From the Middle Mesozoic of China Illuminating the Phylogeny of Ommatidae Jingjing Tan1,2, Yongjie Wang2, Dong Ren2* and Xingke Yang1*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Ommatin Beetle (Insecta: Coleoptera) with Unusual Genitalia from Mid-Cretaceous Burmese Amber Ommatin Beetle Burmese Amber
Cretaceous Research 71 (2017) 113e117 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes A new ommatin beetle (Insecta: Coleoptera) with unusual genitalia from mid-Cretaceous Burmese amber Ommatin beetle Burmese amber * Edmund A. Jarzembowski a, b, , Bo Wang a, c, Daran Zheng a, d a State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China b Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK c Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1, Beichen West Road, Beijing 100101, China d Department of Earth Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China article info abstract Article history: A new ommatin beetle, Omma lii sp. nov. (Insecta: Coleoptera: Archostemata) is described in mid- Received 20 August 2016 Cretaceous Burmese amber from northern Myanmar. This is the first species of this Late Triassic- Accepted in revised form 22 October 2016 recent genus of archaic beetles to be described from amber inclusions, including genitalia, and is the Available online 27 October 2016 first unequivocal ommatine cupedid from Burmese amber. Cretaceous Omma is considered to belong to the stem group of this now relict Australian genus. Keywords: © 2016 Elsevier Ltd. All rights reserved. Burmese amber Myanmar Coleoptera Cupedid Omma New species 1. Introduction archostematan in amber to be described from Myanmar, Stegocoleus caii Jarzembowski and Wang, 2016,showedaffinities with both With some 350,000 described species, beetles (Insecta: Coleop- major extant groups of archostematan beetles (cupedines and tera) are by far the largest order in the animal kingdom; the Cupe- ommatines) and an extinct one (brochocoleins). -
Scanning Electron Morphological Studies of Tribolium Confusum Jacquelin Du Val (Coleopteran: Tenebrionidae) Nasra M
Zohry The Journal of Basic and Applied Zoology (2017) 78:6 The Journal of Basic DOI 10.1186/s41936-017-0008-0 and Applied Zoology RESEARCH Open Access Scanning electron morphological studies of Tribolium confusum Jacquelin du Val (Coleopteran: Tenebrionidae) Nasra M. H. Zohry Abstract Background: The confused flour beetle Tribolium confusum Jacquelin du Val (Coleopteran: Tenebrionidae) is the most destructive pest of stored products worldwide. It is the most common pest of wheat flour. Results: This study describes and illustrates the larvae, pupae, and adults of T. confusum using scanning electron microscopy. The first larval instars are 5.0–5.1 mm long and 0.5–0.6 mm wide whereas the last larval instars are 5. 75–6.9 mm long and 0.75–0.95 mm wide. Adults of T. confusum are reddish brown elongate beetles (4.0–4.5 mm in body length and 1.0–1.2 mm in width). Electron micrographs revealed the structure of the mouth parts during the larval, pupal, and adult stages as well as the structure of thoracic and abdominal appendages. Results indicated that the setiferous sex patches which were reported in males can often be used for sexing specimens. A specific feature of the first instar larvae of T. confusum is the extreme shortened antenna with a reduced number of antennomeres and the presence of well-developed and moderately long legs. Conclusion: SEM examination may help us not only discover and understand new morphological details as the pits with spine on the elytra and the spikes on the membrane wings which will facilitate the identification of this species but also clarify the functions of various body parts. -
The Evolution and Genomic Basis of Beetle Diversity
The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State -
Embryology of a “Living Fossil” Beetle, Tenomerga Mucida (Chevrolat, 1829) (Archostemata, Cupedidae)* Kazuki KOJIMA and Ryuichiro MACHIDA
