The Key to the Nornicotine Enantiomeric Composition in Tobacco Leaf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Federal Register/Vol. 82, No. 13/Monday, January 23, 2017/Proposed Rules
8004 Federal Register / Vol. 82, No. 13 / Monday, January 23, 2017 / Proposed Rules DEPARTMENT OF HEALTH AND comment will be made public, you are www.regulations.gov. Submit both HUMAN SERVICES solely responsible for ensuring that your copies to the Division of Dockets comment does not include any Management. If you do not wish your Food and Drug Administration confidential information that you or a name and contact information to be third party may not wish to be posted, made publicly available, you can 21 CFR Part 1132 such as medical information, your or provide this information on the cover [Docket No. FDA–2016–N–2527] anyone else’s Social Security number, or sheet and not in the body of your confidential business information, such comments and you must identify this Tobacco Product Standard for N- as a manufacturing process. Please note information as ‘‘confidential.’’ Any Nitrosonornicotine Level in Finished that if you include your name, contact information marked as ‘‘confidential’’ Smokeless Tobacco Products information, or other information that will not be disclosed except in identifies you in the body of your accordance with 21 CFR 10.20 and other AGENCY: Food and Drug Administration, comments, that information will be applicable disclosure law. For more HHS. posted on http://www.regulations.gov. information about FDA’s posting of • ACTION: Proposed rule. If you want to submit a comment comments to public dockets, see 80 FR with confidential information that you 56469, September 18, 2015, or access SUMMARY: The Food and Drug do not wish to be made available to the the information at: http://www.fda.gov/ Administration (FDA) is proposing a public, submit the comment as a regulatoryinformation/dockets/ tobacco product standard that would written/paper submission and in the default.htm. -
Environmental Influences on Endothelial Gene Expression
ENDOTHELIAL CELL GENE EXPRESSION John Matthew Jeff Herbert Supervisors: Prof. Roy Bicknell and Dr. Victoria Heath PhD thesis University of Birmingham August 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Tumour angiogenesis is a vital process in the pathology of tumour development and metastasis. Targeting markers of tumour endothelium provide a means of targeted destruction of a tumours oxygen and nutrient supply via destruction of tumour vasculature, which in turn ultimately leads to beneficial consequences to patients. Although current anti -angiogenic and vascular targeting strategies help patients, more potently in combination with chemo therapy, there is still a need for more tumour endothelial marker discoveries as current treatments have cardiovascular and other side effects. For the first time, the analyses of in-vivo biotinylation of an embryonic system is performed to obtain putative vascular targets. Also for the first time, deep sequencing is applied to freshly isolated tumour and normal endothelial cells from lung, colon and bladder tissues for the identification of pan-vascular-targets. Integration of the proteomic, deep sequencing, public cDNA libraries and microarrays, delivers 5,892 putative vascular targets to the science community. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Functional Identification of a Novel Gene, Moae, for 3
