Benefits of Integrating Ngl Extraction and Lng Liquefaction Technology

Total Page:16

File Type:pdf, Size:1020Kb

Benefits of Integrating Ngl Extraction and Lng Liquefaction Technology BENEFITS OF INTEGRATING NGL EXTRACTION AND LNG LIQUEFACTION TECHNOLOGY Authors Doug Elliot Wesley R. Qualls IPSI LLC ConocoPhillips Company President, Chief Operating Officer Director, Technology Licensing P.O. Box 2166 3000 Post Oak Blvd. – Mail Stop 59 Houston, TX 77252-2166 Houston, TX 77056 713-235-2400 713-235-4521 [email protected] [email protected] Shawn Huang Jong Juh (Roger) Chen ConocoPhillips Company Sr. Vice President Process Engineer IPSI LLC 600 N. Dairy Ashford P.O. Box 2166 Houston, TX 77079 Houston, TX 77252-2166 281-293-4124 713-235-4151 [email protected] [email protected] Jame Yao R. J. Lee Vice President, LNG Technology (Formerly) IPSI LLC IPSI LLC P.O. Box 2166 P.O. Box 2166 Houston, TX 77252-2166 Houston, TX 77252-2166 713-235-5231 713-235-2546 [email protected] [email protected] Ying (Irene) Zhang Process Engineer IPSI LLC P.O. Box 2166 Houston, TX 77252-2166 713-235-3179 [email protected] Copyright ©– 2005, ConocoPhillips Company Unpublished Prepared for Presentation at AIChE 2005 Spring National Meeting 5th Topical Conference on Natural Gas Utilization (TI) Session 16c – Gas. AIChE Shall Not Be Responsible For Statements or Opinions Contained in Papers or Printed in its Publications. Abstract The combination of changing global markets for natural gas liquids (NGL) with the simultaneous increase in global demand for liquefied natural gas (LNG) has stimulated an interest in the integration of NGL recovery technology with LNG liquefaction technologies. Historically, the removal of “heavy” or high-freezing-point hydrocarbons from the feed to LNG plants has been characterized as “gas conditioning” and achieved using one or more distillation columns. While some attempts to provide reflux to the distillation columns marginally enhanced NGL recovery, little emphasis was placed on maximizing NGL recovery as a product from the LNG process. As such, the integration of the two processes was not a priority. Integrating state-of-the art NGL recovery technology within the CoP LNGSM Process1, formerly the Phillips Optimized Cascade LNG Process, results in a significant reduction in the specific power required to produce LNG, while maximizing NGL recovery. This corresponds to a production increase in both LNG and NGL for comparable compression schemes as compared to stand-alone LNG liquefaction and NGL extraction facilities. In addition, there are potential enhancements to the overall facility availability and project economics using the integrated concept. This integrated concept has been applied to three ongoing international NGL/LNG projects using the CoP LNG Process. In these cases, LNG production has increased by approximately 7%, while using the same process horsepower. 1.0 Introduction Due to clean burning characteristics and the ability to meet stringent environmental requirements, the demand for natural gas has increased considerably over the past few years. Projections reflect a continued increase for the next several years. However, it is a clean burning methane rich gas that is in demand as opposed to the typical raw gas that exists in nature, which often includes additional components such as heavier hydrocarbons and other impurities. The heavier hydrocarbons, once separated from natural gas, are referred to as Liquefied Petroleum Gas (LPG) and Natural Gas Liquids (NGL). Impurities may include carbon dioxide, hydrogen sulfide, mercaptans, nitrogen, helium, water, and even trace contaminants such as mercury and trimethylarsine. Natural gas must be “conditioned” prior to liquefaction to remove undesired components. This “conditioning” normally takes place in separate or stand- alone facilities and typically includes the extraction of heavier hydrocarbons such as LPG and NGL. The “conditioned” gas is then typically fed to pipelines for distribution. However, transportation to distant markets through gas pipelines is not always economically or technically feasible. As such, natural gas liquefaction has become a viable and widely accepted alternative. The economics of liquefying natural gas is feasible due mainly to the great volume reduction achieved upon liquefying, which creates the ability to store and transport large volumes. The demand for Liquefied Natural Gas (LNG) in North America has increased considerably