Chloral Hydrate and Paraldehyde As Drugs of Addiction

Total Page:16

File Type:pdf, Size:1020Kb

Chloral Hydrate and Paraldehyde As Drugs of Addiction Sept., 1932J CHLORAL HYDRATE DRUG HABIT : CHOPRA & SINGH CHOPRA 481 certain parts of the Punjab. This is not the outcome of the use of the drug in the treatment Original Articles of insomnia, but is due to entirely different causes. Until a few years ago in that province potable country-made spirits were allowed to CHLORAL HYDRATE AND PARALDE' be sold to retail dealers in bulk and the vendors HYDE AS DRUGS OF ADDICTION bottled the liquor themselves. Some of these ingenious people conceived the idea of diluting R. N. m.d. By CHOPRA, m.a., (Cantab.) the spirit and adding small quantities of chloral I.M.S. LIEUTENANT-COLONEL, hydrate to make up for the loss in its potency and which would result from dilution. The know- GURBAKHSH SINGH CHOPRA, m.b., b.s. ledge that the drug had hypnotic and narcotic was obtained from the (Drug Addiction Inquiry, Indian Research Fund effects undoubtedly Association) medical profession and compounders work- in It was further learnt that Series No. 15 ing dispensaries. the effects chloral hydrate in many Chloral produced by hydrate and paraldehyde belong to resemble those by alcohol, the of ways produced group drugs known as soporifics or especially when the latter is taken in large The chief use of hypnotics. this class of drugs quantities. When the two articles are taken is in the treatment of one insomnia, of the together they act in a manner synergistic to worst evils of modern times from which man- each other and in this way the effect of either kind can suffer. The physical and mental drug is largely increased. This knowledge, of are consequences sleeplessness such that the combined with the fact that chloral hydrate sufferers are driven to the use of frequent can be bought of any of the pharmaceutical hypnotic drugs, which in many cases leads to chemists at about Re. 1-12 to Rs. 2 per pound a or addiction. permanent craving without any restriction whatsoever to its sale, Louis Lewin (1931) in his well-known work has led to the abuse of the drug described in to Pkantastica has drawn attention addiction this paper. The addition of a drachm or two to this group of drugs which include chloral, added would easily make up for the removal veronal, paraldehyde, suiphonal, potassium of a substantial portion of the liquor from the bromide and bromural. Most of the cases bottle, the quantity being made up with water. referred to by him were patients who suffered Sometimes small quantities of chloral are added from were to take the insomnia who advised without any dilution of the liquor, to make the drug by a physician. Instead of giving their effects more potent in order to get a wider sale patients rational treatment, i.e., investigating among a particular class of customer. Recently, fully the causes leading to sleeplessness and the Excise Department have stopped the sale removing them, medical men often resort to the of spirit in bulk to the retail vendors and all easier course of giving powerful chemical sub- the liquor has to be sold in sealed bottles. stances with a soporific action. Again, certain This form of adulteration is, therefore, no manufacturers of medicinal drugs employ on. longer possible. Government have also prohi- their staff medical men and others who carry bited the licensees of liquor shops to keep on an extensive propaganda by advertise- chloral hydrate in the. licensed premises. ments in the medical as well as in the The to have lay press. By broadcasting literature extolling idea, however, appears lingered the wonderful sleep-producing and non-toxic and has reached the public in some of the effects of these drugs, they influence both the districts where the use of country spirits is very the medical profession and the public. In this way prevalent among population. This is dangerous substances belonging to this class, particularly the case with the central districts the are which have a powerful effect on the central of Punjab which largely populated Sikhs. to nervous system, fall into the hands of the with Owing the rise in price of the sufferers direct. country liquor, these people, who take the liquor not for the The incidence of addiction to chloral hydrate purpose of light stimulation?as is the case in western countries?but with the outside India is apparently rare, as only occa- a of intoxication sionally is a case reported. Although by object getting pronounced effects, found could not careful and searching enquiry a few cases of they get sufficient quantities of the drink with the means at their this habit may be collected, especially in modern disposal. cities in various parts of