www.nature.com/scientificreports OPEN Functional Identification of a Novel Gene, moaE, for 3-Succinoylpyridine Degradation in Received: 29 May 2015 Accepted: 28 July 2015 Pseudomonas putida S16 Published: 25 August 2015 Yi Jiang1,2, Hongzhi Tang1,2, Geng Wu1,2 & Ping Xu1,2 Microbial degradation of N-heterocyclic compounds, including xanthine, quinoline, nicotinate, and nicotine, frequently requires molybdenum hydroxylases. The intramolecular electron transfer chain of molybdenum hydroxylases consists of a molybdenum cofactor, two distinct [2Fe-2S] clusters, and flavin adenine dinucleotide. 3-Succinoylpyridine monooxygenase (Spm), responsible for the transformation from 3-succinoylpyridine to 6-hydroxy-3-succinoylpyridine, is a crucial enzyme in the pyrrolidine pathway of nicotine degradation in Pseudomonas. Our previous work revealed that the heterotrimeric enzyme (SpmA, SpmB, and SpmC) requires molybdopterin cytosine dinucleotide as a cofactor for their activities. In this study, we knocked out four genes, including PPS_1556, PPS_2936, PPS_4063, and PPS_4397, and found that a novel gene, PPS_4397 encoding moaE, is necessary for molybdopterin cytosine dinucleotide biosynthesis. Resting cell reactions of the moaE deletion mutant incubated with 3 g l−1 nicotine at 30 °C resulted in accumulation of 3-succinoylpyridine, and the strain complemented by the moaE gene regained the ability to convert 3-succinoylpyridine. In addition, reverse transcription-quantitative polymerase chain reaction analysis indicated that the transcriptional levels of the genes of moaE, spmA, and spmC of Pseudomonas putida S16 were distinctly higher when grown in nicotine medium than in glycerol medium. Large quantities of tobacco wastes containing high concentration of nicotine are produced during tobacco manufacturing yearly1. Nicotine is well known to be harmful to human health and can cross biological membranes and blood-brain barrier easily2. -
Molecular Mechanisms Regulating Copper Balance in Human Cells
MOLECULAR MECHANISMS REGULATING COPPER BALANCE IN HUMAN CELLS by Nesrin M. Hasan A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland August 2014 ©2014 Nesrin M. Hasan All Rights Reserved Intended to be blank ii ABSTRACT Precise copper balance is essential for normal growth, differentiation, and function of human cells. Loss of copper homeostasis is associated with heart hypertrophy, liver failure, neuronal de-myelination and other pathologies. The copper-transporting ATPases ATP7A and ATP7B maintain cellular copper homeostasis. In response to copper elevation, they traffic from the trans-Golgi network (TGN) to vesicles where they sequester excess copper for further export. The mechanisms regulating activity and trafficking of ATP7A/7B are not well understood. Our studies focused on determining the role of kinase-mediated phosphorylation in copper induced trafficking of ATP7B, and identifying and characterizing novel regulators of ATP7A. We have shown that Ser- 340/341 region of ATP7B plays an important role in interactions between the N-terminus and the nucleotide-binding domain and that mutations in these residues result in vesicular localization of the protein independent of the intracellular copper levels. We have determined that structural changes that alter the inter-domain interactions initiate exit of ATP7B from the TGN and that the role of copper-induced kinase-mediated hyperphosphorylation might be to maintain an open interface between the domains of ATP7B. In a separate study, seven proteins were identified, which upon knockdown result in increased intracellular copper levels. We performed an initial characterization of the knock-downs and obtained intriguing results indicating that these proteins regulate ATP7A protein levels, post-translational modifications, and copper-dependent trafficking. -
Biological Models of Colorectal Cancer Metastasis and Tumor Suppression
BIOLOGICAL MODELS OF COLORECTAL CANCER METASTASIS AND TUMOR SUPPRESSION PROVIDE MECHANISTIC INSIGHTS TO GUIDE PERSONALIZED CARE OF THE COLORECTAL CANCER PATIENT By Jesse Joshua Smith Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University In partial fulfillment of the requirements For the degree of DOCTOR OF PHILOSOPHY In Cell and Developmental Biology May, 2010 Nashville, Tennessee Approved: Professor R. Daniel Beauchamp Professor Robert J. Coffey Professor Mark deCaestecker Professor Ethan Lee Professor Steven K. Hanks Copyright 2010 by Jesse Joshua Smith All Rights Reserved To my grandparents, Gladys and A.L. Lyth