Applicability of Analytical Tools, Test Methods and Models for Polymer Risk Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Applicability of Analytical Tools, Test Methods and Models for Polymer Risk Assessment Applicability of Analytical Tools, Test Methods and Models for Polymer Risk Assessment Technical Report No. 133-2 EUROPEAN CENTRE FOR ECOTOXICOLOGY AND TOXICOLOGY OF CHEMICALS Applicability of Analytical Tools, Test Methods and Models for Polymer Risk Assessment Technical Report No. 133-2 Version 1 - March 2020 DISCLAIMER: This Technical Report reflects current experience and knowledge and shall be adapted, amended and refined as new evidence on polymer risk assessment becomes available. Brussels, March 2020 ISSN-2079-1526-133-2 (online) Applicability of Analytical Tools, Test Methods and Models for Polymer Risk Assessment ECETOC Technical Report No. 133-2 © Copyright – ECETOC AISBL European Centre for Ecotoxicology and Toxicology of Chemicals Rue Belliard 40, B-1040 Brussels, Belgium. All rights reserved. No part of this publication may be reproduced, copied, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the copyright holder. Applications to reproduce, store, copy or translate should be made to the Secretary General. ECETOC welcomes such applications. Reference to the document, its title and summary may be copied or abstracted in data retrieval systems without subsequent reference. The content of this document has been prepared and reviewed by experts on behalf of ECETOC with all possible care and from the available scientific information. It is provided for information only. ECETOC cannot accept any responsibility or liability and does not provide a warranty for any use or interpretation of the material contained in the publication. ECETOC TR No. 133-2 Applicability of Analytical Tools, Test Methods and Models for Polymer Risk Assessment Applicability of Analytical Tools, Test Methods and Models for Polymer Risk Assessment Table of contents SUMMARY .....................................................................................................................................................................................................................1 1. INTRODUCTION ..............................................................................................................................................................................................6 2. OVERVIEW OF TEST GUIDELINES, STANDARDS AND SPECIFICATIONS INCLUDED IN THIS REPORT ................. 9 3. ANALYTICAL TOOLS TO DETERMINE STRUCTURAL AND MORPHOLOGICAL DESCRIPTORS AND PHYSICO- CHEMICAL PROPERTIES OF POLYMERS ..................................................................................................................................................... 11 3.1 Weight-average and number-average molecular weight ...................................................................................... 15 3.2 Acid dissociation constant ..................................................................................................................................... 16 3.3 Solubility in water .................................................................................................................................................. 17 3.4 n-Octanol/water partition coefficient ................................................................................................................... 19 3.5 Adsorption/desorption and organic carbon/water partition coefficient .............................................................. 23 3.6 Surface tension ...................................................................................................................................................... 25 3.7 Analytical verification of polymer concentrations in environmental media ......................................................... 27 3.7.1 Cold analytical approaches for polymers .......................................................................................................... 28 3.7.2 Radioanalytical approaches for polymers ......................................................................................................... 28 3.7.3 Stable isotope approaches for polymers ........................................................................................................... 29 4. TEST METHODS TO ASSESS POLYMER ENVIRONMENTAL FATE ........................................................................................ 30 4.1 (Bio)degradation .................................................................................................................................................... 31 4.1.1 Biodegradation screening tests ......................................................................................................................... 32 4.1.2 Simulation biodegradation tests ....................................................................................................................... 40 4.1.3 Abiotic degradation ........................................................................................................................................... 45 4.1.4 Other degradation methods: Industrial composting ......................................................................................... 46 4.1.5 Conceptual framework for polymer (bio)degradation assessment .................................................................. 49 4.2 Bioaccumulation, bioconcentration, biomagnification ......................................................................................... 55 4.2.1 Systemic bioavailability as prerequisite for polymer bioaccumulation............................................................. 56 4.2.2 Test methods for bioaccumulation assessment ................................................................................................ 59 4.2.3 Conceptual framework for polymer bioaccumulation assessment .................................................................. 62 5. MODELS TO ASSESS POLYMER EXPOSURE POTENTIAL .......................................................................................................... 67 5.1 Environmental exposure modelling for polymers ................................................................................................. 67 5.1.1 Exposure in freshwater and freshwater sediment ............................................................................................ 73 5.1.2 Exposure in marine surface water and marine sediment ................................................................................. 75 5.1.3 Exposure in soil.................................................................................................................................................. 76 5.1.4 Exposure via wastewater treatment plants ...................................................................................................... 