the world, there is no They, therefore, conceived the idea of them- selves quantities of chloral to evidence of any extensive prevalence amongst adding hydrate the in order to the desired effect. the masses. It is probable that on account of liquor get the its unpleasant its irritant effects on the They procured drug without difficulty and taste, small gastro-intestinal tract and its liability to produce quantities added to the potion gave them satisfaction. So the cutaneous eruptions, addiction to chloral has closely did they find effects of the mixture resembled the effects of the not spread in the same way as have the cocaine itself that chloral in these or the opium habits. Habitual use of chloral liquor hydrate parts is well known the hydrate, however, has been found to exist in among liquor-drinking 482 THE INDIAN MEDICAL GAZETTE [Sept., 1932 1 population as sukhi-sharab' or dry liquor. although apparently the source of supply was This state of affairs first came to our notice similar. This may be due to medication of several years ago when we were studying the the beverage, but we have no evidence to con- opium habit in that area. At that time, how- firm this. The excise authorities of other ever, we thought that such use of chloral provinces have not detected any specific hydrate was rare. instances of such adulteration, although in one case in Madras chloral was detected in a D. R. i.m.s., Chemical Major Thomas, examined the excise Examiner to the Punjab Government, in a specimen by laboratory. Whether the evil exists at or there letter dated the 13th September, 1931, pointed present not, is at rate of the extended use of out to this Government that a number of cases any danger chloral and other similar for adultera- of were in certain parts of drugs poisoning occurring tion of alcoholic and the Excise the These cases came in beverages Punjab. mostly of various should be bunches and were usually the outcome of drink- Departments provinces aware of it. ing bouts with liquor adulterated with chloral hydrate. Major Thomas suggested that chloral Chloral habit.?With the advent of many hydrate and butyl chloral hydrate might be new hypnotic drugs, chloral hydrate has been brought under the category of narcotic and virtually erased from the list of medicaments dangerous drugs, and their free and indiscri- in many western countries. This is due to the minate sale to the public might be prohibited. fact that not only has the drug an unpleasant We have, therefore, paid special attention to taste and produces unpleasant effects, but it this subject and have recently investigated has a marked tendency to habit formation, the various facts in connection with the use of injurious consequences of which are too well chloral hydrate, both for adulteration of known. On account of its low price chloral alcoholic beverages as well as its use as a drug hydrate is still largely used in India and its of addiction. So far as the Punjab is concerned action and uses are well known to the profes- we have found that, although adulteration of sions of medicine and pharmacy. Although liquor on a large scale has been discontinued, there is little doubt that many of the liquor the use of the drug by the liquor drinker drinkers have used chloral hydrate at one time for adulterating his own potion to enhance or other in the central districts of the Punjab, its effects is fairly common and is well the confirmed chloral hydrate addicts do not known in certain parts of the central form more than about 5 per cent, of the total districts. Our enquiries show that a number number of the liquor-drinking population. of people who habitually take liquor in large Many of them are afraid to use the drug quantities have resorted to adulterating it with because of poisoning. Outside the small area chloral hydrate. Originally the idea was to mentioned above, the Punjab appears to be at add it to the liquor to increase its effects, when present free from the abuse. on account of high price they could not afford Modes of administration.?(i) Chloral to buy sufficient quantities. Some have used hydrate is sometimes taken mixed with alco- the so that it has resulted in drug frequently holic drinks. When indulged in in this way the formation of a habit, and unless it is added it becomes absorbed into the system very to the potion satisfaction is not obtained. quickly, its action is produced in a shorter time These persons have literally become addicts. and the effects of the drug are enhanced. The Although the use of the drug is kept very ready solubility of chloral in alcohol increases secret, we found it to be fairly prevalent in its absorption into the circulation to an enor- certain parts of Ferozepore and Ludhiana mous extent.
