Investigating Ecological Links Between Floodplain Forests and Aquatic Communities

Total Page:16

File Type:pdf, Size:1020Kb

Investigating Ecological Links Between Floodplain Forests and Aquatic Communities Mississippi State University Scholars Junction Theses and Dissertations Theses and Dissertations 4-30-2021 Investigating ecological links between floodplain forests and aquatic communities Conner Owens [email protected] Follow this and additional works at: https://scholarsjunction.msstate.edu/td Recommended Citation Owens, Conner, "Investigating ecological links between floodplain forests and aquatic communities" (2021). Theses and Dissertations. 5130. https://scholarsjunction.msstate.edu/td/5130 This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact [email protected]. Investigating ecological links between floodplain forests and aquatic communities By TITLE PAGE Conner Owens Approved by: Sandra B. Correa (Major Professor) J. Wesley Neal Scott A. Rush Kevin M. Hunt (Graduate Coordinator) L. Wes Burger (Dean, College of Forest Resources) A Thesis Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Wildlife, Fisheries and Aquaculture in the Department of Wildlife, Fisheries and Aquaculture Mississippi State, Mississippi April 2021 Copyright by COPYRIGHT PAGE Conner Owens 2021 Name: Conner Owens ABSTRACT Date of Degree: April 30, 2021 Institution: Mississippi State University Major Field: Wildlife, Fisheries and Aquaculture Major Professor: Sandra B. Correa Title of Study: Investigating ecological links between floodplain forests and aquatic communities Pages in Study: 110 Candidate for Degree of Master of Science While there is a clear link between riparian forests and freshwater organisms, floodplain forests are seldom investigated due to difficulties in sampling structurally complex and periodically inundated habitat. This lack of research has led to large knowledge gaps that hinder our understanding of the conservation value of these unique, complex ecosystems for inland fisheries. Therefore, I aimed to determine how bottomland hardwood forests influence fish taxonomic, functional diversity and food web structure. I hypothesized that fish taxonomic and functional diversity are driven by forest complexity and the aquatic food web structure is driven by terrestrial carbon sources, specifically forest vegetation. Results indicated a higher taxonomic diversity and functional richness in the floodplain forest and that this forest type provides thermal refugia for fish assemblages. Contrary to my prediction, phytomicrobenthos were a primary carbon production source driving some or all of the aquatic food web in a complex floodplain–river system. Key words: food web, diversity, bottomland hardwood forest, stable isotopes, fish DEDICATION I want to dedicate this research to my parents Tom and Meredith Owens, my little brother Dillon Owens, and my closest friends David, Ryan, Kevin, Turner, and Zack. Their enthusiasm for the outdoors inspires me every day. I would also like to dedicate this to my sweetheart Erica Claycomb for standing by my side every step of the way. ii ACKNOWLEDGEMENTS I want to express my sincere gratitude to those who assisted with this research. First, I would like to acknowledge Dr. Sandra Correa for giving me this once in a lifetime opportunity and for her undivided attention and guidance for this research. I would also like to acknowledge my committee members Dr. Scott Rush and Dr. Wes Neal for their time and assistance making this project a reality. Additionally, I would like to acknowledge Dr. Michael Polito and his lab for analyzing my stable isotope samples, Matt Wagner of the MDWFP for sharing distribution data of fishes of the Pascagoula River Drainage, and the Ward Bayou WMA staff for providing housing and equipment storage. This project would also have not been possible without assistance from Dr. Joshua Granger and Clayton Hale from the Department of Forestry and the fantastic undergraduate research assistants and volunteers along the way. This project was funded by the Eppley Family Foundation for Research (to Dr. Correa), the Forest and Wildlife Research Center at Mississippi State University (to Dr. Correa and Owens), Sigma Xi (to Owens), and the MS Chapter of the American Fisheries Society (to Owens). iii TABLE OF CONTENTS DEDICATION ................................................................................................................................ ii ACKNOWLEDGEMENTS ........................................................................................................... iii LIST OF TABLES ......................................................................................................................... vi LIST OF FIGURES ..................................................................................................................... viii CHAPTER I. ROLE OF FLOODPLAIN FORESTS IN SUPPORTING FISH TAXONOMIC AND FUNCTIONAL DIVERSITY .....................................................................1 Abstract ..............................................................................................................................1 Introduction .......................................................................................................................2 