Proc. Arthropod. Embryol. Soc. Jpn. 50, 17 (2016) 17 Ⓒ 2016 Arthropodan Embryological Society of Japan ISSN 1341–1527 Embryology of a “Living fossil” Beetle, Tenomerga mucida (Chevrolat, 1829) (Archostemata, Cupedidae)* Kazuki KOJIMA and Ryuichiro MACHIDA Sugadaira Montane Research Center, University of Tsukuba, Sugadaira Kogen, Ueda, Nagano 386–2204, Japan E-mail: [email protected] (KK) The order Coleoptera, the most species-rich lineage of molecular analyses (cf. Misof et al., 2014). We stained with Holometabola, comprises about 40% of the described species DAPI and observed embryos under a fluorescence in Hexapoda. The order is divided into four suborders, i.e., stereomicroscope and grasped the outline of T. mucida Archostemata, Myxophaga, Adephaga and Polyphaga, but embryonic development. It was revealed that T. mucida their phylogenetic relationships have been variously embryo completely sinks deep into the yolk in the middle discussed. Archostemata, which include the oldest fossil stage of embryonic development. The complete immersion of record of Coleoptera, have been often regarded as being the the embryo into the yolk may be the first example in basalmost lineage of the order from morphological and Coleoptera. After the embryonic development of about 10 molecular evidence (Friedrich et al., 2009; Bocak et al., 2014). days (under the room temperature), larvae hatched out from Thus, Archostemata are the most significant coleopteran near the anterior pole of the egg. The first instar larva walked subgroup in understanding Coleoptera, especially in the around in the rearing case to seek for residence, and in several reconstruction of its groundplan and phylogeny. Although days they burrowed among rotten logs. -
The Head Morphology of Micromalthus Debilis (Coleoptera: Micromalthidae) – an Archostematan Beetle with an Un Usual Morphology and a Unique Life Cycle
76 (3): 475 – 486 11.12.2018 © Senckenberg Gesellschaft für Naturforschung, 2018. The head morphology of Micromalthus debilis (Coleoptera: Micromalthidae) – an archostematan beetle with an un usual morphology and a unique life cycle Margarita I. Yavorskaya 1, Thomas Hörnschemeyer 2 & Rolf G. Beutel*, 1 1 Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany; Margarita Yavorskaya [margojavor @gmail.com]; Rolf Georg Beutel * [[email protected]] — 2 Senckenberg Gesellschaft für Naturforschung, Senckenberg an lage 25, 60325 Frankfurt a.M., Germany; Thomas Hörnschemeyer [[email protected]] — * Corresponding author Accepted 25.vii.2018. Published online at www.senckenberg.de/arthropod-systematics on 27.xi.2018. Editors in charge: Joseph McHugh & Klaus-Dieter Klass Abstract. Cephalic features of Micromalthus debilis were examined and described in detail for the first time. The head displays several seemingly plesiomorphic features compared to other extant species of Archostemata, especially representatives of Cupedidae and Ommat idae. Cephalic protuberances characteristic for species of these two families are missing and antennal grooves are also absent. The surface of the head capsule is largely smooth, without the characteristic tubercles found in stemgroup beetles and ommatid and cupedid species. Cuticular scales, probably ancestral for Archostemata and possibly for Coleoptera, are also completely absent. The arrangement of three mandibular teeth in a vertical row and an immobilized labrum are derived features shared with Ommatidae. The maxillary endite lobes are absent, as in the very small Crowsoniella relicta (Crowsoniellidae). Like in all other examined archostematan species, mandibular molae and prosthecae are missing. The simplified maxillae apparently play no role in the food uptake but rather function as accessory “ventral antennae”. -
The Evolution and Phylogeny of Beetles
