Course Introduction and Overview of Destruction and Dynamics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Master's Thesis
MASTER'S THESIS Online Model Predictive Control of a Robotic System by Combining Simulation and Optimization Mohammad Rokonuzzaman Pappu 2015 Master of Science (120 credits) Space Engineering - Space Master Luleå University of Technology Department of Computer Science, Electrical and Space Engineering Mohammad Rokonuzzaman Pappu Online Model Predictive Control of a Robotic System by Combining Simulation and Optimization School of Electrical Engineering Department of Electrical Engineering and Automation Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Technology Espoo, August 18, 2015 Instructor: Professor Perttu Hämäläinen Aalto University School of Arts, Design and Architecture Supervisors: Professor Ville Kyrki Professor Reza Emami Aalto University Luleå University of Technology School of Electrical Engineering Preface First of all, I would like to express my sincere gratitude to my supervisor Pro- fessor Ville Kyrki for his generous and patient support during the work of this thesis. He was always available for questions and it would not have been possi- ble to finish the work in time without his excellent guidance. I would also like to thank my instructor Perttu H¨am¨al¨ainen for his support which was invaluable for this thesis. My sincere thanks to all the members of Intelligent Robotics group who were nothing but helpful throughout this work. Finally, a special thanks to my colleagues of SpaceMaster program in Helsinki for their constant support and encouragement. Espoo, August 18, -
Agx Multiphysics Download
Agx multiphysics download click here to download A patch release of AgX Dynamics is now available for download for all of our licensed customers. This version include some minor. AGX Dynamics is a professional multi-purpose physics engine for simulators, Virtual parallel high performance hybrid equation solvers and novel multi- physics models. Why choose AGX Dynamics? Download AGX product brochure. This video shows a simulation of a wheel loader interacting with a dynamic tree model. High fidelity. AGX Multiphysics is a proprietary real-time physics engine developed by Algoryx Simulation AB Create a book · Download as PDF · Printable version. AgX Multiphysics Toolkit · Age Of Empires III The Asian Dynasties Expansion. Convert trail version Free Download, product key, keygen, Activator com extended. free full download agx multiphysics toolkit from AYS search www.doorway.ru have many downloads related to agx multiphysics toolkit which are hosted on sites like. With AGXUnity, it is possible to incorporate a real physics engine into a well Download from the prebuilt-packages sub-directory in the repository www.doorway.rug: multiphysics. A www.doorway.ru app that runs a physics engine and lets clients download physics data in real Clone or download AgX Multiphysics compiled with Lua support. Agx multiphysics toolkit. Developed physics the was made dynamics multiphysics simulation. Runtime library for AgX MultiPhysics Library. How to repair file. Original file to replace broken file www.doorway.ru Download. Current version: Some short videos that may help starting with AGX-III. Example 1: Finding a possible Pareto front for the Balaban Index in the Missing: multiphysics. -
An Optimal Solution for Implementing a Specific 3D Web Application
IT 16 060 Examensarbete 30 hp Augusti 2016 An optimal solution for implementing a specific 3D web application Mathias Nordin Institutionen för informationsteknologi Department of Information Technology Abstract An optimal solution for implementing a specific 3D web application Mathias Nordin Teknisk- naturvetenskaplig fakultet UTH-enheten WebGL equips web browsers with the ability to access graphic cards for extra processing Besöksadress: power. WebGL uses GLSL ES to communicate with graphics cards, which uses Ångströmlaboratoriet Lägerhyddsvägen 1 different Hus 4, Plan 0 instructions compared with common web development languages. In order to simplify the development process there are JavaScript libraries handles the Postadress: Box 536 751 21 Uppsala communication with WebGL. On the Khronos website there is a listing of 35 different Telefon: JavaScript libraries that access WebGL. 018 – 471 30 03 It is time consuming for developers to compare the benefits and disadvantages of all Telefax: these 018 – 471 30 00 libraries to find the best WebGL library for their need. This thesis sets up requirements of a Hemsida: specific WebGL application and investigates which libraries that are best for http://www.teknat.uu.se/student implmeneting its requirements. The procedure is done in different steps. Firstly is the requirements for the 3D web application defined. Then are all the libraries analyzed and mapped against these requirements. The two libraries that best fulfilled the requirments is Three.js with Physi.js and Babylon.js. The libraries is used in two seperate implementations of the intitial game. Three.js with Physi.js is the best libraries for implementig the requirements of the game. -
Procedural Destruction of Objects for Computer Games
