Download Carbon Offset Project Types
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Briefing on Carbon Dioxide Specifications for Transport 1St Report of the Thematic Working Group On: CO2 Transport, Storage
Briefing on carbon dioxide specifications for transport 1st Report of the Thematic Working Group on: CO2 transport, storage and networks Release Status: FINAL Author: Dr Peter A Brownsort Date: 29th November 2019 Filename and version: Briefing-CO2-Specs-FINAL-v1.docx EU CCUS PROJECTS NETWORK (No ENER/C2/2017-65/SI2.793333) This project is financed by the European Commission under service contract No. ENER/C2/2017-65/SI2.793333 1 About the CCUS Projects Network The CCUS Projects Network comprises and supports major industrial projects underway across Europe in the field of carbon capture and storage (CCS) and carbon capture and utilisation (CCU). Our Network aims to speed up delivery of these technologies, which the European Commission recognises as crucial to achieving 2050 climate targets. By sharing knowledge and learning from each other, our project members will drive forward the delivery and deployment of CCS and CCU, enabling Europe’s member states to reduce emissions from industry, electricity, transport and heat. http://www.ccusnetwork.eu/ © European Union, 2019 No third-party textual or artistic material is included in the publication without the copyright holder’s prior consent to further dissemination by other third parties. Reproduction is authorised provided the source is acknowledged. This project is financed by the European Commission under service contract No. ENER/C2/2017-65/SI2.793333 2 (Intentionally blank) This project is financed by the European Commission under service contract No. ENER/C2/2017-65/SI2.793333 3 Executive summary There are two types of specification generally relevant to carbon dioxide (CO2) transport, the product specification for end use and the requirement specification for transport. -
How Is Industrial Nitrogen Gas (N2) Produced/Generated?
www.IFSolutions.com 1 What is Nitrogen and How is it Produced Nitrogen (N2) is a colorless, odorless gas which makes up roughly 78% of the earth’s atmosphere. Nitrogen is defined as a simple asphyxiant having an inerting quality which is utilized in many applications where oxidation is not desired. Nitrogen gas is an industrial gas produced by one of the following means: !! Fractional distillation of liquid air (Praxair, Air Liquide, Linde, etc) !! By mechanical means using gaseous air "! Polymeric Membrane "! Pressure Swing Adsorption or PSA www.IFSolutions.com 2 Fractional Distillation (99.999%) Pure gases can be separated from air by first cooling it until it liquefies, then selectively distilling the components at their various boiling temperatures. The process can produce high purity gases but is very energy-intensive. www.IFSolutions.com 3 Pressure Swing Adsorption (99 – 99.999%) Pressure swing adsorption (PSA) is a technology used to separate some gas species from a mixture of gases under pressure according to the species' molecular characteristics and affinity for an adsorbent material. It operates at near-ambient temperatures and differs significantly from cryogenic distillation techniques of gas separation. Specific adsorptive materials (e.g., zeolites, activated carbon, molecular sieves, etc.) are used as a trap, preferentially adsorbing the target gas species at high pressure. www.IFSolutions.com 4 Membrane (90 – 99.9%) Membrane Technology utilizes a permeable fiber which selectively separates the air depending on the speeds of the molecules of the constituents. This process requires a conditioning of the Feed air due to the clearances in the fiber which are the size of a human hair. -
Sustainable Biofuel Contributions to Carbon Mitigation and Energy Independence
Forests 2011, 2, 861-874; doi:10.3390/f2040861 OPEN ACCESS forests ISSN 1999-4907 www.mdpi.com/journal/forests Article Sustainable Biofuel Contributions to Carbon Mitigation and Energy Independence Bruce Lippke 1,*, Richard Gustafson 1, Richard Venditti 2, Timothy Volk 3, Elaine Oneil 1, Leonard Johnson 4, Maureen Puettmann 5 and Phillip Steele 6 1 Anderson Hall, Room 107, School of Forest Resources, College of Environment, University of Washington, P.O. Box 352100, Seattle, WA 98195, USA; E-Mails: [email protected] (R.G.); [email protected] (E.O.) 2 Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, 2820 Faucette Drive, Raleigh, NC 27695-8005, USA; E-Mail: [email protected] 3 Department of Forest and Natural Resources Management, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, NY 13210, USA; E-Mail: [email protected] 4 Leonard Johnson and Associates, 1205 Kamiaken, Moscow, ID 83843, USA; E-Mail: [email protected] 5 WoodLife Environmental Consultants, LLC, 8200 NW Chaparral Drive, Corvallis, OR 97330, USA; E-Mail: [email protected] 6 Forest Products, Building 1, Room 1201, Department of Forest Products, Mississippi State University, P.O. Box 9820, Mississippi State, MS 39762-9820, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-206-543-8684; Fax: +1-206-685-0790. Received: 17 August 2011; in revised form: 25 September 2011 / Accepted: 27 September 2011 / Published: 19 October 2011 Abstract: The growing interest in US biofuels has been motivated by two primary national policy goals, (1) to reduce carbon emissions and (2) to achieve energy independence. -
Industrial Gases and Advanced Technologies for Non-Ferrous Mining and Refining Tell Me More Experience, Understanding and Solutions