Darwin, Beetles and Phylogenetics Rolf G. Beutel1 . Frank Friedrich1, 2 . Richard A. B. Leschen3 1) Entomology group, Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, FSU Jena, 07743 Jena; e-mail: [email protected]; 2) Biozentrum Grindel und Zoologisches Museum, Universität Hamburg, 20144 Hamburg; 3) New Zealand Arthropod Collection, Private Bag 92170, Auckland, NZ Whenever I hear of the capture of rare beetles, I feel like an old warhorse at the sound of a trumpet. Charles R. Darwin Abstract Here we review Charles Darwin’s relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in “The Descent of Man”. During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics and expressed, to his surprise, that the majority of species were small and inconspicuous. Despite his obvious interest in the group he did not get involved in beetle taxonomy and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late 19th and earlier 20th centuries was mainly characterised by the exploration of new character systems (e.g., larval features, wing venation). In the mid 20th century Hennig’s new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. -
The Head Morphology of Ascioplaga Mimeta (Coleoptera: Archostemata) and the Phylogeny of Archostemata
Eur. J. Entomol. 103: 409–423, 2006 ISSN 1210-5759 The head morphology of Ascioplaga mimeta (Coleoptera: Archostemata) and the phylogeny of Archostemata THOMAS HÖRNSCHEMEYER1, JÜRGEN GOEBBELS2, GERD WEIDEMANN2, CORNELIUS FABER3 and AXEL HAASE3 1Universität Göttingen, Institut für Zoologie & Anthropologie, Abteilung Morphologie & Systematik, D-37073 Göttingen, Germany; e-mail: [email protected] 2Bundesanstalt für Materialforschung (BAM), Berlin, Germany 3Physikalisches Institut, University of Würzburg, Germany Keywords. Archostemata, Cupedidae, phylogeny, NMR-imaging, skeletomuscular system, micro X-ray computertomography, head morphology Abstract. Internal and external features of the head of Ascioplaga mimeta (Coleoptera: Archostemata) were studied with micro X-ray computertomography (µCT) and nuclear magnetic resonance imaging (NMRI). These methods allowed the reconstruction of the entire internal anatomy from the only available fixed specimen. The mouthparts and their associated musculature are highly derived in many aspects. Their general configuration corresponds to that of Priacma serrata (the only other archostematan studied in comparable detail). However, the mandible-maxilla system of A. mimeta is built as a complex sorting apparatus and shows a distinct specialisation for a specific, but still unknown, food source. The phylogenetic analysis resulted in the identification of a new mono- phylum comprising the genera [Distocupes + (Adinolepis +Ascioplaga)]. The members of this taxon are restricted to the Australian zoogeographic region. The most prominent synapomorphies of these three genera are their derived mouthparts. INTRODUCTION 1831) (Snyder, 1913; Barber & Ellis, 1920), Tenomerga Ascioplaga mimeta Neboiss, 1984 occurs in New Cale- mucida (Chevrolat, 1829) (Fukuda, 1938, 1939), Disto- donia (a French island ca. 1400 km ENE of Brisbane, cupes varians (Lea, 1902) (Neboiss, 1968), P. -
• TITLE 310. Oklahoma State Department of Health
TITLE 310. Oklahoma State Department of Health CHAPTER 681. Medical Marijuana Control Program [OAR Docket #18-639] AGENCY NOTE: The Board of Health adopted new emergency rules on August 1, 2018, to supersede all rules identified in this rulemaking action. The new superseding Chapter was approved by the Governor on August 6, 2018, and will be published in a later edition of the Oklahoma Register. RULEMAKING ACTION: EMERGENCY adoption RULES: Subchapter 1. General Provisions [NEW] Subchapter 2. Medical Marijuana Licenses [NEW] Subchapter 3. Transportation License [NEW] Subchapter 4. Medical Research License [NEW] Subchapter 5. Commercial Establishments [NEW] Subchapter 6. Commercial Facilities [NEW] Subchapter 7. Labeling [NEW] Subchapter 8. Testing Standards