Evolutionary Perspective of Nicotine to Nornicotine Conversion, Its Regulation and Characterization of Ein2 Mediated Ethylene Signaling in Tobacco
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterisation of an Intron-Split Solanales Microrna
Characterisation of an intron-split Solanales microRNA Zahara Medina Calzada A thesis submitted for the degree of Doctor of Philosophy University of East Anglia School of Biological Sciences September 2017 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution “Doing science is very romantic… when it works!” (the friend of a friend of mine) 2 Abstract MicroRNAs (miRNAs) are a distinct class of short endogenous RNAs with central roles in post-transcriptional regulation of gene expression that make them essential for the development and normal physiology of several groups of eukaryotes, including plants. In the last 15 years, hundreds of miRNA species have been identified in plants and great advances have been achieved in the understanding of plant miRNA biogenesis and mode of action. However, many miRNAs, generally those with less conventional features, still remain to be discovered. Likewise, further layers that regulate the pathway from miRNA biogenesis to function and turnover are starting to be revealed. In the present work we have studied the tomato miRNA “top14”, a miRNA with a non-canonical pri-miRNA structure in which an intron is in between miRNA and miRNA*. We have found that this miRNA is conserved within the economically important Solanaceae family and among other members of the Solanales order also agriculturally relevant, like in sweet potato, while its peculiar intron-split pri-miRNA structure is exclusively kept in the more closely related genera Solanum , Capsicum and Nicotiana . -
Genome Skimming for Phylogenomics
Genome skimming for phylogenomics Steven Andrew Dodsworth School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK. Submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy November 2015 1 Statement of originality I, Steven Andrew Dodsworth, confirm that the research included within this thesis is my own work or that where it has been carried out in collaboration with, or supported by others, that this is duly acknowledged and my contribution indicated. Previously published material is also acknowledged and a full list of publications is given in the Appendix. Details of collaboration and publications are given at the start of each chapter, as appropriate. I attest that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge break any UK law, infringe any third party’s copyright or other Intellectual Property Right, or contain any confidential material. I accept that the College has the right to use plagiarism detection software to check the electronic version of the thesis. I confirm that this thesis has not been previously submitted for the award of a degree by this or any other university. The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author. Signature: Date: 16th November 2015 2 Frontispiece: Nicotiana burbidgeae Symon at Dalhousie Springs, South Australia. 2014. Photo: S. Dodsworth. 3 Acknowledgements Firstly, I would like to thank my PhD supervisors, Professor Andrew Leitch and Professor Mark Chase. -
Federal Register/Vol. 82, No. 13/Monday, January 23, 2017/Proposed Rules
8004 Federal Register / Vol. 82, No. 13 / Monday, January 23, 2017 / Proposed Rules DEPARTMENT OF HEALTH AND comment will be made public, you are www.regulations.gov. Submit both HUMAN SERVICES solely responsible for ensuring that your copies to the Division of Dockets comment does not include any Management. If you do not wish your Food and Drug Administration confidential information that you or a name and contact information to be third party may not wish to be posted, made publicly available, you can 21 CFR Part 1132 such as medical information, your or provide this information on the cover [Docket No. FDA–2016–N–2527] anyone else’s Social Security number, or sheet and not in the body of your confidential business information, such comments and you must identify this Tobacco Product Standard for N- as a manufacturing process. Please note information as ‘‘confidential.’’ Any Nitrosonornicotine Level in Finished that if you include your name, contact information marked as ‘‘confidential’’ Smokeless Tobacco Products information, or other information that will not be disclosed except in identifies you in the body of your accordance with 21 CFR 10.20 and other AGENCY: Food and Drug Administration, comments, that information will be applicable disclosure law. For more HHS. posted on http://www.regulations.gov. information about FDA’s posting of • ACTION: Proposed rule. If you want to submit a comment comments to public dockets, see 80 FR with confidential information that you 56469, September 18, 2015, or access SUMMARY: The Food and Drug do not wish to be made available to the the information at: http://www.fda.gov/ Administration (FDA) is proposing a public, submit the comment as a regulatoryinformation/dockets/ tobacco product standard that would written/paper submission and in the default.htm. -
Appendix Color Plates of Solanales Species
Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect. -
ATP-Citrate Lyase Has an Essential Role in Cytosolic Acetyl-Coa Production in Arabidopsis Beth Leann Fatland Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2002 ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis Beth LeAnn Fatland Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Molecular Biology Commons, and the Plant Sciences Commons Recommended Citation Fatland, Beth LeAnn, "ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis " (2002). Retrospective Theses and Dissertations. 1218. https://lib.dr.iastate.edu/rtd/1218 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis by Beth LeAnn Fatland A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Plant Physiology Program of Study Committee: Eve Syrkin Wurtele (Major Professor) James Colbert Harry Homer Basil Nikolau Martin Spalding Iowa State University Ames, Iowa 2002 UMI Number: 3158393 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. -
Download The
Mechanistic Studies on (S)-Norcoclaurine Synthase and Dimethylallyltryptophan Synthase by Louis Yu Pan Luk B.Sc., The University of British Columbia, 2004 A THESIS SUMBITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Chemistry) The University of British Columbia (Vancouver) September, 2010 © Louis Yu Pan Luk, 2010 ii Abstract In alkaloid biosynthesis, there are a limited number of enzymes that can catalyze an aromatic electrophilic substitution. One example is norcoclaurine synthase, which catalyzes an asymmetric Pictet-Spengler condensation of dopamine and 4-hydroxyphenylacetaldehyde to give (S)-norcoclaurine. This is the first committed step in the biosynthesis of the benzylisoquinoline alkaloids that include morphine and codeine. In this work, the gene encoding for the Thalictrum flavum norcoclaurine synthase is highly overexpressed in Escherichia coli and the His-tagged recombinant enzyme is purified for the first time. A continuous assay based on circular dichroism spectroscopy is developed and used to monitor the kinetics of the enzymatic reaction. Dopamine analogues bearing a methoxy or hydrogen substituent in place of the C-1 phenolic group were readily accepted by the enzyme whereas those bearing the same substituents at C-2 were not. This supports a mechanism involving a two-step cyclization of the putative iminium ion intermediate that does not proceed via a spirocyclic intermediate. The reaction of [3,5,6- 2 H3]-dopamine was found to be slowed by a kinetic isotope effect of 1.7 ± 0.2 on the value of kcat/KM. This is interpreted as showing that the deprotonation step causing re-aromatization is partially rate determining in the overall reaction. -
LAP3, a Novel Plant Protein Required for Pollen Development, Is Essential for Proper Exine Formation Anna A
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Valparaiso University Valparaiso University ValpoScholar Biology Faculty Publications Department of Biology 2009 LAP3, a novel plant protein required for pollen development, is essential for proper exine formation Anna A. Dobritsa University of Chicago Shuh-Ichi Nishikawa Nagoya University Daphne Preuss University of Chicago Ewa Urbanczyk-Wochniak Samuel Roberts Noble Foundation Lloyd W. Sumner Samuel Roberts Noble Foundation See next page for additional authors Follow this and additional works at: http://scholar.valpo.edu/bio_fac_pub Part of the Biology Commons Recommended Citation Dobritsa, A. A., Nishikawa, S. I., Preuss, D., Urbanczyk-Wochniak, E., Sumner, L. W., Hammond, A., Carlson, A. L. & Swanson, R. J. 