Recommended publications
  • Analgesia and Sedation in Hospitalized Children
    Analgesia and Sedation in Hospitalized Children By Elizabeth J. Beckman, Pharm.D., BCPS, BCCCP, BCPPS Reviewed by Julie Pingel, Pharm.D., BCPPS; and Brent A. Hall, Pharm.D., BCPPS LEARNING OBJECTIVES 1. Evaluate analgesics and sedative agents on the basis of drug mechanism of action, pharmacokinetic principles, adverse drug reactions, and administration considerations. 2. Design an evidence-based analgesic and/or sedative treatment and monitoring plan for the hospitalized child who is postoperative, acutely ill, or in need of prolonged sedation. 3. Design an analgesic and sedation treatment and monitoring plan to minimize hyperalgesia and delirium and optimize neurodevelopmental outcomes in children. INTRODUCTION ABBREVIATIONS IN THIS CHAPTER Pain, anxiety, fear, distress, and agitation are often experienced by GABA γ-Aminobutyric acid children undergoing medical treatment. Contributory factors may ICP Intracranial pressure include separation from parents, unfamiliar surroundings, sleep dis- PAD Pain, agitation, and delirium turbance, and invasive procedures. Children receive analgesia and PCA Patient-controlled analgesia sedatives to promote comfort, create a safe environment for patient PICU Pediatric ICU and caregiver, and increase patient tolerance to medical interven- PRIS Propofol-related infusion tions such as intravenous access placement or synchrony with syndrome mechanical ventilation. However, using these agents is not without Table of other common abbreviations. risk. Many of the agents used for analgesia and sedation are con- sidered high alert by the Institute for Safe Medication Practices because of their potential to cause significant patient harm, given their adverse effects and the development of tolerance, dependence, and withdrawal symptoms. Added layers of complexity include the ontogeny of the pediatric patient, ongoing disease processes, and presence of organ failure, which may alter the pharmacokinetics and pharmacodynamics of these medications.
    [Show full text]
  • Anesthetic Barbiturates in Refractory Status Epilepticus
    LE JOURNAL CANADIEN DES SCIENCES NEUROLOGIQUES Anesthetic Barbiturates in Refractory Status Epilepticus G.B. YOUNG, W.T. BLUME, C.F. BOLTON and K.G. WARREN SUMMARY: Two patients with previous INTRODUCTION hours). With intubation and respiratory cerebral damage and seizures and three Generalized status epilepticus is a support an intravenous bolus of 250 mgms. patients with acute inflammatory cerebral medical emergency requiring prompt thiopental was given, followed by 80-120 lesions developed status epilepticus. They mgm/hr. as a continuous infusion for four treatment to prevent cerebral damage days. The seizures stopped promptly. A were unresponsive to standard anticon­ or death. Rapidly acting anticonvuls­ vulsants, but anesthetic barbiturates right-sided hemiparesis resolved over the (thiopental and pentobarbital) stopped the ants such as diazepam, phenytoin or next week and he returned home without seizures promptly. paraldehyde are usually effective. additional neurologicaldeficit. Neurology texts, review articles and Case J. A 41 year old woman developed monographs on epilepsy occasionally measles a week prior to the onset of mention anesthesia for resistant cases. delirium and convulsions. Multi-focal RESUME: Deux patients souffrant pre- Anesthetic barbiturates are less com­ clonic or grand mal seizures continued for alablement de lesion cerebrate et d'epilepsie two days. These were refractory to et trois patients avec lesions cerebrates de monly specified and their effectiveness is not well documented. We present intravenous phenytoin (a loading dose of nature . inflammatoire aigue developpent 1000 mgm intravenously followed by 200 un status epilepticus. Les patients ne five cases successfully treated with mgm every twelve hours), phenobarbital repondent pas a la medication anticon­ anesthetic barbiturates after conven­ (200 mgm intravenous bolus and 60 mgm vulsive standard mais I'emploi de barbitur- tional anticonvulsants failed.