77 5.2 Human health exposure assessment ..................................................................................................................... 77 5.2.1 Inhalation exposure modelling .......................................................................................................................... 79 5.2.2 Dermal and oral exposure modelling ................................................................................................................ 81 5.2.3 Exposure measurements ................................................................................................................................... 82 6. TEST METHODS TO ASSESS ECOTOXICITY POTENTIAL OF POLYMERS ........................................................................... 85 6.1 Ecotoxicological assessments using aquatic organisms ........................................................................................ 85 6.1.1 Fit-for-purpose polymer identification prior to aquatic toxicity testing ........................................................... 86 ECETOC TR No. 133-2 Applicability of Analytical Tools, Test Methods and Models for Polymer Risk Assessment 6.1.2 Selection of polymer concentrations for aquatic toxicity testing ..................................................................... 87 6.1.3 Preparation of polymers for aquatic toxicity testing ........................................................................................ 88 6.1.4 Verification of polymer concentrations during aquatic toxicity testing ............................................................ 89 6.1.5 Aquatic toxicity test methods ........................................................................................................................... 90 6.2 Ecotoxicity test methods using sediment-dwelling organisms .............................................................................. 94 6.3 Ecotoxicity test methods using terrestrial organisms............................................................................................ 96 6.4 Conceptual framework for polymer ecotoxicity assessment .............................................................................. 100 6.4.1 Tier 0: Identification of ecotoxicity testing needs and of relevant environmental compartment(s) .............. 101 6.4.2 Tier 1: Screening for acute ecotoxicological effects ........................................................................................ 103 6.4.3 Higher-tier follow-up of ecotoxicological screening ....................................................................................... 105 7. TEST METHODS TO ASSESS HUMAN HEALTH TOXICITY POTENTIAL OF POLYMERS ..........................................
Recommended publications
  • (PHBV) Co-Polymer: a Critical Review
    Rev Environ Sci Biotechnol (2021) 20:479–513 https://doi.org/10.1007/s11157-021-09575-z (0123456789().,-volV)(0123456789().,-volV) REVIEW PAPER Improving biological production of poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV) co-polymer: a critical review Grazia Policastro . Antonio Panico . Massimiliano Fabbricino Received: 23 January 2021 / Accepted: 2 April 2021 / Published online: 13 April 2021 Ó The Author(s) 2021 Abstract Although poly(3-hydroxybutyrate-co-3- indicates that the addition of 3HV precursors is hydroxyvalerate) (PHBV) is the most promising capable to dramatically enhance the hydroxyvalerate biopolymer for petroleum-based plastics replacement, fraction in the produced biopolymers. On the other the low processes productivity as well as the high sale hand, due to the high costs of the 3HV precursors, the price represent a major barrier for its widespread utilization of wild bacterial species capable to produce usage. The present work examines comparatively the the hydroxyvalerate fraction from unrelated carbon existing methods to enhance the yield of the PHBV co- sources (i.e. no 3HV precursors) also can be consid- polymer biologically produced and/or reduce their ered a valuable strategy for costs reduction. Moreover, costs. The study is addressed to researchers working metabolic engineering techniques can be successfully on the development of new biological production used to promote 3HV precursors-independent biosyn- methods and/or the improvement of those currently thesis pathways and enhance the process productivity. used. At this aim, the authors have considered the The use of mixed cultures or extremophile bacteria analysis of some crucial aspects related to substrates avoids the need of sterile working conditions, and and microorganism’s choice.
    [Show full text]
  • Mitsubishi Chemical Sustainability Report 2018
    Plant-Derived, Biodegradable Plastic BioPBS™ Relevant SDG SDG 12: Ensure sustainable consumption and production patterns Striving toward Sustainable Production We are now facing such global-scale risks as accelerating climate change, the depletion of natural resources, disparities in water resource distribution, expanding and graying populations, and food and agricultural issues. Given this critical situation, as a chemical company, we believe it is our mission to realize, through innovation, the efficient use of natural resources and energy, the utilization of renewable resources, and the reduction of environmental burden and to thereby enhance environmental and social sustainability. Initiatives to replace non-renewable petroleum with renewable biomass as the raw material for plastic produc- tion are helping to more efficiently use resources and greatly contribute to ensuring sustainable production, part of one of the SDGs. At the same time, making plastics biodegradable while retaining their useful proper- ties makes it easier for them to break down in the environment, helping to reduce environmental burden. With BioPBS™, a renewably sourced and biodegradable product, Mitsubishi Chemical (MCC) has developed a plastic that offers both of these unrelated attributes. Features of BioPBS™ Polybutylene succinate (PBS) is an aliphatic polyester resin made from succinic acid and 1,4-butanediol, two raw ingredients typically manufactured from petroleum. In contrast, BioPBS™ is made with succinic acid derived from plant materials, a renewable resource. Its excellent biodegradability at low temperatures—ulti- mately breaking down into water and CO2—sets it apart from other biodegradable plastics like polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT). BioPBS™ also boasts such outstanding qualities as low-temperature heat sealability, compatibility with other materials, heat resistance and flexibility.
