PESTS of the COCONUT PALM Mi Pests and Diseases Are Particularly Important Among the Factors Which Limit Agricultural Production and Destroy Stored Products

Total Page:16

File Type:pdf, Size:1020Kb

PESTS of the COCONUT PALM Mi Pests and Diseases Are Particularly Important Among the Factors Which Limit Agricultural Production and Destroy Stored Products PESTS of the COCONUT PALM mi Pests and diseases are particularly important among the factors which limit agricultural production and destroy stored products. This publication concerns the pests of the coconut palm and is intended for the use of research workers, personnel of plant protection services and growers Descriptions are given for each pest (adult or early stages), with information on the economic importance of the species the type of damage caused, and the control measures which have been applied (with or without success) up to the present time. The text deals with 110 species of insects which attack the palm in the field; in addition there arc those that attack copra in storage, as well as the various pests that are not insects This is the first of a series of publications on the pests and diseases of economically importani plants and plant products, and is intended primarily to fill a gap in currently available entomological and phytopathological literature and so to assist developing countries. PESTS OF THE COCONUT PALM Copyrighted material FAO Plant Production and Protection Series No. 18 PESTS OF THE COCONUT PALM b R.J.A.W. Lever FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome 1969 Thl 6 One 0A8R-598-HSG9 First printing 1969 Second printing 1979 P-14 ISBN 92-5-100857-4 © FAO 1969 Printed in Italy Copyrighted material FOREWORD Shortage of food is still one of the most pressing problems in many countries. Among the factors which limit agricultural production and destroy stored products, pests and diseases are particularly important. When left unchecked, they are liable to cause such serious losses as to dis- courage further attempts to grow certain crops. The application of ra- tional control measures requires thorough knowledge of the biology and behavior of the pests and diseases, but only too often the necessary basic knowledge is lacking in the very countries in which it is most needed. The Food and Agriculture Organization of the United Nations (fao), fully aware of this problem, is producing a series of publications on the pests and diseases of economically important plants and plant products, primarily to fill a gap in currently available entomological and phytopatho- logical literature and so to assist developing countries. The first of these publications concerns the pests of the coconut palm ( Cocos nucifera) and is intended for the use of research workers, personnel of plant protection services and growers. Its objective is to present an account of the principal species — both invertebrate and vertebrate — that are harmful to the coconut palm, and to do so for the whole of the tropical belt. To this end, the description of each pest (adults or early stages) has been made as brief as possible, to allow space for information on the economic importance of the species, the type of damage caused, and the control measures which have been applied, with or without success, up to the present time. It is hoped that the work thus planned will sat- isfy the requirements of those for whom it is intended; readers who are less familiar with the entomological problems of the coconut palm will find in the Introduction definitions of the principal technical and scientific terms used in the text. In the course of the preparation of this work it has become apparent that numerous insect species recorded over many years in the literature as coconut pests are merely casual feeders on coconut or cause only minor and occasional damage. It has therefore seemed desirable to omit such species, in order to avoid overloading the text with names whose value in the present context is doubtful. The monograph of Lepesme (1947) mentions no less than 750 species of insects associated with the coconut Copyrighted material VI PESTS OF THE COCONUT PALM palm, and indicates that over one fifth of these are specific to it. In the present work, 110 species of insects which attack the palm in the field are dealt with; in addition, there are those that attack copra in storage,' as well as the various pests that are not insects. Most of the pests of the coconut palm will readily attack other species of palm. Many of the insects known as coconut pests in various parts of the world have also attacked the oil palm of West Africa which is now cultivated in Asia, tropical America and elsewhere. The alternative host plants of coconut pests are, in general, still very inadequately known. The bibliographical references incorporated in the text are a selection of the very large number of published works concerning pests of the coconut palm. To illustrate the wealth of the literature on this subject, it suffices to mention that the study by Gressitt (1953) of the single species Oryctis rhinoceros, in one relatively