2009 LAP3, a novel plant protein required for pollen development, is essential for proper exine formation. Sexual Plant Reproduction 22: 167-177. This Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Authors Anna A. Dobritsa, Shuh-Ichi Nishikawa, Daphne Preuss, Ewa Urbanczyk-Wochniak, Lloyd W. Sumner, Adam Hammond, Ann L. Carlson, and Rob Swanson This article is available at ValpoScholar: http://scholar.valpo.edu/bio_fac_pub/13 Sex Plant Reprod (2009) 22:167–177 DOI 10.1007/s00497-009-0101-8 ORIGINAL ARTICLE LAP3, a novel plant protein required for pollen development, is essential for proper exine formation Anna A. Dobritsa Æ Shuh-Ichi Nishikawa Æ Daphne Preuss Æ Ewa Urbanczyk-Wochniak Æ Lloyd W. -
Fragrant Annuals Fragrant Annuals
TheThe AmericanAmerican GARDENERGARDENER® TheThe MagazineMagazine ofof thethe AAmericanmerican HorticulturalHorticultural SocietySociety JanuaryJanuary // FebruaryFebruary 20112011 New Plants for 2011 Unusual Trees with Garden Potential The AHS’s River Farm: A Center of Horticulture Fragrant Annuals Legacies assume many forms hether making estate plans, considering W year-end giving, honoring a loved one or planting a tree, the legacies of tomorrow are created today. Please remember the American Horticultural Society when making your estate and charitable giving plans. Together we can leave a legacy of a greener, healthier, more beautiful America. For more information on including the AHS in your estate planning and charitable giving, or to make a gift to honor or remember a loved one, please contact Courtney Capstack at (703) 768-5700 ext. 127. Making America a Nation of Gardeners, a Land of Gardens contents Volume 90, Number 1 . January / February 2011 FEATURES DEPARTMENTS 5 NOTES FROM RIVER FARM 6 MEMBERS’ FORUM 8 NEWS FROM THE AHS 2011 Seed Exchange catalog online for AHS members, new AHS Travel Study Program destinations, AHS forms partnership with Northeast garden symposium, registration open for 10th annual America in Bloom Contest, 2011 EPCOT International Flower & Garden Festival, Colonial Williamsburg Garden Symposium, TGOA-MGCA garden photography competition opens. 40 GARDEN SOLUTIONS Plant expert Scott Aker offers a holistic approach to solving common problems. 42 HOMEGROWN HARVEST page 28 Easy-to-grow parsley. 44 GARDENER’S NOTEBOOK Enlightened ways to NEW PLANTS FOR 2011 BY JANE BERGER 12 control powdery mildew, Edible, compact, upright, and colorful are the themes of this beating bugs with plant year’s new plant introductions. -
The Key to the Nornicotine Enantiomeric Composition in Tobacco Leaf
University of Kentucky UKnowledge Theses and Dissertations--Plant and Soil Sciences Plant and Soil Sciences 2012 ENANTIOSELECTIVE DEMETHYLATION: THE KEY TO THE NORNICOTINE ENANTIOMERIC COMPOSITION IN TOBACCO LEAF Bin Cai University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Cai, Bin, "ENANTIOSELECTIVE DEMETHYLATION: THE KEY TO THE NORNICOTINE ENANTIOMERIC COMPOSITION IN TOBACCO LEAF" (2012). Theses and Dissertations--Plant and Soil Sciences. 5. https://uknowledge.uky.edu/pss_etds/5 This Doctoral Dissertation is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Plant and Soil Sciences by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained and attached hereto needed written permission statements(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine). I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless a preapproved embargo applies. -
Comparative Analysis and Phylogenetic Investigation of Hong
www.nature.com/scientificreports OPEN Comparative analysis and phylogenetic investigation of Hong Kong Ilex chloroplast genomes Bobby Lim‑Ho Kong1,3, Hyun‑Seung Park2, Tai‑Wai David Lau1,3, Zhixiu Lin4, Tae‑Jin Yang2 & Pang‑Chui Shaw1,3* Ilex is a monogeneric plant group (containing approximately 600 species) in the Aquifoliaceae family and one of the most commonly used medicinal herbs. However, its taxonomy and phylogenetic relationships at the species level are debatable. Herein, we obtained the complete chloroplast genomes of all 19 Ilex types that are native to Hong Kong. The genomes are conserved in structure, gene content and arrangement. The chloroplast genomes range in size from 157,119 bp in Ilex gracilifora to 158,020 bp in Ilex kwangtungensis. All these genomes contain 125 