    [Show full text]
  • Bio-Based and Biodegradable Plastics – Facts and Figures Focus on Food Packaging in the Netherlands
    Bio-based and biodegradable plastics – Facts and Figures Focus on food packaging in the Netherlands Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Rapport nr. 1722 Bio-based and biodegradable plastics - Facts and Figures Focus on food packaging in the Netherlands Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Report 1722 Colophon Title Bio-based and biodegradable plastics - Facts and Figures Author(s) Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Number Wageningen Food & Biobased Research number 1722 ISBN-number 978-94-6343-121-7 DOI http://dx.doi.org/10.18174/408350 Date of publication April 2017 Version Concept Confidentiality No/yes+date of expiration OPD code OPD code Approved by Christiaan Bolck Review Intern Name reviewer Christaan Bolck Sponsor RVO.nl + Dutch Ministry of Economic Affairs Client RVO.nl + Dutch Ministry of Economic Affairs Wageningen Food & Biobased Research P.O. Box 17 NL-6700 AA Wageningen Tel: +31 (0)317 480 084 E-mail: [email protected] Internet: www.wur.nl/foodandbiobased-research © Wageningen Food & Biobased Research, institute within the legal entity Stichting Wageningen Research All rights reserved. No part of this publication may be reproduced, stored in a retrieval system of any nature, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. The publisher does not accept any liability for inaccuracies in this report. 2 © Wageningen Food & Biobased Research, institute within the legal entity Stichting Wageningen Research Preface For over 25 years Wageningen Food & Biobased Research (WFBR) is involved in research and development of bio-based materials and products.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,753,724 Edgington Et Al
    USOO5753724A United States Patent (19) 11 Patent Number: 5,753,724 Edgington et al. 45 Date of Patent: May 19, 1998 54) BIODEGRADABLE/COMPOSTABLE HOT 5,180.765 l/1993 Sinclair ................................... 524/306 MELTADHESIVES COMPRISING 526,050 6/1993 Sinclair ........ ... 524/30 5,252,642 10/1993 Sinclair et al. .. ... 524/320 POLYESTER OF LACTIC ACD 5,252,646 10/1993 Iovine et al. ............................ 524/272 5,32,850 5/1994 Iovine et al. ... 5242 75) Inventors: Garry J. Edgington, White Bear Lake; 5,424,346 6/1995 Sinclair ............ 524/320 Christopher M. Ryan. Dayton, both of 5,444, 13 8/1995 Sinclair et al. ... ... 524/317 Minn. 5,502,158 3/1996 Sinclair et al. ......................... 524/315 73 Assignee: H. B. Fuller Licensing & Financing, Primary Examiner-Peter A. Szekely Inc., St. Paul, Minn. Attorney, Agent, or Firm-Nancy Quan; Carolyn Fischer 57 ABSTRACT 21 Appl. No.: 786,430 A hot melt adhesive composition can be made using a 22 Filed: Jan. 21, 1997 polyester derived from 2-propanoic acid (lactic acid). A thermoplastic resin grade polyester can be formulated into a Related U.S. Application Data functional adhesive using adhesive components. A lower 62 Division of Ser. No. 632,918, Apr. 16, 1996, abandoned, molecular weight material can be used as a tackifying resin which is a continuation of Ser. No. 136,670, Oct. 15, 1993, with a biodegradable/compostable resin in a formulated hot abandoned. melt adhesive. The adhesive material can be made pressure sensitive and can be made entirely by a degradable by (51) Int. Cl. ......................... C08L 67/04: CO8G 63/08; combining the polyester polymer with other biodegradable/ CO8F 120/26 compostable ingredients.