Procedural Destruction of Objects for Computer Games PUBLIC VERSION THESIS submitted in partial fulfilment of the requirements for the degree of MASTER OF SCIENCE in MEDIA AND KNOWLEDGE ENGINEERING by Joris van Gestel born in Zevenhuizen, the Netherlands Computer Graphics and CAD/CAM Group Cannibal Game Studios Department of Mediamatics Molengraaffsingel 12-14 Faculty of EEMCS, Delft University of Technology 2629 JD Delft Delft, the Netherlands The Netherlands www.ewi.tudelft.nl www.cannibalgamestudios.com Author: Joris van Gestel Student id: 1099825 Email: [email protected] Date: May 10, 2011 © 2011 Cannibal Game Studios. All Rights Reserved i Summary Traditional content creation for computer games is a costly process. In particular, current techniques for authoring destructible behaviour are labour intensive and often limited to a single object basis. We aim to create an intuitive approach which allows designers to visually define destructible behaviour for objects in a reusable manner, which can then be applied in real-time. First we present a short introduction into the way that destruction has been done in games for many years. To better understand the physical processes that are being replicated, we present some information on how destruction works in the real world, and the high level approaches that have developed to simulate these processes. Using criteria gathered from industry professionals, we survey previous research work and determine their usability in a game development context. The approach which suits these criteria best is then selected as the basis for the approach presented in this work. By examining commercial solutions the shortcomings of existing technologies are determined to establish a solution direction. -
Maya 2012 Create Breathtaking 3D
® ® Autodesk Maya 2012 Create Breathtaking 3D. Create innovative digital entertainment with Autodesk Maya 2012, an end-to-end solution for CG production at an exceptional value. I really like all the positive steps taken in Maya 2012. With the high-fidelity viewport, enhancements to Nucleus, and the overall performance improvements, Maya has become more flexible, powerful and modern. Black Swan. Image courtesy of Look FX. © Fox Searchlight Pictures. — Peter Shipkov Technical Director Modernize your pipeline and compete more effectively of the multi-threaded NVIDIA® PhysX® engine* to Digital Domain with Autodesk® Maya® 2012 modeling, animation, create rigid-body simulations directly in the Maya visual effects, rendering, and compositing software. viewport—and if you use PhysX in your game engine, Whether you work in film, games, television, or you’ll be matching the runtime solution. The new Digital advertising, publishing, and graphic design production, Molecular Matter plug-in from Pixelux Entertainment™ Maya 2012 offers state-of-the-art toolsets, combined enables you to create highly-realistic shattering into a single affordable offering. simulations with multiple interacting materials. Meanwhile, further development of the Nucleus New Toolsets for Previsualization and unified simulation framework and its associated Games Prototyping modules means that convincing pouring, splashing, Today’s challenging productions demand modern and boiling liquid effects are easier to achieve. toolsets that enable you to make interactive decisions in-context. Maya 2012 delivers new and enhanced Better Pipeline Integration features to help you create more compelling New single-step interoperability between Maya 2012, previsualizations and games prototypes, or experiment Autodesk® MotionBuilder® 2012 software, and the and iterate more easily on your animations. -
Geometry & Computation for Interactive Simulation
Geometry & Computation for Interactive Simulation Jorg Peters (CISE University of Florida, USA), Dinesh Pai (University of British Columbia), Ulrich Reif (Technische Universitaet Darmstadt) Sep 24 – Sep 29, 2017 1 Overview The workshop advanced the state of the art in geometry and computation for interactive simulation by in- troducing to each other researchers from different branches of academia, research labs and industry. These researchers share the common goal of improving the interface between geometry and computation for physi- cal simulation – but approach it with differing emphasis, techniques and toolkits. A key issue for all partici- pants is to shorten process times and to improve the outcomes of the design-analysis cycle. That is, to more quickly optimize shape, structure and properties to achieve one or multiple design goals. Correspondingly, the challenges laid out covered a wide spectrum from hierarchical design and prediction of novel 3D printed materials, to multi-objective optimization minimizing fuel consumption of commercial airplanes, to creating training scenarios for minimally invasive surgery, to multi-point interactive force feedback for virtually plac- ing an engine into a restricted cavity. These challenges map to challenges in the underlying areas of geometry processing, computational geometry, geometric design, formulation of simulation models, isogeometric and higher-order isoparametric design with splines and meshingless approaches, to real-time computation for interactive surgical force-feedback simulation. The workshop was highly succesful in presenting and con- trasting this rich set of techniques. And it generated recommendations for educating future generation of researchers in geometry and computation for interactive simulation (see outcomes). The lower than usual number of participants (due to a second series of earth quakes just before the meeting) allowed for increased length of individual presentations, so as to discuss topics and ideas at length, and to address basics theory. -