for Marijuana [NEW] Appendix A. Supporting Tables for Subchapter 8 (Relating to Testing Standards for Marijuana) [NEW] AUTHORITY: Oklahoma State Board of Health; Title 63 O.S. Section 1-104, and Title 63 O.S. § 420 et seq. ADOPTION: July 10, 2018 EFFECTIVE: Immediately upon Governor's approval or August 25, 2018, whichever is later. APPROVED BY GOVERNOR: July 11, 2018 EXPIRATION: Effective through September 14, 2019, unless superseded by another rule or disapproved by the legislature. SUPERSEDED EMERGENCY ACTIONS: "n/a" INCORPORATION BY REFERENCE: Incorporated standards: National Institute of Standards and Technology (NIST) Handbook 130 (2017), "Uniform Packaging and Labeling Regulation" US Food and Drug Administration's "Bacterial Analytical Manual", 2016 US Food and Drug Administration's "Guidelines for the Validation of Chemical Methods for the FDA FVM Program", 2nd Edition, 2015. AOAC International's "Official Methods of Analysis for Contaminant Testing of AOAC International", 20th Edition, 2016 United States Pharmacopeia and the National Formulary's "Methods of Analysis for Contaminant Testing", 2016 Incorporating rules: 310:681-7-1(d)(2)(B) 310:681-8-5(b)(A) 310:681-8-5(b)(B) 310:681-8-5(b)(C) 310:681-8-5(b)(D) Availability: 8:00 a.m. -
Evolution of the Insects David Grimaldi and Michael S
Cambridge University Press 0521821495 - Evolution of the Insects David Grimaldi and Michael S. Engel Index More information INDEX 12S rDNA, 32, 228, 269 Aenetus, 557 91; general, 57; inclusions, 57; menageries 16S rDNA, 32, 60, 237, 249, 269 Aenigmatiinae, 536 in, 56; Mexican, 55; parasitism in, 57; 18S rDNA, 32, 60, 61, 158, 228, 274, 275, 285, Aenne, 489 preservation in, 58; resinite, 55; sub-fossil 304, 307, 335, 360, 366, 369, 395, 399, 402, Aeolothripidae, 284, 285, 286 resin, 57; symbioses in, 303; taphonomy, 468, 475 Aeshnoidea, 187 57 28S rDNA, 32, 158, 278, 402, 468, 475, 522, 526 African rock crawlers (see Ambermantis wozniaki, 259 Mantophasmatodea) Amblycera, 274, 278 A Afroclinocera, 630 Amblyoponini, 446, 490 aardvark, 638 Agaonidae, 573, 616: fossil, 423 Amblypygida, 99, 104, 105: in amber, 104 abdomen: function, 131; structure, 131–136 Agaoninae, 423 Amborella trichopoda, 613, 620 Abies, 410 Agassiz, Alexander, 26 Ameghinoia, 450, 632 Abrocomophagidae, 274 Agathiphaga, 560 Ameletopsidae, 628 Acacia, 283 Agathiphagidae, 561, 562, 567, 630 American Museum of Natural History, 26, 87, acalyptrate Diptera: ecological diversity, 540; Agathis, 76 91 taxonomy, 540 Agelaia, 439 Amesiginae, 630 Acanthocnemidae, 391 ages, using fossils, 37–39; using DNA, 38–40 ametaboly, 331 Acari, 99, 105–107: diversity, 101, fossils, 53, Ageniellini, 435 amino acids: racemization, 61 105–107; in-Cretaceous amber, 105, 106 Aglaspidida, 99 ammonites, 63, 642 Aceraceae, 413 Aglia, 582 Amorphoscelidae, 254, 257 Acerentomoidea, 113 Agrias, 600 Amphientomidae, -
Fauna Europaea: Coleoptera 2 (Excl. Series Elateriformia, Scarabaeiformia, Staphyliniformia and Superfamily Curculionoidea)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC Biodiversity Data Journal 3: e4750 doi: 10.3897/BDJ.3.e4750 Data Paper Fauna Europaea: Coleoptera 2 (excl. series Elateriformia, Scarabaeiformia, Staphyliniformia and superfamily Curculionoidea) Paolo Audisio‡, Miguel-Angel Alonso Zarazaga§, Adam Slipinski|, Anders Nilsson¶#, Josef Jelínek , Augusto Vigna Taglianti‡, Federica Turco ¤, Carlos Otero«, Claudio Canepari», David Kral ˄, Gianfranco Liberti˅, Gianfranco Sama¦, Gianluca Nardi ˀ, Ivan Löblˁ, Jan Horak ₵, Jiri Kolibacℓ, Jirí Háva ₰, Maciej Sapiejewski†,₱, Manfred Jäch ₳, Marco Alberto Bologna₴, Maurizio Biondi ₣, Nikolai B. Nikitsky₮, Paolo Mazzoldi₦, Petr Zahradnik ₭, Piotr Wegrzynowicz₱, Robert Constantin₲, Roland Gerstmeier‽, Rustem Zhantiev₮, Simone Fattorini₩, Wioletta Tomaszewska₱, Wolfgang H. Rücker₸, Xavier Vazquez- Albalate‡‡, Fabio Cassola §§, Fernando Angelini||, Colin Johnson ¶¶, Wolfgang Schawaller##, Renato Regalin¤¤, Cosimo Baviera««, Saverio Rocchi »», Fabio Cianferoni»»,˄˄, Ron Beenen ˅˅, Michael Schmitt ¦¦, David Sassi ˀˀ, Horst Kippenbergˁˁ, Marcello Franco Zampetti₩, Marco Trizzino ₵₵, Stefano Chiari‡, Giuseppe Maria Carpanetoℓℓ, Simone Sabatelli‡, Yde de Jong ₰₰,₱₱ ‡ Sapienza Rome University, Department of Biology and Biotechnologies 'C. Darwin', Rome, Italy § Museo Nacional de Ciencias Naturales, Madrid, Spain | CSIRO Entomology, Canberra, Australia ¶ Umea University, Umea, Sweden # National Museum Prague, Prague, Czech Republic ¤ Queensland Museum, Brisbane, -
Keynote Presentations Abstracts
6th International Congress on Fossil Insects, Arthropods and Amber Byblos, April 2013 ----------------------------------------------------------------------------------------------------------------------------------- Keynote presentations abstracts - 1 - 6th International Congress on Fossil Insects, Arthropods and Amber Byblos, April 2013 ----------------------------------------------------------------------------------------------------------------------------------- Sic transit gloria mundi: When bad things happen to good bugs Michael S. Engel University of Kansas Natural History Museum & American Museum of Natural History Origination and extinction, the ‘Alpha and Omega’ of Evolution, are the principal factors shaping biological diversity through time and yet the latter is often ignored in phylogenetic studies of insects. Extinct lineages play a dramatic role in revising our concepts of genealogical relationships and the evolution of major biological phenomena. These forgotten extinct clades or grades often rewrite our understanding of biogeographic patterns, timing of episodes of diversification, correlated biological/geological events, and other macroevolutionary trends. Examples are provided throughout the long history of insects of the importance of studying insect fossils, particularly those preserved with such high fidelity in amber, for resolving long- standing questions in entomology. In each example, the need for further integration of paleontological evidence into modern phylogenetic research on insects is emphasized. - 2 -
Supporting References for Nelson & Ellis
Supplemental Data for Nelson & Ellis (2018) The citations below were used to create Figures 1 & 2 in Nelson, G., & Ellis, S. (2018). The History and Impact of Digitization and Digital Data Mobilization on Biodiversity Research. Publication title by year, author (at least one ADBC funded author or not), and data portal used. This list includes papers that cite the ADBC program, iDigBio, TCNs/PENs, or any of the data portals that received ADBC funds at some point. Publications were coded as "referencing" ADBC if the authors did not use portal data or resources; it includes publications where data was deposited or archived in the portal as well as those that mention ADBC initiatives. Scroll to the bottom of the document for a key regarding authors (e.g., TCNs) and portals. Citation Year Author Portal used Portal or ADBC Program was referenced, but data from the portal not used Acevedo-Charry, O. A., & Coral-Jaramillo, B. (2017). Annotations on the 2017 Other Vertnet; distribution of Doliornis remseni (Cotingidae ) and Buthraupis macaulaylibrary wetmorei (Thraupidae ). Colombian Ornithology, 16, eNB04-1 http://asociacioncolombianadeornitologia.org/wp- content/uploads/2017/11/1412.pdf [Accessed 4 Apr. 2018] Adams, A. J., Pessier, A. P., & Briggs, C. J. (2017). Rapid extirpation of a 2017 Other VertNet North American frog coincides with an increase in fungal pathogen prevalence: Historical analysis and implications for reintroduction. Ecology and Evolution, 7, (23), 10216-10232. Adams, R. P. (2017). Multiple evidences of past evolution are hidden in 2017 Other SEINet nrDNA of Juniperus arizonica and J. coahuilensis populations in the trans-Pecos, Texas region.