    [Show full text]
  • Toxicological Review of Chloral Hydrate (CAS No. 302-17-0) (PDF)
    EPA/635/R-00/006 TOXICOLOGICAL REVIEW OF CHLORAL HYDRATE (CAS No. 302-17-0) In Support of Summary Information on the Integrated Risk Information System (IRIS) August 2000 U.S. Environmental Protection Agency Washington, DC DISCLAIMER This document has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Note: This document may undergo revisions in the future. The most up-to-date version will be made available electronically via the IRIS Home Page at http://www.epa.gov/iris. ii CONTENTS—TOXICOLOGICAL REVIEW for CHLORAL HYDRATE (CAS No. 302-17-0) FOREWORD .................................................................v AUTHORS, CONTRIBUTORS, AND REVIEWERS ................................ vi 1. INTRODUCTION ..........................................................1 2. CHEMICAL AND PHYSICAL INFORMATION RELEVANT TO ASSESSMENTS ..... 2 3. TOXICOKINETICS RELEVANT TO ASSESSMENTS ............................3 4. HAZARD IDENTIFICATION ................................................6 4.1. STUDIES IN HUMANS - EPIDEMIOLOGY AND CASE REPORTS .................................................6 4.2. PRECHRONIC AND CHRONIC STUDIES AND CANCER BIOASSAYS IN ANIMALS ................................8 4.2.1. Oral ..........................................................8 4.2.2. Inhalation .....................................................12 4.3. REPRODUCTIVE/DEVELOPMENTAL STUDIES ..........................13
    [Show full text]
  • Halogenated Ether, Alcohol, and Alkane Anesthetics Activate TASK-3 Tandem Pore Potassium Channels Likely Through a Common Mechanism S
    Supplemental material to this article can be found at: http://molpharm.aspetjournals.org/content/suppl/2017/03/21/mol.117.108290.DC1 1521-0111/91/6/620–629$25.00 https://doi.org/10.1124/mol.117.108290 MOLECULAR PHARMACOLOGY Mol Pharmacol 91:620–629, June 2017 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics Halogenated Ether, Alcohol, and Alkane Anesthetics Activate TASK-3 Tandem Pore Potassium Channels Likely through a Common Mechanism s Anita Luethy, James D. Boghosian, Rithu Srikantha, and Joseph F. Cotten Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (A.L., J.D.B., and J.F.C.); Department of Anesthesia, Kantonsspital Aarau, Aarau, Switzerland (A.L.); Carver College of Medicine, University of Iowa, Iowa City, Iowa (R.S.) Received January 7, 2017; accepted March 20, 2017 Downloaded from ABSTRACT The TWIK-related acid-sensitive potassium channel 3 (TASK-3; hydrate (165% [161–176]) . 2,2-dichloro- . 2-chloro 2,2,2- KCNK9) tandem pore potassium channel function is activated by trifluoroethanol . ethanol. Similarly, carbon tetrabromide (296% halogenated anesthetics through binding at a putative anesthetic- [245–346]), carbon tetrachloride (180% [163–196]), and 1,1,1,3,3,3- binding cavity. To understand the pharmacologic requirements for hexafluoropropanol (200% [194–206]) activate TASK-3, whereas molpharm.aspetjournals.org TASK-3 activation, we studied the concentration–response of the larger carbon tetraiodide and a-chloralose inhibit. Clinical TASK-3 to several anesthetics (isoflurane, desflurane, sevoflurane, agents activate TASK-3 with the following rank order efficacy: halothane, a-chloralose, 2,2,2-trichloroethanol [TCE], and chloral halothane (207% [202–212]) .
    [Show full text]
  • INF.20/Rev.1
    INF.20/Rev.1 Economic Commission for Europe Inland Transport Committee 17 January 2017 Working Party on the Transport of Dangerous Goods Joint Meeting of Experts on the Regulations annexed to the European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways (ADN) (ADN Safety Committee) Thirteenth session Geneva, 23 - 27 January 2017 Item 5 (b) of the provisional agenda Proposals for amendments to the Regulations annexed to ADN: other proposals Autonome Schutzsysteme Mitteilung von EBU, ESO und ERSTU Ausgangslage Zur 29. Sitzung des Sicherheitsausschusses sind zahlreiche Dokumente vorgelegt worden, die die Anforderungen an Explosionsgruppen für nicht-elektrische Geräte betreffen. Weil es aus Zeitgründen nicht möglich war, im ADN 2017 Änderungen vorzunehmen, hat sich der Sicherheitsausschuss darauf geeinigt, die Probleme in der ersten Phase durch multilaterale Abkommen zu regeln. Hierfür ist das Binnenschifffahrtsgewerbe dankbar. Allerdings verlangt die multilaterale Vereinbarung ADN / M 018 von denjenigen Schiffen, deren Zulassungszeugnis nach dem 31. Dezember 2018 erneuert werden muss, schon sehr bald Maßnahmen, die gründlicher Vorbereitung bedürfen. Aus diesem Grunde ist es erforderlich, sich mit einigen vom Schifffahrtsgewerbe aufgeworfenen Fragen rechtzeitig zu beschäftigen. Frage Im Protokoll der 29. Sitzung des Sicherheitsausschusses ADN/WP.15/AC.2/60 ist unter Ziffer 44. festgehalten worden, dass die informelle Arbeitsgruppe „Stoffe“ mittlerweile um die Prüfung verschiedener Sachverhalte gebeten worden ist. Wie weit sind diese Prüfungen gediehen ? Nachfrage zum Protokolls der 29. Sitzung Im Protokoll der 29. Sitzung des Sicherheitsausschusses ADN/WP.15/AC.2/60 ist unter Ziffer 44. – zweiter Unterpunkt - festgehalten worden, dass das Gewerbe die Arbeitsgruppe Stoffe mit einschlägigen Informationen versorgen müsse. Diese Formulierung des Protokolls bedarf der Nachfrage.