Industrial gases and advanced technologies for non-ferrous mining and refining tell me more Experience, understanding and solutions When a need for reliable gas supply or advanced technologies for your processes occurs, Air Products has the experience to help you be more successful. Working side-by-side with non-ferrous metals mining and refining facilities, we have developed in-depth knowledge and understanding of extractive and refining processes. You can leverage our experience to help increase yield, improve production, decrease harmful fugitive emissions, and reduce energy consumption and fuel cost throughout your operations. As a leading global industrial gas supplier, we offer a full range of supply modes for industrial gases, including oxygen, nitrogen, argon and hydrogen for small and large volume users, state-of-the-art equipment and a broad range of technical services based on our comprehensive global engineering experience in many critical gas applications. Our products range from packaged gases, such as portable cryogenic dewars, all the way up to energy-efficient cryogenic air separation plants and enabling equipment, such as burners and flow controls. Beyond products and services, customers count on us for over 60 years of technical knowledge and experience. As an owner and operator of over 800 air separation plants worldwide, with an understanding of current and future industry needs, we can develop and implement technical solutions that are right for your process and production challenges. It’s our goal to match your needs with a comprehensive and cost-effective industrial gas system and innovative technologies. “By engaging Air Products at an early stage in our Zambian [Kansanshi copper-gold mining] project, we were able to explore oxygen supply options and determine what we believed to be the best system for our specific process requirements. -
Carbon Offset Watch 2008 Assessment Report
Carbon Offset Watch 2008 Assessment Report Carbon Offset Watch www.carbonoffsetwatch.org.au 2008 1 CARBON OFFSET WATCH 2008 Assessment Report Authors Chris Riedy & Alison Atherton Institute for Sustainable Futures © UTS 2008 Supported by the Albert George and Nancy Caroline Youngman Trust as administered by Equity Trustees Limited Disclaimer While all due care and attention has been taken to establish the accuracy of the material published, UTS/ISF and the authors disclaim liability for any loss that may arise from any person acting in reliance upon the contents of this document. Please cite this report as: Riedy, C. and Atherton, A. 2008, Carbon Offset Watch 2008 Assessment Report. The Institute for Sustainable Futures, University of Technology, Sydney. Carbon Offset Watch www.carbonoffsetwatch.org.au 2008 2 Carbon Offset Watch Tips for buying carbon offsets > Before you consider buying offsets, try to reduce > Choose offset projects that change or prevent the your carbon footprint as much as possible. For tips underlying activities that create greenhouse gases. on reducing your carbon footprint see Global These are best for combating climate change in the Warming Cool it. long-term. Such projects include those that: www.environment.gov.au/settlements/gwci > improve energy efficiency > Only buy offsets from offset retailers who provide > increase renewable energy detailed information about their products and services, and the projects they use to generate > prevent waste going to landfill offsets. Projects may be in Australia or overseas. Ask > protect existing forests. for more information if you need it. Other types of projects, like tree planting projects, can > Choose retailers that help you estimate your carbon have different benefits (such as restoring ecosystems or footprint and explain how the footprint is calculated. -
Sustainable Aviation Fuels Road-Map
SUSTAINABLE AVIATION FUELS ROAD-MAP Fueling the future of UK aviation sustainableaviation.co.uk Sustainable Aviation wishes to thank the following organisations for leading the work in producing this Road-Map: Sustainable Aviation (SA) believes the data forecasts and analysis of this report to be correct as at the date of publication. The opinions contained in this report, except where specifically attributed to, are those of SA, and based upon the information that was available to us at the time of publication. We are always pleased to receive updated information and opinions about any of the contents. All statements in this report (other than statements of historical facts) that address future market developments, government actions and events, may be deemed ‘forward-looking statements’. Although SA believes that the outcomes expressed in such forward-looking statements are based on reasonable assumptions, such statements are not guarantees of future performance: actual results or developments may differ materially, e.g. due to the emergence of new technologies and applications, changes to regulations, and unforeseen general economic, market or business conditions. CONTENTS EXECUTIVE SUMMARY INTRODUCTION 1.1 Addressing the sustainability challenge in aviation 1.2 The role of sustainable aviation fuels 1.3 The Sustainable Aviation Fuels Road-Map SUSTAINABLE AVIATION FUELS 2.1 Sustainability of sustainable aviation fuels 2.2 Sustainable aviation fuels types 2.3 Production and usage of sustainable aviation fuels to date THE FUTURE FOR SUSTAINABLE -
IFC Carbon Neutrality Committment Factsheet