    [Show full text]
  • A Glimpse of Biodegradable Polymers and Their Biomedical Applications
    Spec. Matrices 2019; 7:1–19 Research Article Open Access Kazumasa Nomura* and Paul Terwilliger e-Polymers 2019; 19: 385–410 Self-dual Leonard pairs Review Article Open Access https://doi.org/10.1515/spma-2019-0001 Received May 8, 2018; accepted September 22, 2018 Tejas V. Shah and Dilip V. Vasava* Abstract: Let F denote a eld and let V denote a vector space over F with nite positive dimension. Consider A glimpse of biodegradablea pair A, A∗ of diagonalizable polymersF-linear maps and on V ,their each of which acts on an eigenbasis for the other one in an irreducible tridiagonal fashion. Such a pair is called a Leonard pair. We consider the self-dual case in which biomedical applicationsthere exists an automorphism of the endomorphism algebra of V that swaps A and A∗. Such an automorphism is unique, and called the duality A A∗. In the present paper we give a comprehensive description of this ↔ https://doi.org/10.1515/epoly-2019-0041 duality. In particular,NIPAM we - displayN-isopropylacrylamide an invertible F-linear map T on V such that the map X TXT− is the duality Received December 04, 2018; accepted March 29, 2019. → A A∗. We expressDEAMT -as N, a N-diethyl polynomial acrylamide in A and A∗. We describe how T acts on ags, decompositions, ↔ NVC - N-vinylcaprolactam Abstract: Over the past two decades, biodegradableand 24 bases for V. MVE - Methyl vinyl ether polymers (BPs) have been widely used in biomedical Keywords: LeonardPEO pair,- poly(ethylene tridiagonal matrix, oxide) self-dual applications such as drug carrier, gene delivery, tissue PPO - poly(propylene oxide) engineering, diagnosis, medical devices, and antibac- Classication: 17B37,15A21AAc - Acrylic acid terial/antifouling biomaterials.
    [Show full text]
  • Analysis of Flammability and Smoke Emission of Rigid Polyurethane
    J Therm Anal Calorim DOI 10.1007/s10973-017-6294-4 Analysis of flammability and smoke emission of rigid polyurethane foams modified with nanoparticles and halogen-free fire retardants 1 1 2 1 Kamila Salasinska • Monika Borucka • Milena Leszczyn´ska • Wojciech Zatorski • 1 1 2 Maciej Celin´ski • Agnieszka Gajek • Joanna Ryszkowska Received: 30 November 2016 / Accepted: 8 March 2017 Ó The Author(s) 2017. This article is an open access publication Abstract Using one-step method, rigid polyurethane Introduction foams were made, modified with developed fire retardant systems containing halogen-free flame retardants and Rigid polyurethane foams (RPUF) are used in many areas, nanofillers in the form of multi-walled carbon nanotubes or including construction industry as one of the best com- nanoscale titanium dioxide. The materials were subjected mercially available insulation materials. RPUF have very to a test using a cone calorimeter and smoke-generating good mechanical properties, resistance to aging and water chamber, and selected samples were further analyzed via and also atmospheric factors [1–4]. Unfortunately, rigid thermogravimetry and oxygen index. Moreover, the prod- polyurethane foams have also some disadvantages, among ucts of thermal degradation of selected samples were which special attention should be paid to flammability and identified using gas chromatography with mass spectrom- toxicity of the gas products emitted during thermal degra- eter. Conducted flammability tests confirmed the presence dation and combustion [5]. of a synergistic effect between the used nanofillers and Combustion of polymeric materials is an exothermic halogen-free flame retardants. It has been observed that the reaction of the catalytic oxidation of organic compounds carbonized layer, the formation of which favored the carried by energy supplied in the form of heat and forming presence of nanoadditives, inhibits the combustion process.