small area of the Pacific, contains no less than 310 bibliographical references. Copyrighted material ACKNOWLEDGMENTS The author is indebted to many persons for help in the preparation of this work. Special thanks are due to J.P. Doncaster, Keeper of Ento- mology, British Museum (Natural History), London, and to various members of his staff to whom problems of nomenclature have been referred to E.O. ; Pearson, Director of the Commonwealth Institute of Entomology, London, for identification of species by his staff and for kindly permitting the repro- duction of illustrations already published in the Bulletin of Entomological Research; and to the Anti-Locust Research Centre, London, especially to Sir Boris Uvarov, Fellow of the Royal Society, for information on the Orthoptera. The author also wishes to record his gratitude to the following specialists: W.E. Bain (Imperial Chemical Industries), J.A. Freeman (Ministry of Agri- culture, United Kingdom), A.H. Green (Unilever, Ltd.), R.W. Paine (for- merly entomologist in Fiji), J-J.H. Szent-lvany (formerly entomologist. De- partment of Agriculture, Papua and New Guinea), G.F.. Tidbury (Common- wealth Bureau of Horticulture and Plantation Crops), J. Walton (Lever’s Pacific Plantations Ptv, Ltd.), A. Wattanapongsiri (University of Missouri, United States) and F.N. Wright (Department of Technical Co-operation, United Kingdom). The Verlag fur Recht und Gesellschaft A.G., Basle, has permitted the citation of certain passages from Pests of crops in warm climates and their control, 1962, by R. Wyniger; Longmans, Green and Co. have allowed the reproduction of a sketch of a coconut from Plant life in Malaya, 1954, by R.E. Holttum; the n.v. Uitgeverij W. van Hoeve, The Hague, the Nether- lands, and P. Lechevalier, Paris, have authorized the reproduction of pho- tographs and the redrawing of illustrations already published in L.G.E. Kalshoven, De plagen van de cultuur-gewassen in Indonesie, 1950-51, and in P. Lepesme, l-es insectes des palmiers, 1947, respectively. Photographs of co- conut palm pests and their damage have been received for publication from the Institut de recherche pour les huiles et les oleagineux (irho), Paris, France; from the Royal Tropical Institute, Amsterdam, the Netherlands; from the Institut national de la recherche agronomique (inra), Station de recherches de lutte biologique et de biococnotiquc. La Miniere, Versailles, France; from P. Grison and B. Hurpin, of the above-mentioned inra Copyrighted material ; VU1 PESTS OF THE COCONUT PALM station; from C. Kurian, Central Coconut Research Station, Kayangulam, Kerala, India; from M.J. Way, Imperial College of Science and Technol- ogy, Sunninghill, Ascot, Berks., England; from K.J. Marschall, insect pathologist, at present specialist for the United Nations Development Program/Special Fund-FAO-South Pacific Commis sion project, Research on the control of the coconut palm rhinoceros beetle, Apia, Western Samoa and from F.Q. Otanes, National Research Council, Manila, the Philippines. Several photographs of locusts and of the rhinoceros beetle have been provided by fao. The author also expresses his thanks to his wife, a former student of the Slade School of Fine Arts, London, for certain sketches included in the text. He also records that it is a pleasure to acknowledge his indebtedness to that unknown band of abstractors who, over many years, have provided in the Review of Applied Entomology, Horticultural Abstracts and Tropical Abstracts invaluable summaries of entomological papers and indexes of pests. He is similarly grateful to the staffs of the libraries in London of the Commonwealth Institute of Entomology, the British Museum (Natural History), the India Office, the Commonwealth Relations Office, the Department of Technical Co-operation, the Ministry of Agriculture, and the Tropical Products Institute. Copyrighted material NOMENCLATURE Recent changes in nomenclature In recent years, the scientific names of certain of the insects and other animals associated with the coconut palm have been changed in the light of revisions of the genera concerned. These changes, so far as they have become known to the author, are indicated in the appropriate places in the text; most of them involve the generic name only. Further reference to such changes will be found on page 5. Similarly, the names of certain of the plant species which are alternative hosts of some of the pests of the coconut palm have been changed; the royal palm, for example, known in the past as Oreodoxa regia, must now be called Roystonea elata. Popular and scientific names of palms of economic importance In order to avoid unnecessary repetition in referring to palms of eco- nomic importance which are alternative host plants of coconut pests, only the generic names of these palms are used in the text. The popular and the full scientific names of the more important of the palms in question are listed below: Areca palm Areca catechu Date palm . Phoenix dactylifera Nibong . Oncosperma tigillaria Oil palm . Elaeis guineensis Palmyra . Borassus flabeUifera Rattan palm Calamus spp.
