015 / Accepted: 7 July 2015 Ó Springer-Verlag Berlin Heidelberg 2015 Abstract Recent research suggests the anterior and pos- parahippocampal, inferior temporal and fusiform gyri and terior hippocampus form part of two distinct functional the precuneus, predicted interindividual relational memory neural networks. Here we investigate the structural under- performance. These findings provide important support for pinnings of this functional connectivity difference using the integration of structural and functional connectivity in diffusion-weighted imaging-based parcellation. Using this understanding the brain networks underlying episodic technique, we substantiated that the hippocampus can be memory. parcellated into distinct anterior and posterior segments. These structurally defined segments did indeed show dif- Keywords DTI Á fMRI Á Hippocampus Á Recognition ferent patterns of resting state functional connectivity, in that memory Á Networks the anterior segment showed greater connectivity with temporal and orbitofrontal cortex, whereas the posterior segment was more highly connected to medial and lateral Introduction parietal cortex. Furthermore, we showed that the posterior hippocampal connectivity to memory processing regions, There is a growing consensus for the specialization of hip- including the dorsolateral prefrontal cortex, pocampal function along the anterior–posterior axis, arising out of differential involvement in large-scale brain networks (Poppenk et al. 2013). Functional neuroimaging has shown A. Adnan, A. Barnett and M. Moayedi contributed equally to this work and share first authorship. -
On the Scent of Human Olfactory Orbitofrontal Cortex: Meta-Analysis and Comparison to Non-Human Primates
Brain Research Reviews 50 (2005) 287 – 304 www.elsevier.com/locate/brainresrev Review On the scent of human olfactory orbitofrontal cortex: Meta-analysis and comparison to non-human primates Jay A. Gottfrieda,*, David H. Zaldb aDepartment of Neurology and the Cognitive Neurology and Alzheimer’s Disease Center, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Searle 11-453, Chicago, IL 60611, USA bDepartment of Psychology, Vanderbilt University, Nashville, TN 37240, USA Accepted 25 August 2005 Available online 6 October 2005 Abstract It is widely accepted that the orbitofrontal cortex (OFC) represents the main neocortical target of primary olfactory cortex. In non-human primates, the olfactory neocortex is situated along the basal surface of the caudal frontal lobes, encompassing agranular and dysgranular OFC medially and agranular insula laterally, where this latter structure wraps onto the posterior orbital surface. Direct afferent inputs arrive from most primary olfactory areas, including piriform cortex, amygdala, and entorhinal cortex, in the absence of an obligatory thalamic relay. While such findings are almost exclusively derived from animal data, recent cytoarchitectonic studies indicate a close anatomical correspondence between non-human primate and human OFC. Given this cross-species conservation of structure, it has generally been presumed that the olfactory projection area in human OFC occupies the same posterior portions of OFC as seen in non-human primates. This review questions this assumption by providing a critical survey of the localization of primate and human olfactory neocortex. Based on a meta-analysis of human functional neuroimaging studies, the region of human OFC showing the greatest olfactory responsivity appears substantially rostral and in a different cytoarchitectural area than the orbital olfactory regions as defined in the monkey. -
Chemosensory Perception: a Review on Electrophysiological Methods in “Cognitive Neuro-Olfactometry”