and Juanda Ruth and J.E. Smith, fully supportive and never in doubt. To my amazing and enduring parents, Rebecca Lyth and Jesse E. Smith, Jr., always there for me. .my sure foundation. To Jeannine, Bill and Reagan for encouragement, patience, love, trust and a solid backing. To Granny George and Shawn for loving support and care. And To my beautiful wife, Kelly, My heart, soul and great love, Infinitely supportive, patient and graceful. ii ACKNOWLEDGEMENTS This work would not have been possible without the financial support of the Vanderbilt Medical Scientist Training Program through the Clinical and Translational Science Award (Clinical Investigator Track), the Society of University Surgeons-Ethicon Scholarship Fund and the Surgical Oncology T32 grant and the Vanderbilt Medical Center Section of Surgical Sciences and the Department of Surgical Oncology. I am especially indebted to Drs. R. Daniel Beauchamp, Chairman of the Section of Surgical Sciences, Dr. James R. Goldenring, Vice Chairman of Research of the Department of Surgery, Dr. Naji N. -
UGT1A6 (NM 205862) Human Recombinant Protein Product Data
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TP305752 UGT1A6 (NM_205862) Human Recombinant Protein Product data: Product Type: Recombinant Proteins Description: Recombinant protein of human UDP glucuronosyltransferase 1 family, polypeptide A6 (UGT1A6), transcript variant 2 Species: Human Expression Host: HEK293T Tag: C-Myc/DDK Predicted MW: 29.5 kDa Concentration: >50 ug/mL as determined by microplate BCA method Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining Buffer: 25 mM Tris.HCl, pH 7.3, 100 mM glycine, 10% glycerol Preparation: Recombinant protein was captured through anti-DDK affinity column followed by conventional chromatography steps. Storage: Store at -80°C. Stability: Stable for 12 months from the date of receipt of the product under proper storage and handling conditions. Avoid repeated freeze-thaw cycles. RefSeq: NP_995584 Locus ID: 54578 UniProt ID: Q5DT01 RefSeq Size: 1691 Cytogenetics: 2q37.1 RefSeq ORF: 1599 Synonyms: GNT1; HLUGP; HLUGP1; hUG-BR1; UDPGT; UDPGT 1-6; UGT-1A; UGT-1C; UGT-1E; UGT-1F; UGT1; UGT1-01; UGT1-03; UGT1-05; UGT1-06; UGT1.1; UGT1.3; UGT1.5; UGT1.6; UGT1A; UGT1A1; UGT1A3; UGT1A5; UGT1A6S; UGT1C; UGT1E; UGT1F This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 UGT1A6 (NM_205862) Human Recombinant Protein – TP305752 Summary: This gene encodes a UDP-glucuronosyltransferase, an enzyme of the glucuronidation pathway that transforms small lipophilic molecules, such as steroids, bilirubin, hormones, and drugs, into water-soluble, excretable metabolites. -
Analysis of Genetic Variation in a Disjunct, Narcotic Producing, Population of Duboisia Hopwoodii (F
Analysis of genetic variation in a disjunct, narcotic producing, population of Duboisia hopwoodii (F. Muell.) F. Muell. P. French, E. James and N. Walsh National Herbarium of Victoria, Royal Botanic Gardens Melbourne, Birdwood Avenue, South Yarra Victoria 3141, Australia; email: [email protected] Introduction Abstract The native Australian narcotic ‘Pituri’ was used by Aboriginal people of The most highly sought after source western Queensland as a social lubricant and an enhancer of endurance of the native drug Pituri is a single population of Duboisia hopwoodii and strength. At the time of European settlement the trade of Pituri was in south-western Queensland, near extensive, covering an area of 550 000 square kilometres (Watson 1983). the Mulligan River. Inter-simple Pituri is obtained from the leaves and small twigs of the plant Duboisia sequence repeats and sequence- hopwoodii (F. Muell.) F. Muell., family Solanaceae (Figure 1). The leaves related amplified polymorphisms were dried and mixed with ash to make a quid for chewing (Keogh were used to determine the genetic variation between 25 individuals from 2011). H. Beckler, who tried the drug on the Burke and Wills expedition the Mulligan River population and in 1861, described it as producing “a dreamy voluptuous sensation” a morphometric study investigated (Roth 1897:31). By coincidence, Beckler collected the type specimen of whether it is morphologically, as well D. hopwoodii on this same expedition, unaware that it was the source as chemically, distinct. Results showed of the drug Pituri. Duboisia hopwoodii is an arborescent shrub which high genetic variability, refuting grows to 3 m tall and occurs across the arid zone of Australia (Maiden a hypothesis that the population contains only a few clones. -