Recommended publications
  • Coronavirus Testing Indicates Transmission Risk Increases Along
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.05.098590; this version posted June 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Coronavirus testing indicates transmission risk increases along 2 wildlife supply chains for human consumption in Viet Nam, 3 2013-2014 4 Nguyen Quynh Huong1¶, Nguyen Thi Thanh Nga1¶, Nguyen Van Long2, Bach Duc Luu2, Alice 5 Latinne1,3,4, Mathieu Pruvot3, Nguyen Thanh Phuong5, Le Tin Vinh Quang5, Vo Van Hung5, 6 Nguyen Thi Lan6, Nguyen Thi Hoa6, Phan Quang Minh2, Nguyen Thi Diep2, Nguyen Tung2, Van 7 Dang Ky2#a, Scott I. Roberton1, Hoang Bich Thuy1, Nguyen Van Long1, Martin Gilbert3,#b, 8 Leanne Wicker1,#c, Jonna A. K. Mazet7, Christine Kreuder Johnson7, Tracey Goldstein7, Alex 9 Tremeau-Bravard7, Victoria Ontiveros7, Damien O. Joly3,#d, Chris Walzer3,8, Amanda E. 10 Fine1,3,&,*, and Sarah H. Olson3,& 11 12 1 Wildlife Conservation Society, Viet Nam Country Program, Ha Noi, Viet Nam 13 14 2 Department of Animal Health, Ministry of Agricultural and Rural Development of Viet Nam, 15 Ha Noi, Viet Nam 16 17 3 Wildlife Conservation Society, Health Program, Bronx, New York, United States of America 18 19 4 EcoHealth Alliance, New York, New York, United States of America 20 21 5 Regional Animal Health Office No. 6, Ho Chi Minh City, Viet Nam 22 23 6 Viet Nam National University of Agriculture, Ha Noi, Viet Nam 24 25 7 One Health Institute, School of Veterinary Medicine, University of California, Davis, 26 California, United States of America 27 28 8 Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria 29 30 31 #aCurrent address: The Animal Asia Foundation Viet Nam, Ha Noi, Viet Nam 32 Page 1 of 29 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.05.098590; this version posted June 9, 2020.
    [Show full text]
  • Can Anastatus Bifasciatus Be Used for Augmentative Biological Control of the Brown Marmorated Stink Bug in Fruit Orchards?