Carbon Neutral Commitment for IFC’s Own Operations IFC, along with the World Bank, are committed to making our internal business operations carbon neutral by: IFC’s Carbon Neutrality 1. Calculating greenhouse gas (GHG) emissions from our operations Commitment is an integral 2. Reducing carbon emissions through both familiar and innovative conservation measures part of IFC's corporate 3. Purchasing carbon offsets to balance our remaining internal carbon footprint after our reduction efforts response to climate change. IFC’s carbon neutrality commitment encourages continual improvement towards more efficient business operations that help mitigate climate change. It is also consistent with IFC’s strategy of guiding our investment work to address climate change and ensure environmental and social sustainability of projects that IFC finances. This factsheet focuses on the carbon footprint of our internal operations rather than the footprint of IFC’s portfolio. IFC uses the ‘operational control approach’ for setting its CALCULATING OUR GHG EMISSIONS organizational boundaries for its GHG inventory. Emissions are included from all locations for which IFC has direct control over IFC has calculated the annual GHG emissions for its internal business operations, and where it can influence decisions that impact GHG operations for headquarters in Washington, D.C. since 2006, and for emissions. IFC’s global operations since 2008 including global business travel. IFC’s annual GHG inventory includes the following sources of The methodology IFC formally used is based on the Greenhouse Gas GHG emissions from IFC’s leased and owned facilities and air Protocol Initiative (GHG Protocol), an internationally recognized GHG travel: accounting and reporting standard. -
Carbon Emission Reduction—Carbon Tax, Carbon Trading, and Carbon Offset
energies Editorial Carbon Emission Reduction—Carbon Tax, Carbon Trading, and Carbon Offset Wen-Hsien Tsai Department of Business Administration, National Central University, Jhongli, Taoyuan 32001, Taiwan; [email protected]; Tel.: +886-3-426-7247 Received: 29 October 2020; Accepted: 19 November 2020; Published: 23 November 2020 1. Introduction The Paris Agreement was signed by 195 nations in December 2015 to strengthen the global response to the threat of climate change following the 1992 United Nations Framework Convention on Climate Change (UNFCC) and the 1997 Kyoto Protocol. In Article 2 of the Paris Agreement, the increase in the global average temperature is anticipated to be held to well below 2 ◦C above pre-industrial levels, and efforts are being employed to limit the temperature increase to 1.5 ◦C. The United States Environmental Protection Agency (EPA) provides information on emissions of the main greenhouse gases. It shows that about 81% of the totally emitted greenhouse gases were carbon dioxide (CO2), 10% methane, and 7% nitrous oxide in 2018. Therefore, carbon dioxide (CO2) emissions (or carbon emissions) are the most important cause of global warming. The United Nations has made efforts to reduce greenhouse gas emissions or mitigate their effect. In Article 6 of the Paris Agreement, three cooperative approaches that countries can take in attaining the goal of their carbon emission reduction are described, including direct bilateral cooperation, new sustainable development mechanisms, and non-market-based approaches. The World Bank stated that there are some incentives that have been created to encourage carbon emission reduction, such as the removal of fossil fuels subsidies, the introduction of carbon pricing, the increase of energy efficiency standards, and the implementation of auctions for the lowest-cost renewable energy. -
Investment Opportunities in China's Industrial Gas Market
Executive Insights Volume XIX, Issue 31 Investment Opportunities in China’s Industrial Gas Market Due to their wide-ranging downstream • Gas production: air separation gas, synthetic air and applications and impact on the overall market, specialty gas, etc. industrial gases have been dubbed the “blood • Gas supply: on-site pipeline, bulk transport of liquefied gas, gas cylinders, etc. of the industrials market” and hence play an • Downstream applications: mainly metallurgy, chemicals, important role in China’s national economy. electronics, etc. Industrial gases are widely used in metallurgy, Over half of the global value share of the industrial gas market petroleum, petrochemicals, chemicals, is made up of air separation gases (e.g., nitrogen, oxygen and mechanical, electronics and aerospace and are of argon). The remaining market share is split between industrial synthetic gas (e.g., hydrogen, carbon dioxide and acetylene) great importance to a country’s national defense, and specialty gases (e.g., ultra-high-purity gases and electronics construction and healthcare sectors. However, gases), with 35% and 8–10% of the market share, respectively. given the current economic downturn, slowdown Each of the three main downstream applications focuses on different raw materials: metallurgy favors the use of air in growth and excess capacity reduction, investors separation gases, chemical processes primarily consume synthetic may be hard-pressed to determine where new gases and electronics makes use of specialty gases. investment opportunities and growth prospects Three main supply models exist to provide different levels of lie. In this Executive Insights, L.E.K. Consulting flexibility to customers. On-site gas pipelines are suitable for the assesses investment opportunities in this market. -