Structural Analysis of Quinoline 2-Oxidoreductase from Pseudomonas Putida 86
Structural Analysis of Quinoline 2-Oxidoreductase from Pseudomonas putida 86 Structural and Biochemical Studies of Two Nus Family Proteins: NusB and NusA AR1-λN Complex NusA AR1-λN Complex NusB Quinoline 2-Oxidoreductase Irena Bonin Max-Planck-Institut für Biochemie Abteilung Strukturforschung D-82152 Martinsried, München 1 Max-Planck-Institut für Biochemie Abteilung Strukturforschung Structural Analysis of Quinoline 2-Oxidoreductase from Pseudomonas putida 86 Structural and Biochemical Studies of Two Nus Family Proteins: NusB and NusA AR1-λN Complex Irena Bonin Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. St. J. Glaser Prüfer der Dissertation: 1. apl. Prof. Dr. Dr. h.c. R. Huber 2. Univ.-Prof. Dr. Dr. A. Bacher Die Dissertation wurde am 22.09.2004 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 11.11.2004 angenommen. 2 Ai miei genitori 3 ACKNOWLEDGEMENTS Acknowledgments The work, here presented, was carried out in the Abteilung für Strukturforschung at the Max-Planck-Institut für Biochemie, Martinsried bei München, under the supervision of Prof. Dr. Dr. h.c. Robert Huber. I would like to start thanking Prof. Dr. Robert Huber for giving me the opportunity to work in his department, his financial support, and for providing the necessary conditions for the success of my projects. To Dr. Markus C. Wahl who helped me in the initial struggle and promptly accepted to share his projects with me. A special thank goes to Dr. Holger Dobbek and Dr. -
Arthrobacter Nicotinovorans Pao1 Why Do We Need Its Proteome?
Arthrobacter nicotinovorans pAO1 Why do we need its proteome? Marius Mihășan, PhD. Faculty of Biology Alexandru Ioan Cuza University of Iaşi, Romania E-mail: [email protected] 4/2/17 Arthrobacter nicotinovorans - Why do we need its proteome? Slide 1 / 26 A bit about my home country Romania Alexandru Ioan Cuza University of Iasi Area: 92,043 sq mi Population: 20,121,641 Transylvania Flight history: Chemistry: Biology: Tr aian Vu ia Vintilă Ciocâlteu Victor Babeș first airplane to take off on its own power co-developed the Folin-Ciocalteu reagent more than 50 types of bacteria Physics: Costin Nenițescu Emil Racoviță Ştefan Procopiu many new classes of inorganic compounds founder of biospeleology the Bohr-Procopiu magneton Nicolae Teclu Emil Palade the Teclu burner Nobel Prize for contributions to cell biology 4/2/17 Arthrobacter nicotinovorans - Why do we need its proteome? Slide 2 / 26 Alexandru Ioan Cuza University of Iaşi Facts and figures ü The oldest Romanian university ü Diplomas recognized all over Europe Sciences Social Sciences & Humanities ü15 departments ü Biology ü Economics and Business Administration ü Chemistry ü History ü 93 Bachelor programs ü Computer Science ü Law ü Geography and Geology ü Letters ü Mathematics ü Orthodox Theology ü 176 Master programs ü Physics ü Philosophy and Social – Political Sciences ü Physical Education and Sports ü 26 PhD programs ü Psychology and Education Sciences ü Roman – Catholic Theology ü Center for European Studies 4/2/17 Arthrobacter nicotinovorans - Why do we need its proteome? Slide 3 / 26 Department of Biology Bulevardul Carol I nr. 20A, Iaşi, Romania, 700505 Tel.:+40(0)232201072 Fax: 40(0)232201472 www.bio.uaic.ro Founded in 1948 ü 758 students: • 20 PhD students ü46 full-time faculty members ü 16 technicians and administrative staff 4/2/17 Arthrobacter nicotinovorans - Why do we need its proteome? Slide 4 / 26 Programs of Study Biology BACHELOR Biochemistry semesters Environmental science Molecular genetics MASTER Biology Cellular and microbial biotech. -