Methods .............................................................................................................................4 Study Area ...................................................................................................................4 Field Data Collection ...................................................................................................4 Data Analyses ..............................................................................................................7 Taxonomic Diversity .............................................................................................7 Results .............................................................................................................................11 Taxonomic Diversity .................................................................................................11 Low Hydrological Period ....................................................................................11 High Hydrological Period ....................................................................................13 Functional Diversity ..................................................................................................14 Low Hydrological Period ....................................................................................14 High Hydrological Period ....................................................................................15 Discussion ........................................................................................................................16 Taxonomic Diversity .................................................................................................16 Functional Diversity ..................................................................................................20 II. ROLE OF FLOODPLAIN FORESTS AS AN ENERGY SOURCE TO AQUATIC CONSUMERS .................................................................................59 Abstract ............................................................................................................................59 Introduction .....................................................................................................................60 Methods ...........................................................................................................................63 Study Area .................................................................................................................63 Field Data Collection .................................................................................................63 iv Laboratory Data Collection .......................................................................................66 Data Analysis .............................................................................................................68 Results .............................................................................................................................70 Discussion ........................................................................................................................71 III. A SPECIES–RICH DRAINAGE: OCCURRENCE AND HABITAT ASSOCIATIONS OF FISHES IN THE PASCAGOULA RIVER SYSTEM .............................................................................................................84 Abstract ............................................................................................................................84 Introduction .....................................................................................................................84 Methods ...........................................................................................................................85 Study Area .................................................................................................................85 Data Collection ..........................................................................................................86 Results .............................................................................................................................87
Recommended publications
  • Article Evolutionary Dynamics of the OR Gene Repertoire in Teleost Fishes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Article Evolutionary dynamics of the OR gene repertoire in teleost fishes: evidence of an association with changes in olfactory epithelium shape Maxime Policarpo1, Katherine E Bemis2, James C Tyler3, Cushla J Metcalfe4, Patrick Laurenti5, Jean-Christophe Sandoz1, Sylvie Rétaux6 and Didier Casane*,1,7 1 Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France. 2 NOAA National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. 3Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, U.S.A. 4 Independent Researcher, PO Box 21, Nambour QLD 4560, Australia. 5 Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France 6 Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur- Yvette, France. 7 Université de Paris, UFR Sciences du Vivant, F-75013 Paris, France. * Corresponding author: e-mail: [email protected]. !1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Teleost fishes perceive their environment through a range of sensory modalities, among which olfaction often plays an important role.
