Intracellular Trafficking in Drosophila Visual System Development: a Basis

Total Page:16

File Type:pdf, Size:1020Kb

Intracellular Trafficking in Drosophila Visual System Development: a Basis Intracellular Trafficking in Drosophila Visual System Development: A Basis for Pattern Formation Through Simple Mechanisms Chih-Chiang Chan, Daniel Epstein, P. Robin Hiesinger Department of Physiology and Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, Texas Received 30 December 2010; accepted 17 June 2011 ABSTRACT: Intracellular trafficking underlies cel- apse formation signals. Yet, the Drosophila visual system lular functions ranging from membrane remodeling to provides some of the most striking examples for the receptor activation. During multicellular organ develop- regulatory role of intracellular trafficking during multi- ment, these basic cell biological functions are required as cellular organ development. In this review we will first both passive machinery and active signaling regulators. highlight the experimental and conceptual advances that Exocytosis, endocytosis, and recycling of several key motivate the study of intracellular trafficking during signaling receptors have long been known to actively reg- Drosophila visual system development. We will then illu- ulate morphogenesis and pattern formation during Dro- minate the development of the eye, the eye-to-brain con- sophila eye development. Hence, intracellular membrane nectivity map and the optic lobe from the perspective of trafficking not only sets the cell biological stage for recep- cell biological dynamics. Finally, we provide a conceptual tor-mediated signaling but also actively controls signaling framework that seeks to explain how the interplay of sim- through spatiotemporally regulated receptor localization. ple genetically encoded intracellular trafficking events In contrast to eye development, the role of intracellular governs the seemingly complex cellular behaviors, which trafficking for the establishment of the eye-to-brain con- in turn determine the developmental product. ' 2011 nectivity map has only recently received more attention. Wiley Periodicals, Inc. Develop Neurobiol 71: 1227–1245, 2011 It is still poorly understood how guidance receptors are Keywords: receptor sorting; degradation; signaling; spatiotemporally regulated to serve as meaningful syn- neurogenetics; optic lobe INTRODUCTION system to study basic questions of tissue morphogen- esis, pattern formation, and underlying signaling The Drosophila visual system comprises of the eyes mechanisms for decades (Meinertzhagen and Hanson, and optic lobes. The eye has been a powerful model 1993; Wolff and Ready, 1993). This is partly due to the beauty and crystalline organization of both the P.R.H. is a Eugene McDermott Scholar in Biomedical Research eye and the underlying brain regions, which greatly at UT Southwestern Medical Center. facilitate the discovery and study of pattern forma- Correspondence to: P.R. Hiesinger (robin.hiesinger@ tion. Maybe even more importantly, the Drosophila utsouthwestern.edu). Contract grant sponsor: Welch Foundation; contract grant num- eye has very practical experimental advantages: the ber: I-1657. visual system is not required for viability under labo- Contract grant sponsor: Cancer Prevention Research Institute of ratory conditions, and it is easily amenable to genetic Texas (CPRIT). Contract grant sponsor: National Institute of Health (NEI/NIH); and other experimental manipulations. Consequently, contract grant number: RO1018884. many discoveries of basic developmental mecha- ' 2011 Wiley Periodicals, Inc. nisms were made possible by studies of Drosophila Published online 28 June 2011 in Wiley Online Library (wileyonlinelibrary.com). visual system development, including the interplay of DOI 10.1002/dneu.20940 transcriptional regulation and cell biology during eye 1227 1228 Chan et al. development (see Kumar, 2011; Rister and Desplan, mental signaling pathways, such as epidermal growth 2011), and the discovery and characterization of key factor receptor (EGFR) and Notch (Eun et al., 2007; proteins in several signal transduction pathways Iyadurai et al., 2008). [reviewed in (Dickson and Hafen, 1993)]. The second major technological improvement The optic lobe comprises roughly half of the derives from dramatic advances of imaging tech- Drosophila brain. It receives direct input from the nology in recent years. In light of the ability to photoreceptors in the first optic ganglion, the lam- non-invasively monitor and \virtually dissect" ina. The layer-specific projections of photoreceptor intact specimens, the small size of Drosophila has axons in the optic lobe and the formation of a vis- become a considerable advantage. The Drosophila ual map in the lamina in particular have yielded visual system in particular is amenable to the important insights into the problem of brain wiring most advanced modern imaging in toto, i.e., a and synaptic specification (Clandinin and Feldheim, complete eye–brain complex from a developing 2009; Sanes and Zipursky, 2010). While the role fly fits under high-resolution laser scanning and of intracellular trafficking in the signaling events other live imaging microscopes (Williamson and that lead to pattern formation in the eye has been Hiesinger, 2010). In combination with the genetic studied for a long time, the investigation of the techniques mentioned above, almost any transgenic role of intracellular trafficking as part of the brain animal can be generated where individual cells, wiring program has only recently become a intracellular compartments, or proteins are labeled research focus. This is certainly at least partly due with any kind of fluorophore to image cellular to newly developed techniques that have only been and subcellular biology in vivo in a developing developed or become widely available in recent eye–brain complex. It is arguably this combination years. The developments in two areas are most im- of technological advantages that allows the study portant and will be discussed below: first, molecu- of intracellular trafficking in the development and lar genetic manipulation of the visual system in function of specialized neurons in their in vivo vivo and second, the imaging of the intact visual and in situ context in ways that were previously system in vivo. only possible in cell culture. In light of these two The classical advantage of the visual system as a major technological advances, it is maybe of little model for genetic manipulation has received a major surprise that the last few years have yielded rich boost with the development of techniques to render new insights into the cell biology, and membrane mutations homozygous only in photoreceptors and trafficking in particular, of the developing visual visual interneurons in otherwise heterozygous ani- system. mals (Stowers and Schwarz, 1999; Newsome et al., In addition to technical challenges, the role of in- 2000; Chotard et al., 2005). In combination with tracellular trafficking has long posed a conceptual other tricks from the Drosophila tool box, these challenge for the study of neural circuit formation methods allow the easy generation of transgenic flies and synapse specification. While it is clear that mem- in which a subset of photoreceptor cells can be ren- brane trafficking and other cell biological machinery dered mutant and negatively or positively labeled are required for specific recognition and signaling with any combination of fluorescent proteins. In addi- events (i.e., play a permissive role in the developmen- tion, the mutant and/or control cells can be tal program), it is more difficult to envision an active engineered to express additional transgenes for experi- role of intracellular trafficking in the actual synapse ments ranging from simple genetic rescue, to genetic specification process (i.e., an instructive role). A sim- interaction and structure function studies of individual ilar debate has accompanied the study of cytoskeletal proteins—all in otherwise wild type (heterozygous) dynamics in axon pathfinding for many years flies. Several genetics screens in Drosophila have been (Dickson, 2001). It is maybe a little bit surprising that performed to identify novel components that regulate so little attention has been given to intracellular traf- intracellular trafficking in the eye. Abnormal eye pig- ficking as part of the \brain making program," given mentation can serve as readout for genes that regulate that examples for key roles of receptor trafficking in protein delivery to lysosomes (Lloyd et al., 1998). For signaling events underlying developmental processes example, acinus (dacn) has been identified as a regula- abound. Here, we will not provide a complete review tor of endosomal transport and autophagosomal matu- of all components of intracellular trafficking and their ration (Haberman et al., 2010). Genetic modifier roles in signaling in general; this topic is covered in screens in the eye have also led to unbiased discoveries comprehensive and highly recommended reviews of trafficking components for general trafficking ma- elsewhere (Polo and Di Fiore, 2006; von Zastrow and chinery (Simonsen et al., 2007), as well as for develop- Sorkin, 2007; Sorkin and von Zastrow, 2009). Developmental Neurobiology Intracellular Trafficking in Drosophila 1229 Figure 1 Feedback between intracellular trafficking and signaling from the viewpoint of a sig- naling receptor. Intracellular trafficking pathways are shown with black arrows; possible signaling effects with red arrows. Note that intracellular trafficking can directly regulate signaling via sorting, endocytosis, and exocytosis of receptors and signaling molecules. Furthermore, the signaling
Recommended publications
  • Lola Has the Properties of a Master Regulator of Axon-Target Interaction for Snb Motor Axons of Drosophila