    [Show full text]
  • Acetic Acid As an Indirect Sink of CO2 for the Synthesis of Polyhydroxyalkanoates (PHA): Comparison with PHA Production Processes Directly Using CO2 As Feedstock
    applied sciences Article Acetic Acid as an Indirect Sink of CO2 for the Synthesis of Polyhydroxyalkanoates (PHA): Comparison with PHA Production Processes Directly Using CO2 as Feedstock Linsey Garcia-Gonzalez * and Heleen De Wever ID Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +32-14-336-981 Received: 1 August 2018; Accepted: 19 August 2018; Published: 21 August 2018 Featured Application: production of bioplastics with tailored composition and properties from the feedstock CO2, in view of maximal CO2 fixation and minimal H2 consumption. Abstract: White biotechnology is promising to transform CO2 emissions into a valuable commodity chemical such as the biopolymer polyhydroxyalkanaotes (PHA). Our calculations indicated that the indirect conversion of acetic acid from CO2 into PHA is an interesting alternative for the direct production of PHA from CO2 in terms of CO2 fixation, H2 consumption, substrate cost, safety and process performance. An alternative cultivation method using acetic acid as an indirect sink of CO2 was therefore developed and a proof-of-concept provided for the synthesis of both the homopolymer poly(3-hydroxybutyrate) (PHB) and the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The aim was to compare key performance parameters with those of existing cultivation methods for direct conversion of CO2 to PHA. Fed-batch cultivations for PHA production were performed using a pH-stat fed-batch feeding strategy in combination with an additional Dissolved Oxygen (DO)-dependent feed. After 118 h of fermentation, 60 g/L cell dry matter (CDM) containing 72% of PHB was obtained, which are the highest result values reported so far.
    [Show full text]
  • Performance Materials Solutions for the Polymer Industry Table of Contents Improving Well-Being by Offering the Best of Nature
    PERFORMANCE MATERIALS SOLUTIONS FOR THE POLYMER INDUSTRY TABLE OF CONTENTS IMPROVING WELL-BEING BY OFFERING THE BEST OF NATURE Roquette is a global leader in plant-based ingredients, Roquette provides high performing, innovative and a pioneer of plant proteins and a leading provider of sustainable plant-based solutions for industrial pharmaceutical excipients. applications. In collaboration with its customers and partners, the group addresses current and future societal challenges by unlocking the potential of nature to offer the best ingredients for food, nutrition and health markets. These ingredients respond to unique and essential needs, enable healthier lifestyles and are critical components of life-saving medicines. Thanks to a constant drive for innovation and a long- term vision, the group is committed to improving the well-being of millions of people all over the world while taking care of resources and territories. Roquette currently operates in over 100 countries, has a turnover of around 3.7 billion euros and employs 8,670 people worldwide. Roquette is a monomer producer from 100% biomass feedstock to serve brand owners and consumers. ROQUETTE GROUP KEY FIGURES 100+countries served 5000+customers years85 of industrial 8670employees by ONE Global and operational Commercial Network excellence 45+nationalities industrial25 sites patents40 / year €3.7bn turnover 300+R&D workforce PRODUCTION EXPERTISE STARCH PRODUCTION SCHEME Native starch Drying STARCH = o po r f lyme ts glu ni Modification cose u Hydrolysis Enzymes Modified starch
    [Show full text]
  • Microplastic Extraction Protocols Can Impact the Polymer Structure
    Pfohl et al. Microplastics and Nanoplastics (2021) 1:8 Microplastics and https://doi.org/10.1186/s43591-021-00009-9 Nanoplastics RESEARCH ARTICLE Open Access Microplastic extraction protocols can impact the polymer structure Patrizia Pfohl1, Christian Roth1, Lars Meyer1, Ute Heinemeyer1, Till Gruendling1, Christiane Lang1, Nikolaus Nestle1, Thilo Hofmann2, Wendel Wohlleben1 and Sarah Jessl1,3* Abstract Although microplastics are ubiquitous in today’s natural environments, our understanding of the materials, quantities, and particle sizes involved remains limited. The recovery of microplastics from different types of environmental matrices requires standardized matrix digestion protocols that allow inter-laboratory comparisons and that have no effect on the polymers themselves. A number of commonly used digestion methods rely on oxidation with concentrated hydrogen peroxide solutions to remove organic matter from the matrix. However, this can alter the nature of polymers through hydrolysis and often does not lead to a complete matrix removal. We have therefore investigated the use of two altered matrix digestion protocols, an acidic (Fenton) protocol and a new alkaline (Basic Piranha) protocol, focusing mainly on the effect on biodegradable polymers (polylactide, polybutylene adipate terephthalate, polybutylene succinate) and polymers with known degradation pathways via hydrolysis (thermoplastic polyurethanes, polyamide). Comparing the initial surface textures, chemical compositions, and particle size distributions with those obtained after
    [Show full text]
  • Melt-Spun Fibers for Textile Applications