    [Show full text]
  • CAT Vertebradosgt CDC CECON USAC 2019
    Catálogo de Autoridades Taxonómicas de vertebrados de Guatemala CDC-CECON-USAC 2019 Centro de Datos para la Conservación (CDC) Centro de Estudios Conservacionistas (Cecon) Facultad de Ciencias Químicas y Farmacia Universidad de San Carlos de Guatemala Este documento fue elaborado por el Centro de Datos para la Conservación (CDC) del Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala. Guatemala, 2019 Textos y edición: Manolo J. García. Zoólogo CDC Primera edición, 2019 Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala ISBN: 978-9929-570-19-1 Cita sugerida: Centro de Estudios Conservacionistas [Cecon]. (2019). Catálogo de autoridades taxonómicas de vertebrados de Guatemala (Documento técnico). Guatemala: Centro de Datos para la Conservación [CDC], Centro de Estudios Conservacionistas [Cecon], Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala [Usac]. Índice 1. Presentación ............................................................................................ 4 2. Directrices generales para uso del CAT .............................................. 5 2.1 El grupo objetivo ..................................................................... 5 2.2 Categorías taxonómicas ......................................................... 5 2.3 Nombre de autoridades .......................................................... 5 2.4 Estatus taxonómico
    [Show full text]
  • Zootaxa 3266: 41–52 (2012) ISSN 1175-5326 (Print Edition) Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (Online Edition)
    Zootaxa 3266: 41–52 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Thalasseleotrididae, new family of marine gobioid fishes from New Zealand and temperate Australia, with a revised definition of its sister taxon, the Gobiidae (Teleostei: Acanthomorpha) ANTHONY C. GILL1,2 & RANDALL D. MOOI3,4 1Macleay Museum and School of Biological Sciences, A12 – Macleay Building, The University of Sydney, New South Wales 2006, Australia. E-mail: [email protected] 2Ichthyology, Australian Museum, 6 College Street, Sydney, New South Wales 2010, Australia 3The Manitoba Museum, 190 Rupert Ave., Winnipeg MB, R3B 0N2 Canada. E-mail: [email protected] 4Department of Biological Sciences, 212B Biological Sciences Bldg., University of Manitoba, Winnipeg MB, R3T 2N2 Canada Abstract Thalasseleotrididae n. fam. is erected to include two marine genera, Thalasseleotris Hoese & Larson from temperate Aus- tralia and New Zealand, and Grahamichthys Whitley from New Zealand. Both had been previously classified in the family Eleotrididae. The Thalasseleotrididae is demonstrably monophyletic on the basis of a single synapomorphy: membrane connecting the hyoid arch to ceratobranchial 1 broad, extending most of the length of ceratobranchial 1 (= first gill slit restricted or closed). The family represents the sister group of a newly diagnosed Gobiidae on the basis of five synapo- morphies: interhyal with cup-shaped lateral structure for articulation with preopercle; laterally directed posterior process on the posterior ceratohyal supporting the interhyal; pharyngobranchial 4 absent; dorsal postcleithrum absent; urohyal without ventral shelf. The Gobiidae is defined by three synapomorphies: five branchiostegal rays; expanded and medially- placed ventral process on ceratobranchial 5; dorsal hemitrich of pelvic-fin rays with complex proximal head.
    [Show full text]
  • Dedication Donald Perrin De Sylva
    Dedication The Proceedings of the First International Symposium on Mangroves as Fish Habitat are dedicated to the memory of University of Miami Professors Samuel C. Snedaker and Donald Perrin de Sylva. Samuel C. Snedaker Donald Perrin de Sylva (1938–2005) (1929–2004) Professor Samuel Curry Snedaker Our longtime collaborator and dear passed away on March 21, 2005 in friend, University of Miami Professor Yakima, Washington, after an eminent Donald P. de Sylva, passed away in career on the faculty of the University Brooksville, Florida on January 28, of Florida and the University of Miami. 2004. Over the course of his diverse A world authority on mangrove eco- and productive career, he worked systems, he authored numerous books closely with mangrove expert and and publications on topics as diverse colleague Professor Samuel Snedaker as tropical ecology, global climate on relationships between mangrove change, and wetlands and fish communities. Don pollutants made major scientific contributions in marine to this area of research close to home organisms in south and sedi- Florida ments. One and as far of his most afield as enduring Southeast contributions Asia. He to marine sci- was the ences was the world’s publication leading authority on one of the most in 1974 of ecologically important inhabitants of “The ecology coastal mangrove habitats—the great of mangroves” (coauthored with Ariel barracuda. His 1963 book Systematics Lugo), a paper that set the high stan- and Life History of the Great Barracuda dard by which contemporary mangrove continues to be an essential reference ecology continues to be measured. for those interested in the taxonomy, Sam’s studies laid the scientific bases biology, and ecology of this species.