    insects Article Can Anastatus bifasciatus Be Used for Augmentative Biological Control of the Brown Marmorated Stink Bug in Fruit Orchards? Judith M. Stahl 1,2,* , Dirk Babendreier 1, Cristina Marazzi 3, Stefano Caruso 4, Elena Costi 5, Lara Maistrello 5 and Tim Haye 1 1 CABI, Rue des Grillons 1, 2800 Delémont, Switzerland; [email protected] (D.B.); [email protected] (T.H.) 2 Institute of Ecology and Evolutionary Biology, University of Bremen, Leobener Str. NW2, 28359 Bremen, Germany 3 Servizio Fitosanitario Cantonale, Dipartimento Delle Finanze e Dell’economia, Sezione Dell’agricoltura Viale S. Franscini 17, 6501 Bellinzona, Switzerland; [email protected] 4 Consorzio Fitosanitario Provinciale di Modena, Via Santi Venceslao 14, 41123 Modena, Italy; [email protected] 5 Dipartimento di Scienze della Vita, Centro BIOGEST-SITEIA, Università di Modena e Reggio Emilia, Via G. Amendola 2, 42122 Reggio-Emilia, Italy; [email protected] (E.C.); [email protected] (L.M.) * Correspondence: [email protected] Received: 20 March 2019; Accepted: 12 April 2019; Published: 15 April 2019 Abstract: The generalist egg parasitoid Anastatus bifasciatus (Geoffroy) (Hymenoptera: Eupelmidae) is the most prevalent egg parasitoid of the invasive Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) in Europe. To assess its efficacy against the pest H. halys and to validate the potential risks for non-target species in a realistic field setting, inundative releases were conducted over three consecutive years in four fruit orchards in Switzerland and Italy. In total, more than 4300 A. bifasciatus females were released, which was equivalent to 11,000 to 26,000 females per hectare, depending on distances between trees in each orchard.
    [Show full text]
  • Bionomics of Bagworms (Lepidoptera: Psychidae)
    ANRV363-EN54-11 ARI 27 August 2008 20:44 V I E E W R S I E N C N A D V A Bionomics of Bagworms ∗ (Lepidoptera: Psychidae) Marc Rhainds,1 Donald R. Davis,2 and Peter W. Price3 1Department of Entomology, Purdue University, West Lafayette, Indiana, 47901; email: [email protected] 2Department of Entomology, Smithsonian Institution, Washington D.C., 20013-7012; email: [email protected] 3Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011-5640; email: [email protected] Annu. Rev. Entomol. 2009. 54:209–26 Key Words The Annual Review of Entomology is online at bottom-up effects, flightlessness, mating failure, parthenogeny, ento.annualreviews.org phylogenetic constraint hypothesis, protogyny This article’s doi: 10.1146/annurev.ento.54.110807.090448 Abstract Copyright c 2009 by Annual Reviews. The bagworm family (Lepidoptera: Psychidae) includes approximately All rights reserved 1000 species, all of which complete larval development within a self- 0066-4170/09/0107-0209$20.00 enclosing bag. The family is remarkable in that female aptery occurs in ∗The U.S. Government has the right to retain a over half of the known species and within 9 of the 10 currently recog- nonexclusive, royalty-free license in and to any nized subfamilies. In the more derived subfamilies, several life-history copyright covering this paper. traits are associated with eruptive population dynamics, e.g., neoteny of females, high fecundity, dispersal on silken threads, and high level of polyphagy. Other salient features shared by many species include a short embryonic period, developmental synchrony, sexual segrega- tion of pupation sites, short longevity of adults, male-biased sex ratio, sexual dimorphism, protogyny, parthenogenesis, and oviposition in the pupal case.
    [Show full text]
  • Borassus Flabellifer Linn.) As One of the Bioethanol Sources to Overcome Energy Crisis Problem in Indonesia
    2011 2nd International Conference on Environmental Engineering and Applications IPCBEE vol.17 (2011) © (2011) IACSIT Press, Singapore The Potential of Developing Siwalan Palm Sugar (Borassus flabellifer Linn.) as One of the Bioethanol Sources to Overcome Energy Crisis Problem in Indonesia Nisa Bila Sabrina Haisya 1, Bagus Dwi Utama 2, Riki Cahyo Edy 3, and Hevi Metalika Aprilia 4 1 Student at Faculty of Veterinary, Bogor Agricultural University 2 Student at Faculty of Agricultural Technology, Bogor Agricultural University 3 Student at Faculty of Economy and Management, Bogor Agricultural University 4 Student at Faculty of Forestry, Bogor Agricultural University Abstract. The energy demand in Indonesia increases due to a significant growth in population, this fact has diminished the fossil fuel storage as our main non renewable energy source. Recently, there are a lot of researches on renewable energy; one of the most prominent is the development of bioethanol as a result of fermentation of sugar or starch containing materials. Palm sugar as one of the natural sugar sources can be obtained from most of palm trees such as coconut, aren, nipah, and siwalan. This paper explored the potential of Siwalan palm sugar development to be converted into bioethanol as renewable energy source through fermentation and purification processes. Siwalan palm sugar contains 8.658 ml ethanol out of 100 ml palm sugar liquid processed using fermentation and distillation. Bioethanol can further utilized as fuel when it is mixed with gasoline that called gasohol. In the future, it is expected that gasohol can replace gasoline consumption as an alternative energy that can be competitive in term of price in Indonesia.