    Developmental Biology 213, 301–313 (1999) Article ID dbio.1999.9399, available online at http://www.idealibrary.com on lola Has the Properties of a Master Regulator of Axon–Target Interaction for SNb Motor Axons of Drosophila Knut Madden, Daniel Crowner, and Edward Giniger1 Division of Basic Sciences, Program in Developmental Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109 The proper pathfinding and target recognition of an axon requires the precisely choreographed expression of a multitude of guidance factors: instructive and permissive, positive and negative, and secreted and membrane bound. We show here that the transcription factor LOLA is required for pathfinding and targeting of the SNb motor nerve in Drosophila. We also show that lola is a dose-dependent regulator of SNb development: by varying the expression of one lola isoform we can progressively titrate the extent of interaction of SNb motor axons with their target muscles, from no interaction at all, through wild-type patterning, to apparent hyperinnervation. The phenotypes we observe from altered expression of LOLA suggest that this protein may help orchestrate the coordinated expression of the genes required for faithful SNb development. © 1999 Academic Press Key Words: axon guidance; synapse specification; alternative splicing; transcription factor; cell adhesion. INTRODUCTION In each embryonic abdominal hemisegment, the motor fascicle of SNb (also known as ISNb) comprises the axons of As an axon projects toward its synaptic targets in vivo, it eight identified motoneurons that project dorsally out of encounters a series of guidance “choice points,” at each of the ventral nerve cord, along a reproducible trajectory, to which the axon can either continue growing, turn onto a yield a precise pattern of innervation of seven bodywall different substratum, or stop and form a synapse.
    [Show full text]
  • Drosophila Mef2 Is Essential for Normal Mushroom Body and Wing Development
    bioRxiv preprint doi: https://doi.org/10.1101/311845; this version posted April 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Drosophila mef2 is essential for normal mushroom body and wing development Jill R. Crittenden1, Efthimios M. C. Skoulakis2, Elliott. S. Goldstein3, and Ronald L. Davis4 1McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA 2Division of Neuroscience, Biomedical Sciences Research Centre "Alexander Fleming", Vari, 16672, Greece 3 School of Life Science, Arizona State University, Tempe, AZ, 85287, USA 4Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA Key words: MEF2, mushroom bodies, brain, muscle, wing, vein, Drosophila 1 bioRxiv preprint doi: https://doi.org/10.1101/311845; this version posted April 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT MEF2 (myocyte enhancer factor 2) transcription factors are found in the brain and muscle of insects and vertebrates and are essential for the differentiation of multiple cell types. We show that in the fruitfly Drosophila, MEF2 is essential for normal development of wing veins, and for mushroom body formation in the brain. In embryos mutant for D-mef2, there was a striking reduction in the number of mushroom body neurons and their axon bundles were not detectable.
    [Show full text]
  • Early Lineage Segregation of the Retinal Basal Glia in the Drosophila Eye Disc Chia‑Kang Tsao1,2, Yu Fen Huang1,2,3 & Y
    www.nature.com/scientificreports OPEN Early lineage segregation of the retinal basal glia in the Drosophila eye disc Chia‑Kang Tsao1,2, Yu Fen Huang1,2,3 & Y. Henry Sun1,2* The retinal basal glia (RBG) is a group of glia that migrates from the optic stalk into the third instar larval eye disc while the photoreceptor cells (PR) are diferentiating. The RBGs are grouped into three major classes based on molecular and morphological characteristics: surface glia (SG), wrapping glia (WG) and carpet glia (CG). The SGs migrate and divide. The WGs are postmitotic and wraps PR axons. The CGs have giant nucleus and extensive membrane extension that each covers half of the eye disc. In this study, we used lineage tracing methods to determine the lineage relationships among these glia subtypes and the temporal profle of the lineage decisions for RBG development. We found that the CG lineage segregated from the other RBG very early in the embryonic stage. It has been proposed that the SGs migrate under the CG membrane, which prevented SGs from contacting with the PR axons lying above the CG membrane. Upon passing the front of the CG membrane, which is slightly behind the morphogenetic furrow that marks the front of PR diferentiation, the migrating SG contact the nascent PR axon, which in turn release FGF to induce SGs’ diferentiation into WG. Interestingly, we found that SGs are equally distributed apical and basal to the CG membrane, so that the apical SGs are not prevented from contacting PR axons by CG membrane. Clonal analysis reveals that the apical and basal RBG are derived from distinct lineages determined before they enter the eye disc.