FREE STEM Apps for Common Core Daniel E
Georgia Southern University Digital Commons@Georgia Southern Interdisciplinary STEM Teaching & Learning Conference Mar 6th, 2:45 PM - 3:30 PM FREE STEM Apps for Common Core Daniel E. Rivera Mr. Georgia Southern University, [email protected] Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/stem Recommended Citation Rivera, Daniel E. Mr., "FREE STEM Apps for Common Core" (2015). Interdisciplinary STEM Teaching & Learning Conference. 38. https://digitalcommons.georgiasouthern.edu/stem/2015/2015/38 This event is brought to you for free and open access by the Conferences & Events at Digital Commons@Georgia Southern. It has been accepted for inclusion in Interdisciplinary STEM Teaching & Learning Conference by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. STEM Apps for Common Core Access/Edit this doc online: http://goo.gl/bLkaXx Science is one of the most amazing fields of study. It explains our universe. It enables us to do the impossible. It makes sense of mystery. What many once believed were supernatural or magical events, we now explain, understand, and can apply to our everyday lives. Every modern marvel we have - from medicine, to technology, to agriculture- we owe to the scientific study of those before us. We stand on the shoulders of giants. It is therefore tremendously disappointing that so many regard science as simply a nerdy pursuit, or with contempt, or with boredom. In many ways w e stopped dreaming. Yet science is the alchemy and magic of yesterday, harnessed for humanity's benefit today. Perhaps no other subject has been so thoroughly embraced by the Internet and modern computing. -
Michał Domański Curriculum Vitae / Portfolio
Michał Domański Curriculum Vitae / Portfolio date of birth: 09-03-1986 e-mail: [email protected] address: ul. Kabacki Dukt 8/141 tel. +48 608 629 046 02-798 Warsaw Skype: rein4ce Poland I am fascinated by the world of science, programming, I love experimenting with the latest technologies, I have a great interest in virtual reality, robotics and military. Most of all I value the pursuit of professionalism, continuous education and expanding one's skill set. Education 2009 - till now Polish Japanese Institute of Information Technology Computer Science - undergraduate studies, currently 4th semester 2004 - 2009 Cracow University of Technology Master of Science in Architecture and Urbanism - graduated 2000 - 2004 Romuald Traugutt High School in Częstochowa mathematics, physics, computer-science profile Skills Advanced level Average level Software C++ (10 years), MFC Java, J2ME Windows 98, XP, Windows 7 C# .NET 3.5 (3 years) DirectX, MDX SketchUP OpenGL BASCOM AutoCAD Actionscript/Flex MS SQL, Oracle Visual Studio 2008, MSVC 6.0 WPF Eclipse HTML/CSS Flex Builder Photoshop CS2 Addtional skills: Good understanding of design patterns and ability to work with complex projects Strong problem solving skills Excellent work organisation and teamwork coordination Eagerness to learn any new technology Languages: Polish, English (proficiency), German (basic) Ever since I can remember my interests lied in computers. Through many years of self-education and studying many projects I have gained insight and experience in designing and programming professional level software. I did an extensive research in the game programming domain, analyzing game engines such as Quake, Half-Life and Source Engine, through which I have learned how to structure and develop efficient systems while implementing best industry-standard practices. -
Physics Editor Mac Crack Appl
1 / 2 Physics Editor Mac Crack Appl This is a list of software packages that implement the finite element method for solving partial differential equations. Software, Features, Developer, Version, Released, License, Price, Platform. Agros2D, Multiplatform open source application for the solution of physical ... Yves Renard, Julien Pommier, 5.0, 2015-07, LGPL, Free, Unix, Mac OS X, .... For those who prefer to run Origin as an application on your Mac desktop without a reboot of the Mac OS, we suggest the following virtualization software:.. While having the same core (Unigine Engine), there are 3 SDK editions for ... Turnkey interactive 3D app development; Consulting; Software development; 3D .... Top Design Engineering Software: The 50 Best Design Tools and Apps for ... design with the intelligence of 3D direct modeling,” for Windows, Linux, and Mac users. ... COMSOL is a platform for physics-based modeling and simulation that serves as ... and tools for electrical, mechanical, fluid flow, and chemical applications .... Experience the world's most realistic and professional digital art & painting software for Mac and Windows, featuring ... Your original serial number will be required. ... Easy-access panels let you instantly adjust how paint is applied to the brush and how the paint ... 4 physical cores/8 logical cores or higher (recommended).. A dynamic soft-body physics vehicle simulator capable of doing just about anything. ... Popular user-defined tags for this product: Simulation .... Easy-to-Use, Powerful Tools for 3D Animation, GPU Rendering, VFX and Motion Design. ... Trapcode Suite 16 With New Physics, Magic Bullet Suite 14 With New Color Workflows Now ... Maxon Cinema 4D Immediately Available for M1-Powered Macs image .. -
Nanoscience Education