    [Show full text]
  • Oral Chloral Hydrate Compare with Rectal Thiopental in Pediatric Procedural Sedation and Analgesia; a Randomized Clinical Trial
    85 Emergency (2014); 2 (2): 85‐89 ORIGINAL RESEARCH Oral Chloral Hydrate Compare with Rectal Thiopental in Pediatric Procedural Sedation and Analgesia; a Randomized Clinical Trial Reza Azizkhani1, Soheila Kanani1*, Ali Sharifi2, Keihan Golshani1, Babak Masoumi1, Omid Ahmadi1 1. Department of Emergency Medicine, Isfahan University of Medical Sciences, Isfahan, Iran 2. Department of General Surgery, Isfahan University of Medical Sciences, Isfahan, Iran Abstract Introduction: The increasing use of diagnostic imaging in pediatric medicine has resulted in growing need for procedural sedation and analgesia (PSA) to minimize motion artifacts during procedures. The drug of choice in pediatric PSA was not introduced till now. The aim of the present study was comparison of oral chloral hydrate (OCH) and rectal sodium thiopental (RST) in pediatric PSA. Methods: In the present randomized clinical trial, 2‐6 years old pediatrics who referred for performing brain computed tomography scan was enrolled and were randomly divided in to two groups. OCH (50mg/kg) and RST (25mg/kg) were prescribed and a trained nurse recorded the time from drug prescription to receiving the con‐ scious sedation (onset of action), the total time period which the patient has the Ramsay score≥4 (duration of action), and adverse effect of agents. Mann‐Whitney U test and chi‐squared test, and Non‐parametric analysis of covariance (ANCOVA) were used for comparisons. Results: One hundred and forty children were entered to two groups of OCH and RST, randomly. The patients of two groups had similar age, sex, weight, and baseline vital signs except for diastolic blood pressure (p<0.001). The onset of action in OCH and RST groups were 24.5±6.1and 28.7±5.2 minutes, respectively (p<0.001).
    [Show full text]
  • 124.210 Schedule IV — Substances Included. 1
    1 CONTROLLED SUBSTANCES, §124.210 124.210 Schedule IV — substances included. 1. Schedule IV shall consist of the drugs and other substances, by whatever official name, common or usual name, chemical name, or brand name designated, listed in this section. 2. Narcotic drugs. Unless specifically excepted or unless listed in another schedule, any material, compound, mixture, or preparation containing any of the following narcotic drugs, or their salts calculated as the free anhydrous base or alkaloid, in limited quantities as set forth below: a. Not more than one milligram of difenoxin and not less than twenty-five micrograms of atropine sulfate per dosage unit. b. Dextropropoxyphene (alpha-(+)-4-dimethylamino-1,2-diphenyl-3-methyl-2- propionoxybutane). c. 2-[(dimethylamino)methyl]-1-(3-methoxyphenyl)cyclohexanol, its salts, optical and geometric isomers and salts of these isomers (including tramadol). 3. Depressants. Unless specifically excepted or unless listed in another schedule, any material, compound, mixture, or preparation which contains any quantity of the following substances, including its salts, isomers, and salts of isomers whenever the existence of such salts, isomers, and salts of isomers is possible within the specific chemical designation: a. Alprazolam. b. Barbital. c. Bromazepam. d. Camazepam. e. Carisoprodol. f. Chloral betaine. g. Chloral hydrate. h. Chlordiazepoxide. i. Clobazam. j. Clonazepam. k. Clorazepate. l. Clotiazepam. m. Cloxazolam. n. Delorazepam. o. Diazepam. p. Dichloralphenazone. q. Estazolam. r. Ethchlorvynol. s. Ethinamate. t. Ethyl Loflazepate. u. Fludiazepam. v. Flunitrazepam. w. Flurazepam. x. Halazepam. y. Haloxazolam. z. Ketazolam. aa. Loprazolam. ab. Lorazepam. ac. Lormetazepam. ad. Mebutamate. ae. Medazepam. af. Meprobamate. ag. Methohexital. ah. Methylphenobarbital (mephobarbital).