    [Show full text]
  • The Dead Ringer/Retained Transcriptional Regulatory Gene Is Required for Positioning of the Longitudinal Glia in the Drosophila Embryonic CNS
    Development 130, 1505-1513 1505 © 2003 The Company of Biologists Ltd doi:10.1242/dev.00377 The dead ringer/retained transcriptional regulatory gene is required for positioning of the longitudinal glia in the Drosophila embryonic CNS Tetyana Shandala1,2, Kazunaga Takizawa3,* and Robert Saint1,4,† 1Centre for the Molecular Genetics of Development, Adelaide University, Adelaide SA 5005, Australia 2Department of Molecular Biosciences, Adelaide University, Adelaide SA 5005, Australia 3Department of Developmental Genetics National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan 4Research School of Biological Sciences, Australian National University, Canberra, ACT 2601, Australia *Present address: Laboratory for Neural Network Development RIKEN Center for Developmental Biology 2-2-3 Chuo Kobe 650-0047, Japan †Author for correspondence (e-mail: [email protected]) Accepted 30 December 2002 SUMMARY The Drosophila dead ringer (dri, also known as retained, fasciculation observed in the mutant embryos. Consistent retn) gene encodes a nuclear protein with a conserved DNA- with the late phenotypes observed, expression of the glial binding domain termed the ARID (AT-rich interaction cells missing (gcm) and reversed polarity (repo) genes was domain). We show here that dri is expressed in a subset found to be normal in dri mutant embryos. However, from of longitudinal glia in the Drosophila embryonic central stage 15 of embryogenesis, expression of locomotion defects nervous system and that dri forms part of the (loco) and prospero (pros) was found to be missing in a transcriptional regulatory cascade required for normal subset of LG. This suggests that loco and pros are targets development of these cells. Analysis of mutant embryos of DRI transcriptional activation in some LG.
    [Show full text]
  • All in the Family: Proneural Bhlh Genes and Neuronal Diversity Nicholas E
    © 2018. Published by The Company of Biologists Ltd | Development (2018) 145, dev159426. doi:10.1242/dev.159426 REVIEW All in the family: proneural bHLH genes and neuronal diversity Nicholas E. Baker1,* and Nadean L. Brown2,* ABSTRACT lethal of scute [lsc,orl(1)sc] and asense (ase) – that are responsible Proneural basic Helix-Loop-Helix (bHLH) proteins are required for for development of much of the Drosophila CNS and PNS (Cubas neuronal determination and the differentiation of most neural et al., 1991; Garcia-Bellido and de Celis, 2009). Expression of these precursor cells. These transcription factors are expressed in vastly proneural genes defines regions of ectoderm with neurogenic divergent organisms, ranging from sponges to primates. Here, we competence, such that their default fate will be that of neural review proneural bHLH gene evolution and function in the Drosophila precursors unless diverted to another fate, for example by Notch and vertebrate nervous systems, arguing that the Drosophila gene signaling (Knust and Campos-Ortega, 1989; Simpson, 1990). ac, sc atonal provides a useful platform for understanding proneural gene and lsc are proneural genes, conferring proneural competence that structure and regulation. We also discuss how functional equivalency may or may not lead to neuronal determination in every cell, experiments using distinct proneural genes can reveal how proneural whereas ase is a neural precursor gene, expressed after the neural gene duplication and divergence are interwoven with neuronal fate decision has been made. It has been suggested that the complexity. vertebrate homologs of these genes are expressed in ectoderm with previously acquired neural character, and therefore are not true KEY WORDS: bHLH gene, Neural development, Neurogenesis, proneural genes (Bertrand et al., 2002).