    [Show full text]
  • Andrea RAZ-GUZMÁN1*, Leticia HUIDOBRO2, and Virginia PADILLA3
    ACTA ICHTHYOLOGICA ET PISCATORIA (2018) 48 (4): 341–362 DOI: 10.3750/AIEP/02451 AN UPDATED CHECKLIST AND CHARACTERISATION OF THE ICHTHYOFAUNA (ELASMOBRANCHII AND ACTINOPTERYGII) OF THE LAGUNA DE TAMIAHUA, VERACRUZ, MEXICO Andrea RAZ-GUZMÁN1*, Leticia HUIDOBRO2, and Virginia PADILLA3 1 Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 2 Instituto Nacional de Pesca y Acuacultura, SAGARPA, Ciudad de México 3 Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México Raz-Guzmán A., Huidobro L., Padilla V. 2018. An updated checklist and characterisation of the ichthyofauna (Elasmobranchii and Actinopterygii) of the Laguna de Tamiahua, Veracruz, Mexico. Acta Ichthyol. Piscat. 48 (4): 341–362. Background. Laguna de Tamiahua is ecologically and economically important as a nursery area that favours the recruitment of species that sustain traditional fisheries. It has been studied previously, though not throughout its whole area, and considering the variety of habitats that sustain these fisheries, as well as an increase in population growth that impacts the system. The objectives of this study were to present an updated list of fish species, data on special status, new records, commercial importance, dominance, density, ecotic position, and the spatial and temporal distribution of species in the lagoon, together with a comparison of Tamiahua with 14 other Gulf of Mexico lagoons. Materials and methods. Fish were collected in August and December 1996 with a Renfro beam net and an otter trawl from different habitats throughout the lagoon. The species were identified, classified in relation to special status, new records, commercial importance, density, dominance, ecotic position, and spatial distribution patterns.
    [Show full text]
  • Rhinogobius Mizunoi, a New Species of Freshwater Goby (Teleostei: Gobiidae) from Japan
    Bull. Kanagawa prefect. Mus. (Nat. Sci.), no. 46, pp. 79-95, Feb. 2017 79 Original Article Rhinogobius mizunoi, A New Species of Freshwater Goby (Teleostei: Gobiidae) from Japan Toshiyuki Suzuki 1), Koichi Shibukawa 2) & Masahiro Aizawa 3) Abstract. A new freshwater goby, Rhinogobius mizunoi, is described based on six specimens from a freshwater stream in Shizuoka Prefecture, Japan. The species is distinguished from all congeneric species by the following combination of characters: I, 8 second dorsal-fin rays; 18–20 pectoral-fin rays; 13–18 predorsal scales; 33–35 longitudinal scales; 8 or 9 transverse scales; 10+16=26 vertebrae 26; first dorsal fin elongate in male, its distal tip reaching to base of fourth branched ray of second dorsal fin in males when adpressed; when alive or freshly-collected, cheek with several pale sky spots; caudal fin without distinct rows of dark dots; a pair of vertically- arranged dark brown blotches at caudal-fin base in young and females. Key words: amphidoromous, fish taxonomy, Rhinogobius sp. CO, valid species Introduction 6–11 segmented rays; anal fin with a single spine and 5–11 The freshwater gobies of the genus Rhinogobius Gill, segmented rays; pectoral fin with 14–23 segmented rays; 1859 are widely distributed in the East and Southeast pelvic fin with a single spine and five segmented rays; Asian regions, including the Russia Far East, Japan, 25–44 longitudinal scales; 7–16 transverse scales; P-V 3/ Korea, China, Taiwan, the Philippines, Vietnam, Laos, II II I I 0/9; 10–11+15–18= 25–29 vertebrae; body mostly Cambodia, and Thailand (Chen & Miller, 2014).