    [Show full text]
  • HS 172 R5/13 Briefly Review the Objectives, Content and Activities of This Session
    HS 172 R5/13 Briefly review the objectives, content and activities of this session. Upon successfully completing this session the participant will be able to: • Explain a brief history of the CNS Depressant category of drugs. • Identify common drug names and terms associated with this category. • Identify common methods of administration for this category. • Describe the symptoms, observable signs and other effects associated with this category. CONTENT SEGMENTS LEARNING ACTIVITIES A. Overview of the Category Instructor-Led Presentations B. Possible Effects Instructor Led Demonstrations C. OtdDtifEfftOnset and Duration of Effects RdiAiReading Assignmen ts D. Overdose Signs and Symptoms Video Presentations E. Expected Results of the Evaluation Slide Presentations F. Classification Exemplar HS 172 R5/13 9-2 • Explain the typical time parameters, i.e. onset and duration of effects, associated with this category. • List the clues that are likely to emerge when the drug influence evaluation is conducted for a person under the influence of this category of drugs. • Correctly answer the “topics for study” questions at the end of this session. HS 172 R5/13 9-3 A. Overview of the Category CNS Depressants Central Nervous System Depressants slow down the operations of the brain. Point out that other common names for CNS Depressants are “downers” and “sedative-hypnotics.” • Depressants first affect those arareaseas of the brain that control a person’ s conscious, voluntary actions. • Judgment, inhibitions and reaction time are some of the things that CNS Depressants affect first. • As the dose is increased, depressants begin to affect the parts of the brain that control the body’s automatic processes, heartbeat, respiration, etc.
    [Show full text]
  • Chloral Hydrate Safety Issues
    December 2016 www.nursingcenter.com Chloral Hydrate Safety Issues Chloral hydrate is a sedative-hypnotic that has been associated with serious adverse events in the pediatric population including dosing errors, over-sedation, and administration of the oral liquid by the intravenous (IV) route. In 2012, commercially available chloral hydrate products were discontinued and taken off the market. However, some ambulatory and hospital pharmacies are compounding an oral suspension of chloral hydrate for pediatric sedation in both inpatient and outpatient settings. Section 503A of the Federal Food, Drug and Cosmetic Act permits pharmacists to compound chloral hydrate to provide patient specific prescriptions in limited quantities. Compounded drugs are not approved by the US Food and Drug Administration (FDA), which means the FDA does not verify the safety or effectiveness of compounded drugs. One study found that compared to the commercial formulation, the compounded drug provided a shorter duration of sedation, more frequent need for an additional sedation agent, and frequent sedation failure. Over the last two years, there have been three reported cases of pediatric chloral hydrate overdoses and one death that occurred in the outpatient setting. Respiratory depression and arrest are two serious adverse events that can occur following chloral hydrate administration. Other risks associated with chloral hydrate use include: Resedation after discharge. Chloral hydrate can result in prolonged sedation or resedation with effects lasting longer than 24 hours in children of all ages, even if they appear to have cleared the sedation prior to discharge. Chloral hydrate is converted to trichloroethanol, which has a half-life of up to 66 hours in neonates, 28-40 hours in infants, 8-12 hours in children, and longer following an overdose.
    [Show full text]
  • Chloral Hydrate
    NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDY OF CHLORAL HYDRATE (AD LIBITUM AND DIETARY CONTROLLED) (CAS NO. 302-17-0) IN MALE B6C3F1 MICE (GAVAGE STUDY) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 December 2002 NTP TR 503 NIH Publication No. 03-4437 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health FOREWORD The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Technical Report were performed under the direction of the NCTR and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals.