    [Show full text]
  • Confederated Tribes of the Umatilla Indian Reservation P.O
    Revised CTUIR RENEWABLE ENERGY FEASIBILITY STUDY FINAL REPORT June 20, 2005 Rev.October 31, 2005 United States Government Department of Energy National Renewable Energy Laboratory DE-FC36-02GO-12106 Compiled under the direction of: Stuart G. Harris, Director Department of Science & Engineering Confederated Tribes of the Umatilla Indian Reservation P.O. Box 638 Pendleton, Oregon 97801 2 Table of Contents Page No. I. Acknowledgement 5 II. Summary 6 III. Introduction 12 III-1. CTUIR Energy Uses and Needs 14 III-1-1. Residential Population – UIR 14 III-1-2. Residential Energy Use – UIR 14 III-1-3. Commercial and Industrial Energy Use – UIR 15 III-1-4. Comparison of Energy Cost on UIR with National Average 16 III-1-5. Petroleum and Transportation Energy Usage 16 III-1-6. Electrical Power Needs – UIR 17 III-1-7. State of Oregon Energy Consumption Statistics 17 III-1-8 National Energy Outlook 17 III-2. Energy Infrastructure on Umatilla Indian Reservation 19 III-2-1. Electrical 20 III-2-2. Natural Gas 21 III-2-3. Biomass Fuels 21 III-2-4. Transportation Fuels 21 III-2-5. Other Energy Sources 21 III-3. Renewable Energy Economics 21 III-3-1. Financial Figures of Merit 21 III-3-2. Financial Structures 22 III-3-3. Calculating Levelized Cost of Energy (COE) 23 III-3-4. Financial Model and Results 25 IV. Renewable Energy Resources, Technologies and Economics – In-and-Near the UIR 27 IV-1 Biomass Resources 27 IV-1-1. Resource Availability 27 IV-1-1-1. Forest Residues 27 IV-1-1-2.
    [Show full text]
  • COMPARATIVE LIFE HISTORY of COCONUT SCALE INSECT, Aspidiotus Rigidus Reyne (HEMIPTERA: DIASPIDIDAE), on COCONUT and MANGOSTEEN
    J. ISSAAS Vol. 25, No. 1: 123-134 (2019) COMPARATIVE LIFE HISTORY OF COCONUT SCALE INSECT, Aspidiotus rigidus Reyne (HEMIPTERA: DIASPIDIDAE), ON COCONUT AND MANGOSTEEN Cris Q. Cortaga, Maria Luz J. Sison, Joseph P. Lagman, Edward Cedrick J. Fernandez and Hayde F. Galvez Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines 4031 Corresponding author: [email protected] (Received: October 3, 2018; Accepted: May 19, 2019) ABSTRACT The devastation of millions of coconut palms caused by outbreak infestation of the invasive Coconut Scale Insect (CSI) Aspidiotus rigidus Reyne, has posed a serious threat to the industry in the Philippines. The life history of A. rigidus on coconut and mangosteen was comparatively studied to understand the effects of host-plant species on its development, to investigate potential host-suitability factors that contributed to its outbreak infestation, and to gather baseline information on the development and characteristics of this pest. The study was conducted at the Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños. Insect size (body and scale) was not significantly different on both hosts during egg, crawler, white cap, pre-second and second instar stages, as well as during male pre-pupal, pupal and adult stages. The female third instars and adults, however, were bigger on mangosteen than on coconut. At the end of second instar, sexual differentiation was very visible wherein parthenogenic females further undergone two developmental stages: third instar and adults that feed permanently on the leaves. Males undergone three stages: pre- pupa, pupa and winged adults.