    [Show full text]
  • Diversity of Internal Sensory Neuron Axon Projection Patterns Is Controlled by the POU-Domain Protein Pdm3 in Drosophila Larvae
    The Journal of Neuroscience, February 21, 2018 • 38(8):2081–2093 • 2081 Cellular/Molecular Diversity of Internal Sensory Neuron Axon Projection Patterns Is Controlled by the POU-Domain Protein Pdm3 in Drosophila Larvae X Cheng Sam Qian,1 Margarita Kaplow,2 XJennifer K. Lee,2 and XWesley B. Grueber1,2,3 1Department of Neuroscience, Columbia University, New York, New York 10027, 2Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, New York 10032, and 3Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York 10027 Internal sensory neurons innervate body organs and provide information about internal state to the CNS to maintain physiological homeostasis. Despite their conservation across species, the anatomy, circuitry, and development of internal sensory systems are still relatively poorly understood. A largely unstudied population of larval Drosophila sensory neurons, termed tracheal dendrite (td) neu- rons, innervate internal respiratory organs and may serve as a model for understanding the sensing of internal states. Here, we charac- terize the peripheral anatomy, central axon projection, and diversity of td sensory neurons. We provide evidence for prominent expression of specific gustatory receptor genes in distinct populations of td neurons, suggesting novel chemosensory functions. We identify two anatomically distinct classes of td neurons. The axons of one class project to the subesophageal zone (SEZ) in the brain, whereastheotherterminatesintheventralnervecord(VNC).WeidentifyexpressionandadevelopmentalroleofthePOU-homeodomain transcription factor Pdm3 in regulating the axon extension and terminal targeting of SEZ-projecting td neurons. Remarkably, ectopic Pdm3 expression is alone sufficient to switch VNC-targeting axons to SEZ targets, and to induce the formation of putative synapses in these ectopic target zones.
    [Show full text]
  • Modular Transcriptional Programs Separately Define Axon and Dendrite Connectivity Yerbol Z Kurmangaliyev1†, Juyoun Yoo2†, Samuel a Locascio1†, S Lawrence Zipursky1*
    RESEARCH ARTICLE Modular transcriptional programs separately define axon and dendrite connectivity Yerbol Z Kurmangaliyev1†, Juyoun Yoo2†, Samuel A LoCascio1†, S Lawrence Zipursky1* 1Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States; 2Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, United States Abstract Patterns of synaptic connectivity are remarkably precise and complex. Single-cell RNA sequencing has revealed a vast transcriptional diversity of neurons. Nevertheless, a clear logic underlying the transcriptional control of neuronal connectivity has yet to emerge. Here, we focused on Drosophila T4/T5 neurons, a class of closely related neuronal subtypes with different wiring patterns. Eight subtypes of T4/T5 neurons are defined by combinations of two patterns of dendritic inputs and four patterns of axonal outputs. Single-cell profiling during development revealed distinct transcriptional programs defining each dendrite and axon wiring pattern. These programs were defined by the expression of a few transcription factors and different combinations of cell surface proteins. Gain and loss of function studies provide evidence for independent control of different wiring features. We propose that modular transcriptional programs for distinct wiring features are assembled in different combinations to generate diverse patterns of neuronal connectivity. *For correspondence: DOI: https://doi.org/10.7554/eLife.50822.001 [email protected] †These authors contributed equally to this work Introduction Competing interests: The Brain function relies on precise patterns of synaptic connections between neurons. At the cellular authors declare that no level, this entails each neuron adopting a specific wiring pattern, the combination of specific synaptic competing interests exist.