    [Show full text]
  • A Thesis Entitled Molecular, Morphological, and Biogeographic Resolution of Cryptic Taxa in the Greenside Darter Etheostoma Blen
    A Thesis Entitled Molecular, morphological, and biogeographic resolution of cryptic taxa in the Greenside Darter Etheostoma blennioides complex By Amanda E. Haponski Submitted as partial fulfillment of the requirements for The Master of Science Degree in Biology (Ecology-track) ____________________________ Advisor: Dr. Carol A. Stepien ____________________________ Committee Member: Dr. Timothy G. Fisher ____________________________ Committee Member: Dr. Johan F. Gottgens ____________________________ College of Graduate Studies The University of Toledo December 2007 Copyright © 2007 This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Molecular, morphological, and biogeographic resolution of cryptic taxa in the Greenside Darter Etheostoma blennioides complex Amanda E. Haponski Submitted as partial fulfillment of the requirements for The Master of Science Degree in Biology (Ecology-track) The University of Toledo December 2007 DNA sequencing has led to the resolution of many cryptic taxa, which are especially prevalent in the North American darter fishes (Family Percidae). The Greenside Darter Etheostoma blennioides commonly occurs in the lower Great Lakes region, where two putative subspecies, the eastern “Allegheny” type E. b. blennioides and the western “Prairie” type E. b. pholidotum , overlap. The objective of this study was to test the systematic identity and genetic divergence distinguishing the two subspecies in areas of sympatry and allopatry in comparison to other subspecies and close relatives. DNA sequences from the mtDNA cytochrome b gene and control region and the nuclear S7 intron 1 comprising a total of 1,497 bp were compared from 294 individuals across 18 locations, including the Lake Erie basin and the Allegheny, Meramec, Obey, Ohio, Rockcastle, Susquehanna, and Wabash River systems.
    [Show full text]
  • Environmental Sensitivity Index Guidelines Version 2.0
    NOAA Technical Memorandum NOS ORCA 115 Environmental Sensitivity Index Guidelines Version 2.0 October 1997 Seattle, Washington noaa NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION National Ocean Service Office of Ocean Resources Conservation and Assessment National Ocean Service National Oceanic and Atmospheric Administration U.S. Department of Commerce The Office of Ocean Resources Conservation and Assessment (ORCA) provides decisionmakers comprehensive, scientific information on characteristics of the oceans, coastal areas, and estuaries of the United States of America. The information ranges from strategic, national assessments of coastal and estuarine environmental quality to real-time information for navigation or hazardous materials spill response. Through its National Status and Trends (NS&T) Program, ORCA uses uniform techniques to monitor toxic chemical contamination of bottom-feeding fish, mussels and oysters, and sediments at about 300 locations throughout the United States. A related NS&T Program of directed research examines the relationships between contaminant exposure and indicators of biological responses in fish and shellfish. Through the Hazardous Materials Response and Assessment Division (HAZMAT) Scientific Support Coordination program, ORCA provides critical scientific support for planning and responding to spills of oil or hazardous materials into coastal environments. Technical guidance includes spill trajectory predictions, chemical hazard analyses, and assessments of the sensitivity of marine and estuarine environments to spills. To fulfill the responsibilities of the Secretary of Commerce as a trustee for living marine resources, HAZMAT’s Coastal Resource Coordination program provides technical support to the U.S. Environmental Protection Agency during all phases of the remedial process to protect the environment and restore natural resources at hundreds of waste sites each year.