    [Show full text]
  • Coconut Genetic Resources
    Coconut Genetic Resources Pons Batugal, V. Ramanatha Rao and Jeffrey Oliver, editors i COCONUT GENETIC RESOURCES The International Plant Genetic Resources Institute (IPGRI) is an independent international scientific organization that seeks to improve the well-being of present and future generations of people by enhancing conservation and the deployment of agricultural biodiversity on farms and in forests. It is one of 15 Future Harvest Centres supported by the Consultative Group on International Agricultural Research (CGIAR), an association of public and private members who support efforts to mobilize cutting-edge science to reduce hunger and poverty, improve human nutrition and health, and protect the environment. IPGRI has its headquarters in Maccarese, near Rome, Italy, with offices in more than 20 other countries worldwide. The Institute operates through four programmes: Diversity for Livelihoods, Understanding and Managing Biodiversity, Global Partnerships, and Improving Livelihoods in Commodity-based Systems. The international status of IPGRI is conferred under an Establishment Agreement which, by January 2005, had been signed by the Governments of Algeria, Australia, Belgium, Benin, Bolivia, Brazil, Burkina Faso, Cameroon, Chile, China, Congo, Costa Rica, Côte d’Ivoire, Cyprus, Czech Republic, Denmark, Ecuador, Egypt, Greece, Guinea, Hungary, India, Indonesia, Iran, Israel, Italy, Jordan, Kenya, Malaysia, Mauritania, Morocco, Norway, Pakistan, Panama, Peru, Poland, Portugal, Romania, Russia, Senegal, Slovakia, Sudan, Switzerland, Syria, Tunisia, Turkey, Uganda and Ukraine. Financial support for IPGRI’s research is provided by more than 150 donors, including governments, private foundations and international organizations. For details of donors and research activities please see IPGRI’s Annual Reports, which are available in printed form on request from [email protected] or from IPGRI’s Web site (www.ipgri.cgiar.org).
    [Show full text]
  • Assessing the Distribution of Exotic Egg Parasitoids of Halyomorpha Halys in Europe with a Large-Scale Monitoring Program
    insects Article Assessing the Distribution of Exotic Egg Parasitoids of Halyomorpha halys in Europe with a Large-Scale Monitoring Program Livia Zapponi 1 , Francesco Tortorici 2 , Gianfranco Anfora 1,3 , Simone Bardella 4, Massimo Bariselli 5, Luca Benvenuto 6, Iris Bernardinelli 6, Alda Butturini 5, Stefano Caruso 7, Ruggero Colla 8, Elena Costi 9, Paolo Culatti 10, Emanuele Di Bella 9, Martina Falagiarda 11, Lucrezia Giovannini 12, Tim Haye 13 , Lara Maistrello 9 , Giorgio Malossini 6, Cristina Marazzi 14, Leonardo Marianelli 12 , Alberto Mele 15 , Lorenza Michelon 16, Silvia Teresa Moraglio 2 , Alberto Pozzebon 15 , Michele Preti 17 , Martino Salvetti 18, Davide Scaccini 15 , Silvia Schmidt 11, David Szalatnay 19, Pio Federico Roversi 12 , Luciana Tavella 2, Maria Grazia Tommasini 20, Giacomo Vaccari 7, Pietro Zandigiacomo 21 and Giuseppino Sabbatini-Peverieri 12,* 1 Centro Ricerca e Innovazione, Fondazione Edmund Mach (FEM), Via Mach 1, 38098 S. Michele all’Adige, TN, Italy; [email protected] (L.Z.); [email protected] (G.A.) 2 Dipartimento di Scienze Agrarie, Forestali e Alimentari, University di Torino (UniTO), Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy; [email protected] (F.T.); [email protected] (S.T.M.); [email protected] (L.T.) 3 Centro Agricoltura Alimenti Ambiente (C3A), Università di Trento, Via Mach 1, 38098 S. Michele all’Adige, TN, Italy 4 Fondazione per la Ricerca l’Innovazione e lo Sviluppo Tecnologico dell’Agricoltura Piemontese (AGRION), Via Falicetto 24, 12100 Manta, CN,
    [Show full text]
  • The Radiation of Satyrini Butterflies (Nymphalidae: Satyrinae): A