as energy demands have increased at the same time wellhead gas supply to pipelines has decreased. LNG is a natural alternative to supplement gas pipelines as the infrastructure to process and burn the gas is largely in place. In addition, LNG is a highly reliable source of gas. For instance, ConocoPhillips’ Kenai, Alaska facility, which utilizes the CoP LNG Process, has supplied LNG to Japan for over thirty-five years without missing a single cargo. Figure 1 is an aerial view of the recently constructed Atlantic LNG facility located in Point Fortin, Trinidad, comprised of three trains and a fourth under construction, all utilizing a modernized version of the CoP LNG Process. •10 MTPA from Trains 1,2&3 •Integrated NGL Extraction •5 MTPA from Train 4 (Under Construction) Figure 1 – The Atlantic LNG Facility – Artist Rendition, Courtesy of Atlantic LNG Company of Trinidad & Tobago Pentanes and heavier hydrocarbons, including aromatics having a high freezing point, must be substantially removed to an extremely low level in order to prevent freezing and subsequent plugging of process equipment in the course of liquefaction. In addition, heavy components must also be removed in order to meet BTU requirements of the LNG product. The heavy hydrocarbons separated from LNG, may then be utilized as petrochemical sales or for gasoline blending. In fact, NGL and/or LPG liquids may command a greater value than LNG. Many efforts have focused on recovery of these heavy hydrocarbons. However, most of the effort has been placed on removal of the heavy hydrocarbons in a separate NGL plant, located upstream of the LNG liquefaction facility. Alternatively, since all components having a higher condensing temperature than methane will be liquefied in the liquefaction process, it becomes technically practical to integrate NGL recovery within LNG liquefaction. Duplication of processing equipment and refrigeration requirements are avoided with an integrated approach. In fact, a substantial cost savings may be achieved when NGL recovery is effectively integrated within the liquefaction process. There have been attempts for NGL recovery within the LNG facility.(1) For example, lighter NGL components are recovered in conjunction with the removal of C5+ hydrocarbons using a scrub column in a propane pre-cooled mixed refrigerant process, as disclosed in the literature.(2, 3) The NGL recovery column is often required to operate at a relatively high pressure (typically above 550 psig) in order to conserve refrigeration compression horsepower requirements. Although refrigeration horsepower is conserved utilizing a high-pressure column, separation efficiency is often significantly reduced due to less favorable operating conditions, i.e. lower relative volatility. With careful integration of the NGL recovery and LNG processes, the overall efficiency of the integrated process can be significantly improved, thereby increasing NGL recovery and reducing specific power consumption.(4) This paper provides examples of NGL recovery technology integrated within the CoP LNG Process, while also presenting recovery and efficiency performance. 2.0 Traditional Stand-Alone Gas Plant Upstream of Liquefaction Plant A number of NGL recovery processes have been developed for natural gas and other gas streams.(5, 6, 7) Among various NGL recovery processes, the cryogenic expansion process has become the preferred process for deep hydrocarbon liquid recovery from natural gas streams. Figure 2 depicts a typical cryogenic expansion process configuration. In the conventional turbo-expander process, feed gas at elevated pressure is pretreated for removal of acid gases, water, mercury and other contaminants to produce a purified gas suitable for cryogenic temperatures. The treated gas is typically partially condensed utilizing heat exchange with other process streams and/or external propane refrigeration, depending upon the gas composition. The resulting condensed liquid, containing the less volatile components, is then separated and fed to a medium or low-pressure fractionation column for recovery of the heavy hydrocarbon components. The remaining non-condensed vapor, containing the more volatile components, is expanded to the lower pressure of the column using a turbo- expander, resulting in further cooling and additional liquid condensation. With the expander discharge pressure essentially the same as the column pressure, the resulting two-phase stream is fed