Review Chemosensory Perception: A Review on Electrophysiological Methods in “Cognitive Neuro-Olfactometry” Sara Invitto * and Alberto Grasso INSPIRE Laboratory of Cognitive and Psychophysiological Olfactory Processes, DiSTeBA, University of Salento and DrEAM Vito Fazzi Hospital, Lecce 73100, Italy * Correspondence: [email protected] Received: 9 August 2019; Accepted: 10 September 2019; Published: 12 September 2019 Abstract: Various brain imaging techniques are available, but few are specifically designed to visualize chemical sensory and, in particular, olfactory processing. This review describes the results of quantitative and qualitative studies that have used electroencephalography (EEG) and magneto- encephalography (MEG) to evaluate responses to olfactory stimulation (OS). EEG and MEG are able to detect the components of chemosensory event-related potentials (CSERPs) and the cortical rhythms associated with different types of OS. Olfactory studies are filling the gaps in both the developmental field of the life cycle (from newborns to geriatric age) and the clinical and basic research fields, in a way that can be considered the modern “cognitive neuro-olfactometry”. Keywords: EEG; OERP; CSERP; Olfactory Stimulation; Olfactory Perception; Chemical detection Systems 1. Introduction to Electrophysiological Techniques and Chemical Perception Neuroimaging techniques allow us to investigate the neuronal mechanisms underlying information processing, and are an indispensable tool in efforts to gain a greater understanding of how -
The Neuroscience of Emotional Disorders
Handbook of Clinical Neurology, Vol. 183 (3rd series) Disorders of Emotion in Neurologic Disease K.M. Heilman and S.E. Nadeau, Editors https://doi.org/10.1016/B978-0-12-822290-4.00002-5 Copyright © 2021 Elsevier B.V. All rights reserved Chapter 1 The neuroscience of emotional disorders EDMUND T. ROLLS1,2* 1Oxford Centre for Computational Neuroscience, Oxford, United Kingdom 2Department of Computer Science, University of Warwick, Coventry, United Kingdom Abstract Emotions can be defined as states elicited by rewards or punishments, and indeed the neurology of emotional disorders can be understood in terms of this foundation. The orbitofrontal cortex in humans and other primates is a critical area in emotion processing, determining the value of stimuli and whether they are rewarding or nonrewarding. The cortical processing that occurs before the orbitofrontal cortex primarily involves defining the identity of stimuli, i.e., “what” is present and not reward value. There is evidence that this holds true for taste, visual, somatosensory, and olfactory stimuli. The human medial orbitofrontal cortex is important in processing many different types of reward, and the lateral orbitofrontal cortex in processing nonreward and punishment. Humans with damage to the orbitofrontal cortex have an impaired ability to identify facial and voice expressions of emotions, and impaired subjective experience of emotion. They can have an altered personality and be impulsive because they are impaired at processing failures to receive expected rewards and at processing punishments. In humans, the role of the amygdala in the processing of emotions is reduced because of the great evolutionary development of the orbitofrontal cortex: amygdala damage has much less effect on emotion than does orbitofrontal cortex damage. -
The Evolutionary Development of the Brain As It Pertains to Neurosurgery
Open Access Original Article DOI: 10.7759/cureus.6748 The Evolutionary Development of the Brain As It Pertains to Neurosurgery Jaafar Basma 1 , Natalie Guley 2 , L. Madison Michael II 3 , Kenan Arnautovic 3 , Frederick Boop 3 , Jeff Sorenson 3 1. Neurological Surgery, University of Tennessee Health Science Center, Memphis, USA 2. Neurological Surgery, University of Arkansas for Medical Sciences, Little Rock, USA 3. Neurological Surgery, Semmes-Murphey Clinic, Memphis, USA Corresponding author: Jaafar Basma, [email protected] Abstract Background Neuroanatomists have long been fascinated by the complex topographic organization of the cerebrum. We examined historical and modern phylogenetic theories pertaining to microneurosurgical anatomy and intrinsic brain tumor development. Methods Literature and history related to the study of anatomy, evolution, and tumor predilection of the limbic and paralimbic regions were reviewed. We used vertebrate histological cross-sections, photographs from Albert Rhoton Jr.’s dissections, and original drawings to demonstrate the utility of evolutionary temporal causality in understanding anatomy. Results Phylogenetic neuroanatomy progressed from the substantial works of Alcmaeon, Herophilus, Galen, Vesalius, von