    materials Review Melt-Spun Fibers for Textile Applications Rudolf Hufenus 1,*, Yurong Yan 2, Martin Dauner 3 and Takeshi Kikutani 4 1 Laboratory for Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland 2 Key Lab Guangdong High Property & Functional Polymer Materials, Department of Polymer Materials and Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe, Guangzhou 510640, China; [email protected] 3 German Institutes of Textile and Fiber Research, Körschtalstraße 26, D-73770 Denkendorf, Germany; [email protected] 4 Tokyo Institute of Technology, 4259-J3-142, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; [email protected] * Correspondence: [email protected]; Tel.: +41-58-765-7341 Received: 19 August 2020; Accepted: 23 September 2020; Published: 26 September 2020 Abstract: Textiles have a very long history, but they are far from becoming outdated. They gain new importance in technical applications, and man-made fibers are at the center of this ongoing innovation. The development of high-tech textiles relies on enhancements of fiber raw materials and processing techniques. Today, melt spinning of polymers is the most commonly used method for manufacturing commercial fibers, due to the simplicity of the production line, high spinning velocities, low production cost and environmental friendliness. Topics covered in this review are established and novel polymers, additives and processes used in melt spinning. In addition, fundamental questions regarding fiber morphologies, structure-property relationships, as well as flow and draw instabilities are addressed. Multicomponent melt-spinning, where several functionalities can be combined in one fiber, is also discussed.
    [Show full text]
  • Print This Article
    PEER-REVIEWED ARTICLE bioresources.com Mimusops elengi Seed Shell Powder as a New Bio-Filler for Polypropylene-based Bio-Composites Mathialagan Muniyadi,a,* Tiffany Yit Siew Ng,a Yamuna Munusamy,a and Zhong Xian Ooi b Mimusops elengi seed shell powder (MESSP) was introduced as a new bio-filler in polypropylene (PP). The MESSP was characterized using a particle size analyzer, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and a thermogravimetric analyzer. MESSP was successfully melt mixed with polypropylene to produce bio- composite at various MESSP loading. The processability and properties of the bio-composites were characterized by using processing torques, differential scanning calorimetry, tensile test, water absorption, and SEM. The processability of PP was not affected by the addition of MESSP, which was revealed from the minimum changes in the processing torques, melting temperature, crystallization temperature, and degree of crystallinity. The tensile strength and elastic modulus of the bio- composites were improved with an addition of MESSP of up to 10 wt.%. However, the elongation at break and resistance to water absorption decreased slightly with increased MESSP loading. Morphological observations revealed that the MESSP showed good dispersion and adhesion in the PP matrix of up to 5 wt.% MESSP. Above 5 wt.% MESSP, agglomerates formed, which influenced the physical- mechanical properties of the PP and MESSP bio-composites. Results indicated that PP/MESSP composites can be used to replace PP in
    [Show full text]
  • Enhancement Strategies for Advanced Applications
    polymers Review Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate): Enhancement Strategies for Advanced Applications Ariagna L. Rivera-Briso 1 and Ángel Serrano-Aroca 2,* ID 1 Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 65, 46008 Valencia, Spain; [email protected] 2 Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001 Valencia, Spain * Correspondence: [email protected]; Tel.: +34-963637412 (ext. 5256) Received: 5 June 2018; Accepted: 29 June 2018; Published: 3 July 2018 Abstract: Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV, is a microbial biopolymer with excellent biocompatible and biodegradable properties that make it a potential candidate for substituting petroleum-derived polymers. However, it lacks mechanical strength, water sorption and diffusion, electrical and/or thermal properties, antimicrobial activity, wettability, biological properties, and porosity, among others, limiting its application. For this reason, many researchers around the world are currently working on how to overcome the drawbacks of this promising material. This review summarises the main advances achieved in this field so far, addressing most of the chemical and physical strategies to modify PHBV and placing particular emphasis on the combination of PHBV with other materials from a variety of different structures and properties, such as other polymers, natural fibres, carbon nanomaterials, nanocellulose, nanoclays, and nanometals, producing a wide range of composite biomaterials with increased potential applications. Finally, the most important methods to fabricate porous PHBV scaffolds for tissue engineering applications are presented. Even though great advances have been achieved so far, much research needs to be conducted still, in order to find new alternative enhancement strategies able to produce advanced PHBV-based materials able to overcome many of these challenges.
    [Show full text]