to the top section of the fractionation column. The cold liquid portion acts as reflux, enhancing recovery of heavier hydrocarbon components. The vapor portion combines with the gas in the overhead of the column. The combined gas exits the column overhead as a residue gas. After recovery of available refrigeration, the residue gas is then recompressed to a higher pressure, suitable for pipeline delivery or for LNG liquefaction. To Pipeline or LNG Plant Recompression Expander / Compressor Feed Gas H2S/CO2 Removal Dehydration (Optional) Propane Refrigeration Demethanizer H2O NGL Extraction Reboiler NGL (C2+ or C3+) Figure 2 - Block diagram for typical NGL extraction plant The fractionation column (as described) acts essentially as a stripping column since expander
Recommended publications
  • Briefing on Carbon Dioxide Specifications for Transport 1St Report of the Thematic Working Group On: CO2 Transport, Storage
    Briefing on carbon dioxide specifications for transport 1st Report of the Thematic Working Group on: CO2 transport, storage and networks Release Status: FINAL Author: Dr Peter A Brownsort Date: 29th November 2019 Filename and version: Briefing-CO2-Specs-FINAL-v1.docx EU CCUS PROJECTS NETWORK (No ENER/C2/2017-65/SI2.793333) This project is financed by the European Commission under service contract No. ENER/C2/2017-65/SI2.793333 1 About the CCUS Projects Network The CCUS Projects Network comprises and supports major industrial projects underway across Europe in the field of carbon capture and storage (CCS) and carbon capture and utilisation (CCU). Our Network aims to speed up delivery of these technologies, which the European Commission recognises as crucial to achieving 2050 climate targets. By sharing knowledge and learning from each other, our project members will drive forward the delivery and deployment of CCS and CCU, enabling Europe’s member states to reduce emissions from industry, electricity, transport and heat. http://www.ccusnetwork.eu/ © European Union, 2019 No third-party textual or artistic material is included in the publication without the copyright holder’s prior consent to further dissemination by other third parties. Reproduction is authorised provided the source is acknowledged. This project is financed by the European Commission under service contract No. ENER/C2/2017-65/SI2.793333 2 (Intentionally blank) This project is financed by the European Commission under service contract No. ENER/C2/2017-65/SI2.793333 3 Executive summary There are two types of specification generally relevant to carbon dioxide (CO2) transport, the product specification for end use and the requirement specification for transport.
    [Show full text]
  • How Is Industrial Nitrogen Gas (N2) Produced/Generated?
    www.IFSolutions.com 1 What is Nitrogen and How is it Produced Nitrogen (N2) is a colorless, odorless gas which makes up roughly 78% of the earth’s atmosphere. Nitrogen is defined as a simple asphyxiant having an inerting quality which is utilized in many applications where oxidation is not desired. Nitrogen gas is an industrial gas produced by one of the following means: !! Fractional distillation of liquid air (Praxair, Air Liquide, Linde, etc) !! By mechanical means using gaseous air "! Polymeric Membrane "! Pressure Swing Adsorption or PSA www.IFSolutions.com 2 Fractional Distillation (99.999%) Pure gases can be separated from air by first cooling it until it liquefies, then selectively distilling the components at their various boiling temperatures. The process can produce high purity gases but is very energy-intensive. www.IFSolutions.com 3 Pressure Swing Adsorption (99 – 99.999%) Pressure swing adsorption (PSA) is a technology used to separate some gas species from a mixture of gases under pressure according to the species' molecular characteristics and affinity for an adsorbent material. It operates at near-ambient temperatures and differs significantly from cryogenic distillation techniques of gas separation. Specific adsorptive materials (e.g., zeolites, activated carbon, molecular sieves, etc.) are used as a trap, preferentially adsorbing the target gas species at high pressure. www.IFSolutions.com 4 Membrane (90 – 99.9%) Membrane Technology utilizes a permeable fiber which selectively separates the air depending on the speeds of the molecules of the constituents. This process requires a conditioning of the Feed air due to the clearances in the fiber which are the size of a human hair.