Baer, Darwin, Felsenstein, Klingler, MacLean, and many others. We identified two major modern evolutionary theories: “triune brain” and topological phylogenetics. While the concept of “triune brain” is speculative and highly debated, it remains the most popular in the current neurosurgical literature. Phylogenetics inspired by mathematical topology utilizes computational, statistical, and embryological data to analyze the temporal transformations leading to three-dimensional topographic anatomy. These transformations have shaped well-defined surgical planes, which can be exploited by the neurosurgeon to access deep cerebral targets. The microsurgical anatomy of the cerebrum and the limbic system is redescribed by incorporating the dimension of temporal causality. -
Rebecca D. Burwell, Ph.D. Curriculum Vitae
Rebecca D. Burwell, Ph.D. Curriculum Vitae Rebecca D. Burwell, Ph.D. Professor of Psychology and Neuroscience Department of Cognitive, Linguistic, and Psychological Sciences Brown University [email protected] Professional Appointments: Professor of Psychology (secondary appointment in Neuroscience), Brown University, 2006- present Professor of Neuroscience (secondary appointment), Brown University, 2006-present Associate Professor of Neuroscience (secondary appointment), Brown University, 2003-2006 Associate Professor of Psychology, Brown University, 2002-2006 Assistant Professor of Psychology, Brown University, 1996-2002 Postdoctoral Fellow and Lecturer, Center for Behavioral Neuroscience, The State University of New York at Stony Brook, 1993-1996 Postdoctoral Research Associate, Laboratory for Neuronal Structure and Function, The Salk Institute for Biological Studies, 1992-1993 Education Ph.D., The University of North Carolina at Chapel Hill, 1992 Experimental and Biological Psychology Program Thesis title: The Effects of Aging on Brain Dopamine Systems and Behavior M.A., The University of North Carolina at Chapel Hill, 1989 Clinical Psychology Program Thesis title: The Relationship Between Age-related Deficits in Spatial Learning and Diurnal Rhythms B.A., Southern Methodist University, 1974 Academic Honors National Merit Scholarship, 1971-1974 University Scholarship, SMU, 1973-1974 James R. Kenan Fellowship, UNC, 08/87-05/88 NSF Predoctoral Fellowship, 06/88-05/91 APA Division 20 Student Research Award, 1991 NIH Predoctoral Fellowship, 06/91-08/92 NIMH Postdoctoral Fellowship, 12/92-11/94 McDonnell-Pew Fellowship to Cold Spring Harbor Biology of Memory Course, Summer 1993 NIMH Postdoctoral Fellowship, 03/95-02/96 Salomon Award: The Postrhinal Cortex and Context Conditioning, 1997-1999 NSF Career Development Award: Cognitive Functions of the Postrhinal Cortex, 1999-2003 Karen T. -
Area 7 Pdf, Epub, Ebook
AREA 7 PDF, EPUB, EBOOK Matthew Reilly | 512 pages | 17 Feb 2003 | St Martin's Press | 9780312983222 | English | New York, United States Area 7 PDF Book Schofield gets back to Area 7, but the prisoners that were there for scientific research get out, and make the remaining Air Force and Marines fight to the death. Return to Play Activities Waiver. Apr 30, Alex rated it it was amazing Shelves: in Original Title. Please reference the Developmental Disabilities Services Coverage and Limitations Handbook for more details on services offered under this program. Friday 9 October Forever glad the bears survived. Thursday 20 August Bellingham Bay Fishery see 1 below for boundaries Aug. This is the second book I've read by Matthew Reilly and just like Ice Station the first book in the Scarecrow series it's an action packed read from start to finish! Most of these people die. Melbourne , Victoria , Australia. Monday 29 June Parahippocampal gyrus anterior Entorhinal cortex Perirhinal cortex Postrhinal cortex Posterior parahippocampal gyrus Prepyriform area. Friday 29 May And in the process, he wrote a story that definitely gave me something to worry about. Shane Schofield 4 books. Why, because they have access to many of the installations containing some of this countries greatest tactical assets: high tech planes and ballistic missiles. Area 7 Shane Schofield 2 by Matthew Reilly. For smelt: Jig gear may be used 7 days a week. Sunday 5 July Visual cortex 17 Cuneus Lingual gyrus Calcarine sulcus. Trump trailing behind Biden in funding, weeks before Election Day, new filings show. This book SHOULD be read only if you are waiting in the airport to catch a long-delayed flight, or while pursuing some other similar pursuit. -