    [Show full text]
  • Chloral and Chloral Hydrate 247
    eHLORAL AND CHLORAL HYDRATE 1. Exposure Data 1.1 Chernical and physical data 1.1.1 Nomenclature Chloral Chem. Abstr. Serv. Reg. No.: 75-87-6 Chem. Abstr. Name: Trichloroacetaldehyde IUPAC Systematic Name: Chloral Synonyms: Anhydrous chloral; 2,2,2-trichloroacetaldehyde; trichloroethanal; 2,2,2 trichlo- roethanal Chio rai hydrate Chem. Abstr. Serv. Reg. No.: 302-17-0 Chem. Abstr. Name: 2,2,2- Trichloro-l, l-ethanediol IUPAC Systematic Name: Chloral hydrate Synonyms: Chloral monohydrate; trichloroacetaldehyde hydrate; trichloroacetaldehyde monohydrate; l,l, I-trichloro-2,2-dihydroxyethane 1.1.2 Structural and molecular formulae and relative molecular mass Ci 0 1 ~ CI-C-C L "H CI CiHCl30 Chloral Relative molecular mass: 147.39 Ci OH CI-C-C-H1 1 1 1 Ci OH CiH3Cl30i Chloral hydrate Relative molecular mass: 165.42 -245- 246 IARC MONOGRAPHS VOLUME 63 J.I.3 Chemical and physical properties of the pure substance Chloral (a) Description: Colourless, oily hygroscopic liquid with pungent, irritating odour (Budavari, 1989; EniChem America Inc., 1994) (b) Boilng-point: 97.8 °C (Lide, 1993) (c) Melting-point: -57.5 °C (Lide, 1993) (d) Density: 1.51214 at 20 °C/4 °C (Lide, 1993) (e) Spectroscopy data: Infrared (prism (4626), grating (36780)), ultraviolet (5-3), nuclear magnetic resonance (8241) and mass (814) spectral data have been reported (Sadtler Research Laboratories, 1980; Weast & Astle, 1985). (j Solubility: Soluble in water, carbon tetrachloride, chloroform, diethyl ether and ethanol (Li de, 1993; EniChem America, Inc., 1994) (g) Volatilty: Vapour
    [Show full text]
  • Chloral Hydrate and Its Effects on Multiple Physiological Parameters in Young Children: a Dose-Response Study Stephen Wilson, DMD, MA, Phd
    Chloral hydrate and its effects on multiple physiological parameters in young children: a dose-response study Stephen Wilson, DMD, MA, PhD Abstract This study evaluated the dose-responseeffect of chloral hydrate (CH)used alone on several physiological parametersin 26 healthy children 21 to 42 monthsold. Selection criteria for the children in this institutionally approvedstudy included: a) uncooperative behavior during an initial examination; b) a minimumof four sextants with caries involvement; c) healthy, ASAI; d) parental informed consent; e) a noncompromised airway (e.g., minimaltonsillar enlargement)and f) no knownallergies. A repeated measures, Latin-square design was used in evaluatingeither a placeboand three dosagesof CH(25, 50, 70 mg/kg)over four visits for each of eight patients or the samethree dosagesover three visits for each of the remainingpatients. The physiologicalparameters included: heart and respiratory rate, systolic and diastolic blood pressure, peripheral oxygen saturation, and expired carbon dioxide. For statistical purposes, physiological parameters were analyzed during specific phases which included: baseline, topical and local anesthesia administration, at initiation of cavity preparation; and at the end of the appointment. A repeated measures ANOVAand descriptive statistics wereused to analyzethe data.Theresults indicated that the diastolic blood pressureand expired carbon dioxide were affected significantly by CHdosage (P < 0.02 and 0.005, respectively). The findings should be temperedin light of patient behavior during the visits. Dental proceduresalso had an influence on cardiovascular parameters. The significance of these findings related to patient safety and behavior in these very youngchildren is discussed. (Pediatr Dent 14:171-77, 1992) Introduction Since the 1950s, most articles on sedation of children overly sensitive to mild behavioral (e.g., low-intensity for dental treatment have focused on the behavioral crying) or pharmacologic influence at moderate doses.
    [Show full text]