    [Show full text]
  • Industrial Gases and Advanced Technologies for Non-Ferrous Mining and Refining Tell Me More Experience, Understanding and Solutions
    Industrial gases and advanced technologies for non-ferrous mining and refining tell me more Experience, understanding and solutions When a need for reliable gas supply or advanced technologies for your processes occurs, Air Products has the experience to help you be more successful. Working side-by-side with non-ferrous metals mining and refining facilities, we have developed in-depth knowledge and understanding of extractive and refining processes. You can leverage our experience to help increase yield, improve production, decrease harmful fugitive emissions, and reduce energy consumption and fuel cost throughout your operations. As a leading global industrial gas supplier, we offer a full range of supply modes for industrial gases, including oxygen, nitrogen, argon and hydrogen for small and large volume users, state-of-the-art equipment and a broad range of technical services based on our comprehensive global engineering experience in many critical gas applications. Our products range from packaged gases, such as portable cryogenic dewars, all the way up to energy-efficient cryogenic air separation plants and enabling equipment, such as burners and flow controls. Beyond products and services, customers count on us for over 60 years of technical knowledge and experience. As an owner and operator of over 800 air separation plants worldwide, with an understanding of current and future industry needs, we can develop and implement technical solutions that are right for your process and production challenges. It’s our goal to match your needs with a comprehensive and cost-effective industrial gas system and innovative technologies. “By engaging Air Products at an early stage in our Zambian [Kansanshi copper-gold mining] project, we were able to explore oxygen supply options and determine what we believed to be the best system for our specific process requirements.
    [Show full text]
  • Investment Opportunities in China's Industrial Gas Market
    Executive Insights Volume XIX, Issue 31 Investment Opportunities in China’s Industrial Gas Market Due to their wide-ranging downstream • Gas production: air separation gas, synthetic air and applications and impact on the overall market, specialty gas, etc. industrial gases have been dubbed the “blood • Gas supply: on-site pipeline, bulk transport of liquefied gas, gas cylinders, etc. of the industrials market” and hence play an • Downstream applications: mainly metallurgy, chemicals, important role in China’s national economy. electronics, etc. Industrial gases are widely used in metallurgy, Over half of the global value share of the industrial gas market petroleum, petrochemicals, chemicals, is made up of air separation gases (e.g., nitrogen, oxygen and mechanical, electronics and aerospace and are of argon). The remaining market share is split between industrial synthetic gas (e.g., hydrogen, carbon dioxide and acetylene) great importance to a country’s national defense, and specialty gases (e.g., ultra-high-purity gases and electronics construction and healthcare sectors. However, gases), with 35% and 8–10% of the market share, respectively. given the current economic downturn, slowdown Each of the three main downstream applications focuses on different raw materials: metallurgy favors the use of air in growth and excess capacity reduction, investors separation gases, chemical processes primarily consume synthetic may be hard-pressed to determine where new gases and electronics makes use of specialty gases. investment opportunities and growth prospects Three main supply models exist to provide different levels of lie. In this Executive Insights, L.E.K. Consulting flexibility to customers. On-site gas pipelines are suitable for the assesses investment opportunities in this market.