Learning to Smell Danger: Acquired Associative Representation of Threat in the Olfactory Cortex
MINI REVIEW ARTICLE published: 07 April 2014 BEHAVIORAL NEUROSCIENCE doi: 10.3389/fnbeh.2014.00098 Learning to smell danger: acquired associative representation of threat in the olfactory cortex Wen Li 1,2* 1 Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA 2 Waisman Center, University of Wisconsin-Madison, Madison, WI, USA Edited by: Neuroscience research over the past few decades has reached a strong consensus Anne-Marie Mouly, Centre de that the amygdala plays a key role in emotion processing. However, many questions Recherche en Neurosciences de Lyon, remain unanswered, especially concerning emotion perception. Based on mnemonic France theories of olfactory perception and in light of the highly associative nature of olfactory Reviewed by: Jonas K. Olofsson, Stockholm cortical processing, here I propose a sensory cortical model of olfactory threat perception University, Sweden (i.e., sensory-cortex-based threat perception): the olfactory cortex stores threat codes Tyler Lorig, Washington and Lee as acquired associative representations (AARs) formed via aversive life experiences, University, USA thereby enabling encoding of threat cues during sensory processing. Rodent and human *Correspondence: research in olfactory aversive conditioning was reviewed, indicating learning-induced Wen Li, Department of Psychology, University of Wisconsin-Madison, plasticity in the amygdala and the olfactory piriform cortex. In addition, as aversive learning Brogden Hall, 1202 W. Johnson becomes consolidated in the amygdala, the associative olfactory (piriform) cortex may Street, Madison, WI 53706, USA undergo (long-term) plastic changes, resulting in modified neural response patterns that e-mail: [email protected] underpin threat AARs. This proposal thus brings forward a sensory cortical pathway to threat processing (in addition to amygdala-based processes), potentially accounting for an alternative mechanism underlying the pathophysiology of anxiety and depression. -
Connections of Inferior Temporal Areas TE and TEO with Medial Temporal-Lobe Structures in Infant and Adult Monkeys
The Journal of Neuroscience, April 1991, 17(4): 1095-I 116 Connections of Inferior Temporal Areas TE and TEO with Medial Temporal-Lobe Structures in Infant and Adult Monkeys M. J. Webster, L. G. Ungerleider, and J. Bachevalier Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland 20892 As part of a long-term study designed to examine the on- tion. Both elimination and refinement of projections thus ap- togeny of visual memory in monkeys and its underlying neu- pear to characterize the maturation of axonal pathways be- ral circuitry, we have examined the connections between tween the inferior temporal cortex and medial temporal-lobe inferior temporal cortex and medial temporal-lobe structures structures in monkeys. in infant and adult monkeys. Inferior temporal cortical areas TEO and TE were injected with WGA conjugated to HRP and In the course of neural development, numerous mechanisms tritiated amino acids, respectively, or vice versa, in 1 -week- are at play to achieve the final configuration of the mature brain. old and 3-4-yr-old Macaca mulatta, and the distributions of These mechanismsinclude cell death, the growth of dendritic labeled cells and terminals were examined in both limbic spines,and the remodeling of connections. Such remodeling can structures and temporal-lobe cortical areas. In adult mon- take 2 forms. In the first instance, projections become more keys, inferior temporal-limbic connections included projec- restricted. That is, they initially terminate in the appropriate tions from area TEO to the dorsal portion of the lateral nu- area of the brain, but their target fields are considerably more cleus of the amygdala and from area TE to the lateral and widespreadin infancy than they will be later in adulthood.