    Zoological Journal of the Linnean Society, 2011, 161, 64–87. With 8 figures The radiation of Satyrini butterflies (Nymphalidae: Satyrinae): a challenge for phylogenetic methods CARLOS PEÑA1,2*, SÖREN NYLIN1 and NIKLAS WAHLBERG1,3 1Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden 2Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Apartado 14-0434, Lima-14, Peru 3Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland Received 24 February 2009; accepted for publication 1 September 2009 We have inferred the most comprehensive phylogenetic hypothesis to date of butterflies in the tribe Satyrini. In order to obtain a hypothesis of relationships, we used maximum parsimony and model-based methods with 4435 bp of DNA sequences from mitochondrial and nuclear genes for 179 taxa (130 genera and eight out-groups). We estimated dates of origin and diversification for major clades, and performed a biogeographic analysis using a dispersal–vicariance framework, in order to infer a scenario of the biogeographical history of the group. We found long-branch taxa that affected the accuracy of all three methods. Moreover, different methods produced incongruent phylogenies. We found that Satyrini appeared around 42 Mya in either the Neotropical or the Eastern Palaearctic, Oriental, and/or Indo-Australian regions, and underwent a quick radiation between 32 and 24 Mya, during which time most of its component subtribes originated. Several factors might have been important for the diversification of Satyrini: the ability to feed on grasses; early habitat shift into open, non-forest habitats; and geographic bridges, which permitted dispersal over marine barriers, enabling the geographic expansions of ancestors to new environ- ments that provided opportunities for geographic differentiation, and diversification.
    [Show full text]
  • Elachistidae: Agonoxeninae
    Agonoxena argaula Elachistidae: Agonoxeninae: Agonoxenini Palm Moths, Grass-Miner Moths Biosecurity BIOSECURITY ALERT This Family is of Biosecurity Concern Occurrence This family occurs in Australia. Background Palm moths are a small group of 31 genera that belong to the Agonoxeninae, a sub-family of the family Elachistidae (grass-miner moths). This sub-family is divided into two tribes the Agonoxenini and the Blastodacnini, twenty species of which are native to Australia. Agonoxenini are globally known as pests of palms, and consist of, and typified by, the four species belonging to the genus Agonoxena: A. argaula, A. phoenicia, A. pyrogramma and A. miniana. The Australian native representative of this genus is Agonoxena phoenicia (palm moth), which feeds on Alexandra or northern bangalow palm (Archontophoenix alexandrae). The taxonomy of this group has recently undergone major changes from studies incorporating new molecular and morphological data. Firstly, the former family Blastodacnidae was retained under the Agonoxenidae (Hodges, in Kristensen 1999), and then the latter treated under the Elachistidae to become the subfamily Agonoxeninae (Heikkilä et al. 2014, Sohn et al. 2016), relegating the Blastodacnidae and the Agonoxena group to tribal status, Blastodacnini and Agonoxenini respectively. Palm moths are the only members of the Elachistidae, currently considered to be of biosecurity importance to northern Australia. Diagnosis Diagnostic Features of Agonoxenini (Palm Moth Caterpillars) 1. Secondary setae present. Agonoxena argaula has numerous secondary setae that are much smaller than the primary setae. However, A. pyrogramma only has secondary setae on the prolegs and A10 but it is still likely that secondary setae are characteristic of Agonoxena (see Agonoxena diagnosis and description below).