    [Show full text]
  • The Impact of the Covid-19 Pandemic on the Us Shale Industry: an (Expert) Review
    THE IMPACT OF THE COVID-19 PANDEMIC ON THE US SHALE INDUSTRY: AN (EXPERT) REVIEW by Nikolai Albishausen A capstone submitted to Johns Hopkins University in conformity with the requirements for the degree of Master of Science in Energy Policy and Climate Baltimore, Maryland December 2020 © 2020 Nikolai Albishausen All Rights Reserved Abstract The US shale industry turned the world-wide energy landscape upside down in less than a decade and put the US (back) atop the global energy hierarchy. At the beginning of 2020, the Covid-19 pandemic shocked the global energy markets and led to an unprecedented economic downturn. US shale oil & gas demand plummeted, prices collapsed, and bankruptcies were announced at exceptional rates. This paper aims to assess the impact of the virus and its repercussions on US unconventionals. For that, this study focuses on six central drivers highly relevant for the industry and its future viability. These are: First, crude oil and natural gas prices. Second, Break-Even (BE) prices for fracking operations. Third, financial and technical constraints within the industry. Fourth, global hydrocarbon demand development. Fifth, political and regulatory factors in the US. Sixth, environmental and societal sustainability. Those drivers were initially assessed through a literature review whose results were then examined by an expert survey. It was comprised of 83 senior professionals from various backgrounds engaged with the US shale industry. From a synthesis of both examinations, the results show that some drivers, in particular demand and commodity prices, are shaping the industry’s future more distinctly than others. It further seems that while those drivers are also impacted substantially by the pandemic, they positively influence the future of the industry.
    [Show full text]
  • Industrial Gas Solutions for the Aerospace Industry
    Industrial Gas Solutions for the Aerospace Industry Air Products supplied hydrogen to the American space program from 1957 to the final shuttle launch in 2011. Today, we continue to supply hydrogen for NASA’s testing facilities. Air Products has been serving the aerospace industry since the 1950s when we began supplying hydrogen to a budding American space program. Today our special capabilities for aerospace manufacturers and their suppliers have expanded much further. We continue to develop products, services and technologies to meet the industry’s ever-changing needs. Total solutions Specific capabilities But we don’t stop there. Our Based on serving customers worldwide, business relationships are based on Air Products has developed an array a collaborative approach that starts of global capabilities specific to the with a thorough understanding of your aerospace industry: business and your needs. We focus on finding ways to help improve your Full range of gases operation and lower your overall costs. • World’s largest supplier of delivered For example, our account managers, and on-site hydrogen engineers and technicians have worked with customers to lower their cost of • World’s largest producer and supplier use for gases and have uncovered of liquid and gaseous helium ways to improve processes that rely • A global leading manufacturer of on industrial gases. Our goal is to help nitrogen, oxygen, and argon you in as many ways as we can with your gas applications—so you can • Global supplier of other essential concentrate on your core
    [Show full text]
  • Decarbonization and Industrial Demand for Gas in Europe
    May 2019 Decarbonization and industrial demand for gas in Europe OIES PAPER: NG 146 Anouk Honoré The contents of this paper are the author's sole responsibility. They do not necessarily represent the views of the Oxford Institute for Energy Studies or any of its members. Copyright © 2019 Oxford Institute for Energy Studies (Registered Charity, No. 286084) This publication may be reproduced in part for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgment of the source is made. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the Oxford Institute for Energy Studies. ISBN 978-1-78467-139-6 DOI: https://doi.org/10.26889/9781784671396 2 Acknowledgements My grateful thanks to my colleagues at the Oxford Institute for Energy Studies (OIES) for their support, and in particular James Henserson and Jonathan Stern for their helpful comments. A big thank you to all the sponsors of the Natural Gas Research Programme (OIES) for their constructive observations during our meetings, and a special thank you to Vincenzo Conforti (ENI) and his colleagues, who kindly read and commented on a previous version of this paper. I would also like to thank Catherine Gaunt for her careful reading and final editing of the paper. Last but certainly not least, many thanks to Kate Teasdale who made all the arrangements for the production of this paper. The contents of this paper do not necessarily represent the views of the OIES, of the sponsors of the Natural Gas Research Programme or of the people I have thanked in these acknowledgments.