Proteomics Based Analysis of the Nicotine Catabolism In
www.nature.com/scientificreports OPEN Proteomics based analysis of the nicotine catabolism in Paenarthrobacter nicotinovorans Received: 11 February 2018 Accepted: 24 October 2018 pAO1 Published: xx xx xxxx Marius Mihăşan 1,2, Cornelia Babii1, Roshanak Aslebagh2, Devika Channaveerappa2, Emmalyn Dupree2 & Costel C. Darie2 Paenarthrobacter nicotinovorans is a nicotine-degrading microorganism that shows a promising biotechnological potential for the production of compounds with industrial and pharmaceutical importance. Its ability to use nicotine was linked to the presence of the catabolic megaplasmid pAO1. Although extensive work has been performed on the molecular biology of nicotine degradation in this bacterium, only half of the genes putatively involved have been experimentally linked to nicotine. In the current approach, we used nanoLC–MS/MS to identify a total of 801 proteins grouped in 511 non- redundant protein clusters when P. nicotinovorans was grown on citrate, nicotine and nicotine and citrate as the only carbon sources. The diferences in protein abundance showed that deamination is preferred when citrate is present. Several putative genes from the pAO1 megaplasmid have been shown to have a nicotine-dependent expression, including a hypothetical polyketide cyclase. We hypothesize that the enzyme would hydrolyze the N1-C6 bond from the pyridine ring with the formation of α-keto- glutaramate. Two chromosomally-encoded proteins, a malate dehydrogenase, and a D-3- phosphoglycerate dehydrogenase were shown to be strongly up-regulated when nicotine was the sole carbon source and could be related to the production the α-keto-glutarate. The data have been deposited to the ProteomeXchange with identifer PXD008756. Nicotine is the main alkaloid produced by the tobacco plant as an anti-herbivore chemical. -
Constitutive Activation of Nitrate Reductase in Tobacco Alters Fowering Time and Plant Biomass Jianli Lu1,3, Niharika N
www.nature.com/scientificreports OPEN Constitutive activation of nitrate reductase in tobacco alters fowering time and plant biomass Jianli Lu1,3, Niharika N. Chandrakanth1, Ramsey S. Lewis1, Karen Andres1, Lucien Bovet2, Simon Goepfert2 & Ralph E. Dewey 1* Pyridine alkaloids produced in tobacco can react with nitrosating agents such as nitrite to form tobacco-specifc nitrosamines (TSNA), which are among the most notable toxicants present in tobacco smoke. The market type known as burley tobacco is particularly susceptible to TSNA formation because its corresponding cultivars exhibit a nitrogen-use-defciency phenotype which results in high accumulation of nitrate, which, in turn, is converted to nitrite by leaf surface microbes. We have previously shown that expression of a constitutively activated nitrate reductase (NR) enzyme dramatically decreases leaf nitrate levels in burley tobacco, resulting in substantial TSNA reductions without altering the alkaloid profle. Here, we show that plants expressing a constitutively active NR construct, designated 35S:S523D-NR, display an early-fowering phenotype that is also associated with a substantial reduction in plant biomass. We hypothesized that crossing 35S:S523D-NR tobaccos with burley cultivars that fower later than normal would help mitigate the undesirable early- fowering/reduced-biomass traits while maintaining the desirable low-nitrate/TSNA phenotype. To test this, 35S:S523D-NR plants were crossed with two late-fowering cultivars, NC 775 and NC 645WZ. In both cases, the plant biomass at harvest was restored to levels similar to those in the original cultivar used for transformation while the low-nitrate/TSNA trait was maintained. Interestingly, the mechanism by which yield was restored difered markedly between the two crosses.