Slipping a Mickey? Facts Around Drugs, Alcohol and Sexual Assault

Total Page:16

File Type:pdf, Size:1020Kb

Slipping a Mickey? Facts Around Drugs, Alcohol and Sexual Assault Slipping a Mickey? Facts around drugs, alcohol and sexual assault DR CATHY STEPHENSON OCTOBER 2011 Slipping a Mickey? Phrase coined in late 19th century Chicago barman Mickey Finn used “knock-out” drops to incapacitate and rob his patrons Probably used chloral hydrate Centuries old practise – other drugs in historical literature include alcohol, barbiturates and scopolamine Recently much media coverage of “date rape” drugs and “drink-spiking” Case 1 18 yo girl, seen 7 hours post sexual assault Party, 5 RTDs in 2.5 hours – left one open on the table Shortly after felt “strange” Taken home by friend’s father In car, forced oral and vaginal penetration Diazepam found on hair samples, but not urine Case 2 16 year old girl Seen 6 months after SA Risk-taking behaviour prompted disclosure ETOH + marijuana + antidepressant Much more common scenario Case 3 23 year old girl Seen 20 hours after sexual assault In town with friends Drinking Offered a ride home Raped in car outside her flat DFSA? Victims subjected to non-consensual sexual activity while they are incapacitated or unconscious through the effect of alcohol or drugs (1) Thereby prevented from resisting and unable to give consent Ingestion can be voluntary, involuntary or both DFSA may be “proactive” or “opportunistic”(2) So how often does it really happen? No reliable data in literature Reporting of SA in general very low 21% of females and almost 5% of males in Australia report a lifetime history of sexual coercion(3) Analysis of 1200 urine samples from sexual assault cases in the USA revealed 60% positive for one or more drugs including alcohol (4) What drugs are found in DFSA? Alcohol – vast majority of cases (5,6,7,8) Cannabis Prescription medicines Benzodiazepine Antidepressant Antipsychotic Opiate Antiepileptics Recreational drugs – including amphetamine, ecstasy, benzodiazepines, cocaine, heroin, ketamine OTC drugs Gammahydroxybutyrate (GHB) and flunitrazepam found in <3% of positive samples (8) Alcohol Alcohol affects sexual behaviour Significant number had consumed >20 standard drinks (5) Causes disorientation, amnesia, poor judgement, inability to consent, loss of consciousness, CNS depression All effects exacerbated if combined with other CNS depressants – unpredictable results Issues specific to DFSA Complainant often intoxicated Incomplete recall and history Court appearance unlikely due to evidential “gaps” Blame vs responsibility Delay in reporting Delay in treatment and obtaining forensic evidence Poorer outcomes How should we test for drugs/alcohol? Urine samples Collect as early as possible Refrigerate They may be of use up to 4 days post-assault Blood (especially if < 24 hrs) Hair and nail samples from 2-4 weeks Conclusions? The “Mickey Finn” of the media is probably uncommon Drugs taken involuntarily are rarely detected Alcohol is the single drug consistently associated with sexual assaults Consumed alone or in unpredictable combinations with other drugs Adverse outcomes for these victims Headline News? “Drink-spiker rapist on the rampage in Courtney Place” Or “Alcohol the biggest factor associated with sexual assault in young people” References 1. LeBeau M, Moyazani A. Drug Facilitated Sexual Assault. A Forensic Handbook. London: Academic Press; 2001. 2. Operation Matisse. Investigating Drug Facilitated Sexual Assault. Association of Chief Police Officers. 3. De Visser R, Smith A et al. Sex in Australia: experiences of sexual coercion among a representative sample of adults. Aust NZ J Public Health 2003; 27:198-223. 4. Negrusz A, Gaensslen RE. Drug-facilitated Sexual Assault. Sexual Offences, Adult/Drug- Facilitated Sexual Assault 2005; 107-111. 5. Hurley M, Parker H, Wells D. The epidemiology of drug facilitated sexual assault. Journal of Clinical Forensic Medicine 2006; 13:181-185. 6. MacDonald J, Shand C et al. Prevalence of injury after recent rape in New Zealand. Ven Troppo, Conference of the Australasian College of Sexual Health Physicians, Darwin 2000. 7. Hindmarch I, ElSohly M et al. Forensic urinalysis of drug use in cases of alleged sexual assault. Journal of Clinical Forensic Medicine 2001; 8:197-205. 8. Slaughter L. Involvement of drugs in sexual assault. J Reprod Med 2000; 45:425-430. 9. Hall J, Moore C. Drug facilitated sexual assault – A review. Journal of Forensic and Legal Medicine 2008; 15:291-297. .
Recommended publications
  • Analgesia and Sedation in Hospitalized Children