Forest Carbon Credits a Guidebook to Selling Your Credits on the Carbon Market
Forest Carbon Credits A Guidebook To Selling Your Credits On The Carbon Market Students of Research for Environmental Agencies and Organizations, Department of Earth and Environment, Boston University The Executive Office of Energy and Environmental Affairs, Commonwealth of Massachusetts Robert O’Connor, Director, Division of Conservation Services Kurt Gaertner, Land Policy and Planning Director 1 March 2018 Table of Contents Introduction ............................................................................................................................................... 3 A Comparison of Voluntary and Mandatory Systems …................................................................. 4 Developing Your Project ………............................................................................................................... 5 Choosing An Offset Project Type .......................................................................................... 5 Registering Your Carbon Credits ........................................................................................... 6 Verified Carbon Standard ………................................................................................. 7 American Carbon Registry …..................................................................................... 9 Climate Action Reserve .............................................................................................. 11 Clean Development Mechanism ............................................................................. 13 Gold Standard -
USE of OFFSET CREDITS ACROSS EMISSION TRADING SYSTEMS and CARBON PRICING MECHANISMS
USE OF OFFSET CREDITS ACROSS EMISSION TRADING SYSTEMS and CARBON PRICING MECHANISMS May 2014 This briefing note provides an overview on how the use of offset credits is regulated in different emission trading systems (ETS) and carbon pricing mechanisms around the world. It takes into consideration systems that are active and under-development, and looks at whether rules allow the use of domestic offsets, i.e. credits generated by non-covered projects in the same jurisdiction, and/or international offsets, i.e. credits generated by projects in other jurisdictions. The intent is to provide a snapshot of the regulations in place and facilitate the comparison of their design. EU ETS – Current and Future Situation China Chongqing ETS Phase III (2013 - 2020) Use of Domestic Offsets Use of International Offsets Use of Domestic Offsets Use of International Offsets YES, companies will be NO, not envisaged YES, projects in EU Member YES, the overall use of credits allowed to use Chinese States which reduce is limited to 50% of the EU- Certified Emissions greenhouse gas emissions not wide reductions over the Reductions (CCERs) to cover covered by the ETS can issue period 2008-2020. Covered for up to 8% of their credits entities are allowed to use up emissions. All CCERs must be to either the amount allowed generated from projects to them in Phase II or to 11% within the province of the allowances they were China Tianjin ETS allocated in Phase II, whichever is higher Use of Domestic Offsets Use of International Offsets YES, companies will be NO, not envisaged Phase IV (post 2020) allowed to use CCERs to cover On 22 January 2014, the European Commission presented a up to 10% of their emissions text that would exclude international credits from the EU ETS China Hubei ETS starting from 2021. -
The Impact of the Covid-19 Pandemic on the Us Shale Industry: an (Expert) Review
THE IMPACT OF THE COVID-19 PANDEMIC ON THE US SHALE INDUSTRY: AN (EXPERT) REVIEW by Nikolai Albishausen A capstone submitted to Johns Hopkins University in conformity with the requirements for the degree of Master of Science in Energy Policy and Climate Baltimore, Maryland December 2020 © 2020 Nikolai Albishausen All Rights Reserved Abstract The US shale industry turned the world-wide energy landscape upside down in less than a decade and put the US (back) atop the global energy hierarchy. At the beginning of 2020, the Covid-19 pandemic shocked the global energy markets and led to an unprecedented economic downturn. US shale oil & gas demand plummeted, prices collapsed, and bankruptcies were announced at exceptional rates. This paper aims to assess the impact of the virus and its repercussions on US unconventionals. For that, this study focuses on six central drivers highly relevant for the industry and its future viability. These are: First, crude oil and natural gas prices. Second, Break-Even (BE) prices for fracking operations. Third, financial and technical constraints within the industry. Fourth, global hydrocarbon demand development. Fifth, political and regulatory factors in the US. Sixth, environmental and societal sustainability. Those drivers were initially assessed through a literature review whose results were then examined by an expert survey. It was comprised of 83 senior professionals from various backgrounds engaged with the US shale industry. From a synthesis of both examinations, the results show that some drivers, in particular demand and commodity prices, are shaping the industry’s future more distinctly than others. It further seems that while those drivers are also impacted substantially by the pandemic, they positively influence the future of the industry.