    [Show full text]
  • Of Liquefied Natural Gas (LNG) and Its Environmental Impact As a Low Carbon Energy Source
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Southern Queensland ePrints i University of Southern Queensland Faculty of Engineering and Surveying Life Cycle Assessment (LCA) of Liquefied Natural Gas (LNG) and its environmental impact as a low carbon energy source Dissertation submitted by Paul Jonathan Barnett In fulfilment of the requirements of Courses ENG4111 and 4112 Research Project towards the degree of Bachelor of Engineering (Environmental) Submitted: October, 2010 ii Abstract A life cycle assessment is an environmental management methodology documented by the International Standards Organization (ISO2006) for researching the impact a product has on the environment. Liquefied natural gas is a product contributing to the emission of greenhouse gases such as carbon dioxide, methane and nitrous oxide. These emissions can be minimized by analysis of its source and adopting appropriate process technology throughout the product lifecycle. Natural gas for many years was regarded as a volatile waste product within the oil and coal industries, and was subsequently vented into the atmosphere resulting in pollution. Natural gas is now accepted as a source of low carbon energy assisting the transition from heavy fuels to renewable energy. Liquefying the natural gas has proved to be an economic method for transporting this energy to the market place where pipeline infrastructure is unavailable. Australia has large resources of natural gas in conventional off-shore wells and underground coal-seams. Demand for energy security has positioned Australia to capitalize on its natural resources and supply low carbon energy to fuel economic growth in Asia.
    [Show full text]
  • Industrial Gas Company Augments In-House Security Team Capabilities Manufacturer Overcomes Cyber Security Talent Shortage with Mandiant Expertise on Demand
    customer story Industrial Gas Company Augments In-House Security Team Capabilities Manufacturer Overcomes Cyber Security Talent Shortage with Mandiant Expertise On Demand FACTS AT A GLANCE INDUSTRY Manufacturing SOLUTIONS • Mandiant Expertise On Demand BENEFITS • Immediate access to world-class tactical, operational and proactive capabilities • Ability to flexibly match skills to a dynamic set of needs and priorities As a world-leading industrial gas company, the company manages multiple • Quality threat intelligence assists business operations, from food production to oil refining and electronics internal team in defining and manufacturing. A critical link in the supply chain of thousands of customers, managing cyber risk safely and reliably meeting the worldwide demand for specialty gases requires rigorously protecting the company’s extensive IT/OT infrastructure. • Conveniently circumvent industry-wide cyber security staffing challenges The company’s international footprint includes hundreds of manufacturing facilities, over 15,000 computers, nearly 3,000 industrial PCs and over 1,500 miles of industrial gas pipeline. In addition to its process control systems, CUSTOMER PROFILE interfaces, instrumentation and associated sensors. the manufacturer’s The company supplies gases, equipment success has been based on the continuous pursuit of operational excellence, and services to multiple industries, commitment to safety and focus on sustainability and the environment. including refining, chemical, metal, electronics, manufacturing and food and Safeguarding its infrastructure from cyber attack ensures the company beverage. The manufacturer operates in can sustain the responsibility it has undertaken to meet the world’s need dozens of countries utilizing hundreds of for industrial gas while providing for the wellbeing of its employees and production facilities.
    [Show full text]
  • Welfare and Distributional Implications of Shale Gas
    BPEA Conference Draft, March 19–20, 2015 Welfare and Distributional Implications of Shale Gas Catherine Hausman, Ford School of Public Policy, University of Michigan Ryan Kellogg, Department of Economics, University of Michigan and National Bureau of Economic Research We thank Steve Cicala, David Lagakos, David Romer, and Justin Wolfers for valuable comments; Timothy Fitzgerald, Joshua Hausman, Lutz Kilian, Tom Lyon, Lucija Muehlenbachs, Barry Rabe, and Daniel Raimi for helpful feedback; and Sarah Johnston for excellent research assistance. Welfare and Distributional Implications of Shale Gas Catherine Hausman Ryan Kellogg∗ March 2015 Abstract Technological innovations in horizontal drilling and hydraulic fracturing have en- abled tremendous amounts of natural gas to be extracted profitably from underground shale formations that were long thought to be uneconomical. In this paper, we provide the first estimates of broad-scale welfare and distributional implications of this supply boom. We provide new estimates of supply and demand elasticities, which we use to estimate the drop in natural gas prices that is attributable to the supply expansion. We calculate large, positive welfare impacts for four broad sectors of gas consumption (residential, commercial, industrial, and electric power), and a negative impact for producers, with variation across regions. We then examine the evidence for a gas-led \manufacturing renaissance" and for pass-through to prices of products such as retail natural gas, retail electricity, and commodity chemicals. We conclude with a discussion of environmental externalities from unconventional natural gas, including limitations of the current regulatory environment. Overall, we find that the shale gas revolution has led to an increase in welfare for natural gas consumers and producers of $48 billion per year, but more data are needed on the extent and valuation of the environmental costs of shale gas production.