    [Show full text]
  • Rhomboid 3 Orchestrates Slit-Independent Repulsion Of
    Research article 3605 Rhomboid 3 orchestrates Slit-independent repulsion of tracheal branches at the CNS midline Marco Gallio1,2,3, Camilla Englund1,4, Per Kylsten3 and Christos Samakovlis1,* 1Department of Developmental Biology, Wenner-Gren Institute, Stockholm University, S-106 96 Stockholm, Sweden 2Department of Medical Nutrition, Karolinska Institute, Stockholm, Sweden 3Department of Natural Sciences, Södertörns Högskola, S-141 04 Huddinge, Sweden 4Umeå Centre for Molecular Pathogenesis, Umeå University, S-901 87, Umeå, Sweden *Author for correspondence (e-mail: [email protected]) Accepted 27 April 2004 Development 131, 3605-3614 Published by The Company of Biologists 2004 doi:10.1242/dev.01242 Summary EGF-receptor ligands act as chemoattractants for Egfr or Ras in the leading cell of the ganglionic branch can migrating epithelial cells during organogenesis and wound induce premature turns away from the midline. This healing. We present evidence that Rhomboid 3/EGF suggests that the level of Egfr intracellular signalling, signalling, which originates from the midline of the rather than the asymmetric activation of the receptor on Drosophila ventral nerve cord, repels tracheal ganglionic the cell surface, is an important determinant in ganglionic branches and prevents them from crossing it. rho3 acts branch repulsion. We propose that Egfr activation provides independently from the main midline repellent Slit, and a necessary switch for the interpretation of a yet unknown originates from a different sub-population of midline cells: repellent function of the midline. the VUM neurons. Expression of dominant-negative Egfr or Ras induces midline crosses, whereas activation of the Key words: Drosophila, ru, Egfr, Epithelial migration, VNC midline Introduction cytoskeletal organisation of the migrating cells (Rorth, 2002; Cell migration is an essential process in epithelial Montell, 2003).
    [Show full text]
  • A KDM5–Prospero Transcriptional Axis Functions During Early
    RESEARCH ARTICLE A KDM5–Prospero transcriptional axis functions during early neurodevelopment to regulate mushroom body formation Hayden AM Hatch1, Helen M Belalcazar2, Owen J Marshall3, Julie Secombe1,2* 1Dominick P. Purpura Department of Neuroscience Albert Einstein College of Medicine, Bronx, United States; 2Department of Genetics Albert Einstein College of Medicine, Bronx, United States; 3Menzies Institute for Medical Research University of Tasmania, Hobart, Australia Abstract Mutations in the lysine demethylase 5 (KDM5) family of transcriptional regulators are associated with intellectual disability, yet little is known regarding their spatiotemporal requirements or neurodevelopmental contributions. Utilizing the mushroom body (MB), a major learning and memory center within the Drosophila brain, we demonstrate that KDM5 is required within ganglion mother cells and immature neurons for proper axogenesis. Moreover, the mechanism by which KDM5 functions in this context is independent of its canonical histone demethylase activity. Using in vivo transcriptional and binding analyses, we identify a network of genes directly regulated by KDM5 that are critical modulators of neurodevelopment. We find that KDM5 directly regulates the expression of prospero, a transcription factor that we demonstrate is essential for MB morphogenesis. Prospero functions downstream of KDM5 and binds to approximately half of KDM5-regulated genes. Together, our data provide evidence for a KDM5– Prospero transcriptional axis that is essential for proper MB development. *For correspondence: Introduction [email protected] Intellectual disability (ID) is reported to affect 1.5–3% of the global population and represents a class of neurodevelopmental disorders characterized by cognitive impairments that result in lifelong edu- Competing interests: The cational, social, and financial consequences for patients and their caregivers (van Bokhoven, 2011; authors declare that no Leonard and Wen, 2002).
    [Show full text]
  • Proteolytic Cleavage of Slit by the Tolkin Protease Converts an Axon Repulsion Cue to an Axon Growth Cue in Vivo Riley Kellermeyer, Leah M
    © 2020. Published by The Company of Biologists Ltd | Development (2020) 147, dev196055. doi:10.1242/dev.196055 RESEARCH ARTICLE Proteolytic cleavage of Slit by the Tolkin protease converts an axon repulsion cue to an axon growth cue in vivo Riley Kellermeyer, Leah M. Heydman, Taylor Gillis, Grant S. Mastick, Minmin Song and Thomas Kidd* ABSTRACT In the central nervous system (CNS) midline, axons are directed Slit is a secreted protein that has a canonical function of repelling to cross or grow longitudinally adjacent to the midline by a small set growing axons from the CNS midline. The full-length Slit (Slit-FL) is of signaling molecules (Comer et al., 2019; Howard et al., 2017). cleaved into Slit-N and Slit-C fragments, which have potentially The large secreted protein Slit plays an important role in repelling distinct functions via different receptors. Here, we report that the axons from the midline, acting through Roundabout (Robo) BMP-1/Tolloid family metalloprotease Tolkin (Tok) is responsible for receptors (Bisiak and McCarthy, 2019; Brose et al., 1999; Kidd Slit proteolysis in vivo and in vitro. In Drosophila tok mutants lacking et al., 1999, 1998). Slit-Robo signaling can be controlled through Slit cleavage, midline repulsion of axons occurs normally, confirming receptor function, notably with Robo receptors requiring proteolytic that Slit-FL is sufficient to repel axons. However, longitudinal axon cleavage by the protease Kuzbanian to fully function (Coleman guidance is highly disrupted in tok mutants and can be rescued by et al., 2010). In addition to receptor-mediated regulation, the Slit midline expression of Slit-N, suggesting that Slit is the primary signal can be altered by proteolytic cleavage that generates two ∼ substrate for Tok in the embryonic CNS.