    [Show full text]
  • A Host–Parasitoid Model for Aspidiotus Rigidus (Hemiptera: Diaspididae) and Comperiella Calauanica (Hymenoptera: Encyrtidae)
    Environmental Entomology, 48(1), 2019, 134–140 doi: 10.1093/ee/nvy150 Advance Access Publication Date: 27 October 2018 Biological Control - Parasitoids and Predators Research A Host–Parasitoid Model for Aspidiotus rigidus (Hemiptera: Diaspididae) and Comperiella calauanica (Hymenoptera: Encyrtidae) Dave I. Palen,1,5 Billy J. M. Almarinez,2 Divina M. Amalin,2 Jesusa Crisostomo Legaspi,3 and Guido David4 Downloaded from https://academic.oup.com/ee/article-abstract/48/1/134/5145966 by guest on 21 February 2019 1University of the Philippines Visayas Tacloban College, Tacloban City, Philippines, 2BCRU-CENSER, Department of Biology, De La Salle University, Manila, Philippines, 3Center for Medical, Agricultural and Veterinary Entomology, United States Department of Agriculture—Agricultural Research Service, Tallahassee, FL, USA, 4Institute of Mathematics, University of the Philippines Diliman, Quezon City, Philippines, and 5Corresponding author, e-mail: [email protected] Subject Editor: Darrell Ross Received 31 March 2018; Editorial decision 10 September 2018 Abstract The outbreak of the coconut scale insect Aspidiotus rigidus Reyne (Hemiptera: Encyrtidae) posed a serious threat to the coconut industry in the Philippines. In this article, we modeled the interaction between A. rigidus and its parasitoid Comperiella calauanica Barrion, Almarinez, Amalin (Hymenoptera: Encyrtidae) using a system of ordinary differential equations based on a Holling type III functional response. The equilibrium points were determined, and their local stability was examined. Numerical simulations showed that C. calauanica may control the population density of A. rigidus below the economic injury level. Key words: modeling, biological control—parasitoids and predators, host–parasitoid interactions Pest infestation has been a problem since the beginning of agricul- The use of a natural enemy to control pest outbreak is highly ture.
    [Show full text]
  • Pacific Entomologist 1925-1966
    RECOLLEcnONS OF A Pacific Entomologist 1925-1966 WITH PHOTOGRAPHS BY THE AUTHOR R.W. Paine Australian Centre for International Agricultural Research Canberra 1994 The Australian Centre for Intemational Agricultural Research (ACIAR) was established in June 1982 by an Act of Ihe Australian Parliament. lis primary mandate is 10 help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names ore used this does not constitute endorsement of nar discrimination against any product by the Centre. This peer-reviewed series contains the results of original research supported by ACIAR, or malerial deemed relevant 10 ACIAR's research and development objectives. The series is distributed intemationally, with an emphasis on developing countries. © Australian Centre for Intemational Agricultural Research GPO Box 157 t Conberra, Australia 2601 . Paine, R.w. 1994. Recollections of a Pacific Entomologist 1925 - 1966. ACIAR Monograph No 27. 120pp. ISBN 1 86320 106 8 Technical editing and production: Arowang Information Bureau Ply Ltd. Canberra Cover: BPD Graphic Associates, Canberra in association with Arawang Information Bureau Ply Lld Printed by The Craftsman Press Ply Ltd. Burwood, Victoria. ACIAR acknowledges the generous support of tihe Paine family in the compilation of this book. Long before agricultural 1920s was already at the Foreword sustainability entered forefront of world biological common parlance, or hazards control activities. Many of the associated with misuse of projects studied by Ron Paine pesticides captured headlines, and his colleagues are touched environmentally friendly on in his delightful and biological control of introduced evocative reminiscences.
    [Show full text]