The Molecular Workbench Software: An Innova- tive Dynamic Modeling Tool for Nanoscience Education Charles Xie and Amy Pallant The Advanced Educational Modeling Laboratory The Concord Consortium, Concord, Massachusetts, USA Introduction Nanoscience and nanotechnology are critically important in the 21st century (National Research Council, 2006; National Science and Technology Council, 2007). This is the field in which major sciences are joining, blending, and integrating (Battelle Memorial Institute & Foresight Nanotech Institute, 2007; Goodsell, 2004). The prospect of nanoscience and nanotechnology in tomorrow’s science and technology has called for transformative changes in science curricula in today’s secondary education (Chang, 2006; Sweeney & Seal, 2008). Nanoscience and nanotechnology are built on top of many fundamental concepts that have already been covered by the current K-12 educational standards of physical sciences in the US (National Research Council, 1996). In theory, nano content can be naturally integrated into current curricular frameworks without compromising the time for tradi- tional content. In practice, however, teaching nanoscience and nanotechnology at the secondary level can turn out to be challenging (Greenberg, 2009). Although nanoscience takes root in ba- sic physical sciences, it requires a higher level of thinking based on a greater knowledge base. In many cases, this level is not limited to knowing facts such as how small a nano- meter is or what the structure of a buckyball molecule looks like. Most importantly, it centers on an understanding of how things work in the nanoscale world and—for the nanotechnology part—a sense of how to engineer nanoscale systems (Drexler, 1992). The mission of nanoscience education cannot be declared fully accomplished if students do not start to develop these abilities towards the end of a course or a program. -
Apple IOS Game Development Engines P
SWE578 2012S 1 Apple IOS Game Development Engines Abstract—iOS(formerly called iPhone OS) is Apple's section we make comparison and draw our conclusion. mobile operating system that is used on the company's mobile device series such as iPhone, iPod Touch and iPad which II. GAME ENGINE ANATOMY have become quite popular since the first iPhone launched. There are more than 100,000 of the titles in the App Store are A common misconception is that a game engine only games. Many of the games in the store are 2D&3D games and draws the graphics that we see on the screen. This is of it can be said that in order to develop a complicated 3D course wrong, for a game engine is a collection of graphical game, using games engines is inevitable. interacting software that together makes a single unit that runs an actual game. The drawing process is one of the I. INTRODUCTION subsystems that could be labeled as the rendering With its unique features such as multitouch screen and engine[3]. accelerometer and graphics capabilities iOS devices has Game engines provide a visual development tools in become one of the most distinctive mobile game addition to software components. These tools are provided platforms. More than 100,000 of the titles in the App Store in an integrated development environment in order to are games. With the low development cost and ease of create games rapidly. Game developers attempt to "pre- publishing all make very strange but new development invent the wheel” elements while creating games such as opportunity for developers.[2]Game production is a quite graphics, sound, physics and AI functions. -
Physics Simulation Game Engine Benchmark Student: Marek Papinčák Supervisor: Doc
ASSIGNMENT OF BACHELOR’S THESIS Title: Physics Simulation Game Engine Benchmark Student: Marek Papinčák Supervisor: doc. Ing. Jiří Bittner, Ph.D. Study Programme: Informatics Study Branch: Web and Software Engineering Department: Department of Software Engineering Validity: Until the end of summer semester 2018/19 Instructions Review the existing tools and methods used for physics simulation in contemporary game engines. In the review, cover also the existing benchmarks created for evaluation of physics simulation performance. Identify parts of physics simulation with the highest computational overhead. Design at least three test scenarios that will allow to evaluate the dependence of the simulation on carefully selected parameters (e.g. number of colliding objects, number of simulated projectiles). Implement the designed simulation scenarios within Unity game engine and conduct a series of measurements that will analyze the behavior of the physics simulation. Finally, create a simple game that will make use of the tested scenarios. References [1] Jason Gregory. Game Engine Architecture, 2nd edition. CRC Press, 2014. [2] Ian Millington. Game Physics Engine Development, 2nd edition. CRC Press, 2010. [3] Unity User Manual. Unity Technologies, 2017. Available at https://docs.unity3d.com/Manual/index.html [4] Antonín Šmíd. Comparison of the Unity and Unreal Engines. Bachelor Thesis, CTU FEE, 2017. Ing. Michal Valenta, Ph.D. doc. RNDr. Ing. Marcel Jiřina, Ph.D. Head of Department Dean Prague February 8, 2018 Bachelor’s thesis Physics Simulation Game Engine Benchmark Marek Papinˇc´ak Department of Software Engineering Supervisor: doc. Ing. Jiˇr´ıBittner, Ph.D. May 15, 2018 Acknowledgements I am thankful to Jiri Bittner, an associate professor at the Department of Computer Graphics and Interaction, for sharing his expertise and helping me with this thesis.