genes, of which 88 are protein‑coding and 37 are tRNA genes. Four highly varied sequences (rps16-trnQ, rpl32-trnL, ndhD-psaC and ycf1) were found. The number of repeats in the Ilex genomes is mostly conserved, but the number of repeating motifs varies. The phylogenetic relationship among the 19 Ilex genomes, together with eight other available genomes in other studies, was investigated. Most of the species could be correctly assigned to the section or even series level, consistent with previous taxonomy, except Ilex rotunda var. microcarpa, Ilex asprella var. tapuensis and Ilex chapaensis. These species were reclassifed; I. rotunda was placed in the section Micrococca, while the other two were grouped with the section Pseudoaquifolium. These studies provide a better understanding of Ilex phylogeny and refne its classifcation. Ilex, a monogeneric plant group in the family Aquifoliaceae, is a widespread genus. -
Solanaceae): Insights Into Molecular Evolution, Positive 3 Selection and the Origin of the Maternal Genome of Aztec Tobacco (Nicotiana Rustica
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.13.905158; this version posted January 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Short Title: Comparison of Nicotiana plastid genomes 2 Plastid genomics of Nicotiana (Solanaceae): insights into molecular evolution, positive 3 selection and the origin of the maternal genome of Aztec tobacco (Nicotiana rustica) 4 Furrukh Mehmood1, Abdullah1, Zartasha Ubaid1, Iram Shahzadi1, Ibrar Ahmed2, Mohammad 5 Tahir Waheed1, Péter Poczai*3, Bushra Mirza*1 6 1Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan 7 2Alpha Genomics Private Limited, Islamabad, Pakistan 8 3Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland 9 *Corresponding authors: Bushra Mirza ([email protected]) 10 Péter Poczai ([email protected]) 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.13.905158; this version posted January 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 27 Abstract 28 The genus Nicotiana of the family Solanaceae, commonly referred to as tobacco plants, are a 29 group cultivated as garden ornamentals. Besides their use in the worldwide production of 30 tobacco leaves, they are also used as evolutionary model systems due to their complex 31 development history, which is tangled by polyploidy and hybridization. -
Transgressive Phenotypes and Generalist Pollination in the Floral Evolution of Nicotiana Polyploids
Title Transgressive phenotypes and generalist pollination in the floral evolution of Nicotiana polyploids Authors McCarthy, EW; Chase, MW; Knapp, S; Litt, A; Leitch, AR; Le Comber, SC Description This is the author's proof Date Submitted 2017-02-23 ARTICLES PUBLISHED: XX XX 2016 | ARTICLE NUMBER: 16119 | DOI: 10.1038/NPLANTS.2016.119 Transgressive phenotypes and generalist pollination in the floral evolution of Q1 Nicotiana polyploids Elizabeth W. McCarthy1,2,3†,MarkW.Chase2, Sandra Knapp3,AmyLitt4, Andrew R. Leitch1 and Steven C. Le Comber1* Polyploidy is an important driving force in angiosperm evolution, and much research has focused on genetic, epigenetic and transcriptomic responses to allopolyploidy. Nicotiana is an excellent system in which to study allopolyploidy because half of the species are allotetraploids of different ages, allowing us to examine the trajectory of floral evolution over time. Here, we study the effects of allopolyploidy on floral morphology in Nicotiana, using corolla tube measurements and geometric morphometrics to quantify petal shape. We show that polyploid morphological divergence from the intermediate phenotype expected (based on progenitor morphology) increases with time for floral limb shape and tube length, and that most polyploids are distinct or transgressive in at least one trait. In addition, we show that polyploids tend to evolve shorter and wider corolla tubes, suggesting that allopolyploidy could provide an escape from specialist pollination via reversion to more generalist pollination strategies. 1 olyploidy, or whole genome duplication (WGD), is an impor- transgressively larger14. In addition, autopolyploidy alone can 33 2 Ptant driving force in the evolution of angiosperms. Ancient yield floral changes even without the diversity generated by hybrid- 34 3 polyploid events are shared by all seed plants, all angiosperms ization.