    [Show full text]
  • Natural Gas Liquefaction Technology for Floating Lng Facilities
    NATURAL GAS LIQUEFACTION TECHNOLOGY FOR FLOATING LNG FACILITIES Dr. Justin D. Bukowski Lead Process Engineer Dr. Yu Nan Liu Technical Director, LNG Dr. Mark R. Pillarella Senior Process Manager, LNG Stephen J. Boccella Lead Mechanical Design Engineer William A Kennington LNG Major Account Manager Air Products and Chemicals, Inc. Allentown, PA, USA 18195-1501 [email protected] KEYWORDS: FLNG, refrigeration cycles, DMR, nitrogen recycle ABSTRACT Forecasts for the LNG industry indicate that a large segment of growth will occur through floating LNG (FLNG) development. FLNG facilities present special challenges over those facilities on land. Among these challenges are the response of equipment and processes to wave induced motion of the vessel, weight and space limits for the process equipment on the vessel topsides, difficulty of equipment maintenance and repair or replacement, handling of flammable component inventories, and corrosion. Meeting these challenges requires a mix of analysis, testing, and innovation. To qualify coil wound heat exchangers (CWHE) for FLNG applications, Air Products performed an extensive design verification program. The program included rigorous mechanical analysis of the exchanger, as well as experimental testing of components which were not amenable to analysis. The program also addressed the effects of motion on mixed refrigerant liquefaction process performance through an integrated analytical and experimental investigation of two-phase flow within a CWHE. The results of the mechanical and process verification programs have been applied to CWHE designs for FLNG, including the Shell Prelude FLNG and Petronas FLNG 1 projects. Several process cycles suitable for floating LNG applications are presented. Mixed Refrigerant (MR) processes combine high production and high efficiency for FLNG applications.
    [Show full text]
  • Coal Liquefaction and Desulfurization
    COAL LIQUEFACTION AND DESULFURIZATION J. A. GUIN, Y. A. LIU, C. W. CURTIS, A. R. TARRER AND D. C. WILLIAMS The program is presently the Auburn University largest university-based coal research Auburn, AL 36849 program in the Southeastern region, and current support is . .. about $450,000 annually. ALABAMA IS A SIGNIFICANT producer of coal in the United States, particularly in the Gulf province. There are large reserves of coal in Ala­ aspects of the Auburn coal liquefaction research bama; 35 billion tons lie in the northern and program. It has made available its resources and central counties, enough for hundreds of years at facilities at the 6 tons/day solvent-refined-coal our present rate of production. Lignite deposits (SRC) pilot plant located at Wilsonville, Alabama in southern Alabama counties await the technology (90 miles from Auburn) for support of the super­ to properly realize their value. Thus, a strong vised internship and hands-on research training of recommendation of a statewide conference on the Auburn program. The largest utility coal user "Energy and the Future of Alabama" sponsored in the Northeast, the New England Electric by Auburn University in 1972 was for "research, System, has also actively participated in the Au­ development and technical liaison in the areas of burn coal desulfurization research since 1978. coal production, coal processing and coal usage." Auburn University acted upon this recommenda­ COAL RESEARCH FACULTY AND FACILITIES tion, and with major support from the National The Auburn coal liquefaction research program Science Foundation (NSF), established the Au­ is presently being directed by a number of burn Coal Conversion Research Laboratory in chemical engineering faculty, including Drs.
    [Show full text]