    [Show full text]
  • Drosophila Astrocytes Cover Specific Territories of the CNS Neuropil and Are Instructed to Differentiate by Prospero, a Key Effe
    © 2016. Published by The Company of Biologists Ltd | Development (2016) 143, 1170-1181 doi:10.1242/dev.133165 RESEARCH ARTICLE Drosophila astrocytes cover specific territories of the CNS neuropil and are instructed to differentiate by Prospero, a key effector of Notch Emilie Peco1,2,SejalDavla1,3, Darius Camp1,4, Stephanie M. Stacey1,3,MatthiasLandgraf5 and Don J. van Meyel1,2,* ABSTRACT 2012), providing local trophic support for neurons and spatially Astrocytes are crucial in the formation, fine-tuning, function and encoded information that influences the formation and refinement plasticity of neural circuits in the central nervous system. However, of neural circuits (Molofsky et al., 2014). Discovering the degree important questions remain about the mechanisms instructing and precision with which astrocytes chart to specific CNS territories astrocyte cell fate. We have studied astrogenesis in the ventral is a key step toward understanding how domain-specific astrocytes nerve cord of Drosophila larvae, where astrocytes exhibit remarkable locally regulate neural circuit formation and function. morphological and molecular similarities to those in mammals. We It is well appreciated that astrocytes emerge from complex reveal the births of larval astrocytes from a multipotent glial lineage, interplay between cell-intrinsic programs and extrinsic influences their allocation to reproducible positions, and their deployment of such as secreted or contact-dependent signals from neurons (for ramified arbors to cover specific neuropil territories
    [Show full text]
  • Molecular Separation of Two Signaling Pathways for the Receptor, Notch
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com Developmental Biology 313 (2008) 556–567 www.elsevier.com/developmentalbiology Molecular separation of two signaling pathways for the receptor, Notch Maude Le Gall 1, Cordell De Mattei 2, Edward Giniger ∗ Axon Guidance and Neural Connectivity Unit, Basic Neuroscience Program, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bldg. 37, Rm. 1016, 37 Convent Drive, Bethesda, MD 20892, USA National Human Genome Research Institute (NHGRI), National Institutes of Health, Bldg. 37, Rm. 1016, 37 Convent Drive, Bethesda, MD 20892, USA Received for publication 30 April 2007; revised 18 October 2007; accepted 23 October 2007 Available online 11 December 2007 Abstract Notch is required for many aspects of cell fate specification and morphogenesis during development, including neurogenesis and axon guidance. We here provide genetic and biochemical evidence that Notch directs axon growth and guidance in Drosophila via a “non-canonical”, i.e. non-Su(H)-mediated, signaling pathway, characterized by association with the adaptor protein, Disabled, and Trio, an accessory factor of the Abl tyrosine kinase. We find that forms of Notch lacking the binding sites for its canonical effector, Su(H), are nearly inactive for the cell fate function of the receptor, but largely or fully active in axon patterning. Conversely, deletion from Notch of the binding site for Disabled impairs its action in axon patterning without disturbing cell fate control. Finally, we show by co-immunoprecipitation that Notch protein is physically associated in vivo with both Disabled and Trio.
    [Show full text]