    [Show full text]
  • Assessing Species Diversity of Coral Triangle Artisanal Fisheries: a DNA Barcode Reference Library for the Shore Fishes Retailed at Ambon Harbor (Indonesia)
    Received: 19 September 2019 | Revised: 30 January 2020 | Accepted: 3 February 2020 DOI: 10.1002/ece3.6128 ORIGINAL RESEARCH Assessing species diversity of Coral Triangle artisanal fisheries: A DNA barcode reference library for the shore fishes retailed at Ambon harbor (Indonesia) Gino Limmon1 | Erwan Delrieu-Trottin2,3 | Jesaya Patikawa1 | Frederik Rijoly1 | Hadi Dahruddin4 | Frédéric Busson2,5 | Dirk Steinke6 | Nicolas Hubert2 1Pusat Kemaritiman dan Kelautan, Universitas Pattimura (Maritime and Marine Abstract Science Center of Excellence), Ambon, The Coral Triangle (CT), a region spanning across Indonesia and Philippines, is home Indonesia to about 4,350 marine fish species and is among the world's most emblematic re- 2Institut de Recherche pour le Développement, UMR 226 ISEM (UM- gions in terms of conservation. Threatened by overfishing and oceans warming, the CNRS-IRD-EPHE), Montpellier, France CT fisheries have faced drastic declines over the last decades. Usually monitored 3Museum für Naturkunde, Leibniz-Institut für Evolutions-und Biodiversitätsforschung through a biomass-based approach, fisheries trends have rarely been characterized an der Humboldt-Universität zu Berlin, at the species level due to the high number of taxa involved and the difficulty to Berlin, Germany accurately and routinely identify individuals to the species level. Biomass, however, 4Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences is a poor proxy of species richness, and automated methods of species identifica- (LIPI), Cibinong, Indonesia tion are required to move beyond biomass-based approaches. Recent meta-analyses 5UMR 7208 BOREA (MNHN-CNRS-UPMC- have demonstrated that species richness peaks at intermediary levels of biomass. IRD-UCBN), Muséum National d’Histoire Naturelle, Paris, France Consequently, preserving biomass is not equal to preserving biodiversity.
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • A Dissertation Entitled Evolution, Systematics
    A Dissertation Entitled Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) By Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) ____________________________________ Adviser: Dr. Carol A. Stepien ____________________________________ Committee Member: Dr. Christine M. Mayer ____________________________________ Committee Member: Dr. Elliot J. Tramer ____________________________________ Committee Member: Dr. David J. Jude ____________________________________ Committee Member: Dr. Juan L. Bouzat ____________________________________ College of Graduate Studies The University of Toledo December 2009 Copyright © 2009 This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. _______________________________________________________________________ An Abstract of Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) The University of Toledo December 2009 The study of biodiversity, at multiple hierarchical levels, provides insight into the evolutionary history of taxa and provides a framework for understanding patterns in ecology. This is especially poignant in invasion biology, where the prevalence of invasiveness in certain taxonomic groups could
    [Show full text]
  • Teleostei: Cyprinidae) from Cytochrome B Sequences
    Copeia, 2002(3), pp. 665±678 Evolutionary Relationships of the Plagopterins (Teleostei: Cyprinidae) from Cytochrome b Sequences THOMAS E. DOWLING,C.ALANA TIBBETS,W.L.MINCKLEY, AND GERALD R. SMITH Sequences of cytochrome b (cytb) were used to examine composition and phylo- genetic relationships of cyprinid ®shes of the tribe Plagopterini, endemic to the Great Basin and Lower Colorado River in southwestern North America. The pla- gopterin genera, Lepidomeda, Meda, Plagopterus, and Snyderichthys, were most closely af®liated with the chubs Couesius and Margariscus of northern and eastern North America. As indicated by previous morphologic, allozymic, and mtDNA studies, Sny- derichthys is intimately related to Lepidomeda. The relationship is paraphyletic, how- ever, according to our molecular data. Snyderichthys from the Snake and Bear River drainages are part of a clade that includes Lepidomeda mollispinis and Lepidomeda albivallis according to the cytb sequence, with Snyderichthys from the central and southern Bonneville basin more divergent. This paraphyly and the complex geo- graphic relationships of mtDNA sequences indicate a complex history of the group and cast doubt on the validity of morphologically diagnosed Snyderichthys. Estimates of divergence time, based on a combination of fossil and molecular data, indicate that the plagopterins are an ancient clade, at least 17 million years old. HE Cyprinidae or minnows are the most di- They hypothesized existence of three major T verse freshwater ®sh family in North Amer- groups: ``shiner,'' ``chub,'' and ``western'' ica, represented by more than 300 species in clades. Plagopterins fell within a Gila clade of approximately 50 genera (Burr and Mayden, western minnows, most closely related to a clade 1992).
    [Show full text]