    Analgesia and Sedation in Hospitalized Children By Elizabeth J. Beckman, Pharm.D., BCPS, BCCCP, BCPPS Reviewed by Julie Pingel, Pharm.D., BCPPS; and Brent A. Hall, Pharm.D., BCPPS LEARNING OBJECTIVES 1. Evaluate analgesics and sedative agents on the basis of drug mechanism of action, pharmacokinetic principles, adverse drug reactions, and administration considerations. 2. Design an evidence-based analgesic and/or sedative treatment and monitoring plan for the hospitalized child who is postoperative, acutely ill, or in need of prolonged sedation. 3. Design an analgesic and sedation treatment and monitoring plan to minimize hyperalgesia and delirium and optimize neurodevelopmental outcomes in children. INTRODUCTION ABBREVIATIONS IN THIS CHAPTER Pain, anxiety, fear, distress, and agitation are often experienced by GABA γ-Aminobutyric acid children undergoing medical treatment. Contributory factors may ICP Intracranial pressure include separation from parents, unfamiliar surroundings, sleep dis- PAD Pain, agitation, and delirium turbance, and invasive procedures. Children receive analgesia and PCA Patient-controlled analgesia sedatives to promote comfort, create a safe environment for patient PICU Pediatric ICU and caregiver, and increase patient tolerance to medical interven- PRIS Propofol-related infusion tions such as intravenous access placement or synchrony with syndrome mechanical ventilation. However, using these agents is not without Table of other common abbreviations. risk. Many of the agents used for analgesia and sedation are con- sidered high alert by the Institute for Safe Medication Practices because of their potential to cause significant patient harm, given their adverse effects and the development of tolerance, dependence, and withdrawal symptoms. Added layers of complexity include the ontogeny of the pediatric patient, ongoing disease processes, and presence of organ failure, which may alter the pharmacokinetics and pharmacodynamics of these medications.
    [Show full text]
  • Neonatal Clonazepam Administration Induced Long-Lasting Changes in GABAA and GABAB Receptors
    International Journal of Molecular Sciences Article Neonatal Clonazepam Administration Induced Long-Lasting Changes in GABAA and GABAB Receptors Hana Kubová 1,* , Zde ˇnkaBendová 2,3 , Simona Moravcová 2,3 , Dominika Paˇcesová 2,3, Luisa Rocha 4 and Pavel Mareš 1 1 Institute of Physiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic; [email protected] 2 Faculty of Science, Charles University, 12800 Prague, Czech Republic; [email protected] (Z.B.); [email protected] (S.M.); [email protected] (D.P.) 3 National Institute of Mental Health, 25067 Klecany, Czech Republic 4 Pharmacobiology Department, Center of Research and Advanced Studies, Mexico City 14330, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +420-2-4106-2565 Received: 31 March 2020; Accepted: 28 April 2020; Published: 30 April 2020 Abstract: Benzodiazepines (BZDs) are widely used in patients of all ages. Unlike adults, neonatal animals treated with BZDs exhibit a variety of behavioral deficits later in life; however, the mechanisms underlying these deficits are poorly understood. This study aims to examine whether administration of clonazepam (CZP; 1 mg/kg/day) in 7–11-day-old rats affects Gama aminobutyric acid (GABA)ergic receptors in both the short and long terms. Using RT-PCR and quantitative autoradiography, we examined the expression of the selected GABAA receptor subunits (α1, α2, α4, γ2, and δ) and the GABAB B2 subunit, and GABAA, benzodiazepine, and GABAB receptor binding 48 h, 1 week, and 2 months after treatment discontinuation. Within one week after CZP cessation, the expression of the α2 subunit was upregulated, whereas that of the δ subunit was downregulated in both the hippocampus and cortex.
    [Show full text]
  • Toxicological Review of Chloral Hydrate (CAS No. 302-17-0) (PDF)
    EPA/635/R-00/006 TOXICOLOGICAL REVIEW OF CHLORAL HYDRATE (CAS No. 302-17-0) In Support of Summary Information on the Integrated Risk Information System (IRIS) August 2000 U.S. Environmental Protection Agency Washington, DC DISCLAIMER This document has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Note: This document may undergo revisions in the future. The most up-to-date version will be made available electronically via the IRIS Home Page at http://www.epa.gov/iris. ii CONTENTS—TOXICOLOGICAL REVIEW for CHLORAL HYDRATE (CAS No. 302-17-0) FOREWORD .................................................................v AUTHORS, CONTRIBUTORS, AND REVIEWERS ................................ vi 1. INTRODUCTION ..........................................................1 2. CHEMICAL AND PHYSICAL INFORMATION RELEVANT TO ASSESSMENTS ..... 2 3. TOXICOKINETICS RELEVANT TO ASSESSMENTS ............................3 4. HAZARD IDENTIFICATION ................................................6 4.1. STUDIES IN HUMANS - EPIDEMIOLOGY AND CASE REPORTS .................................................6 4.2. PRECHRONIC AND CHRONIC STUDIES AND CANCER BIOASSAYS IN ANIMALS ................................8 4.2.1. Oral ..........................................................8 4.2.2. Inhalation .....................................................12 4.3. REPRODUCTIVE/DEVELOPMENTAL STUDIES ..........................13
    [Show full text]
  • Chloral Hydrate and Paraldehyde As Drugs of Addiction
    Sept., 1932J CHLORAL HYDRATE DRUG HABIT : CHOPRA & SINGH CHOPRA 481 certain parts of the Punjab. This is not the outcome of the use of the drug in the treatment Original Articles of insomnia, but is due to entirely different causes. Until a few years ago in that province potable country-made spirits were allowed to CHLORAL HYDRATE AND PARALDE' be sold to retail dealers in bulk and the vendors HYDE AS DRUGS OF ADDICTION bottled the liquor themselves. Some of these ingenious people conceived the idea of diluting R. N. m.d. By CHOPRA, m.a., (Cantab.) the spirit and adding small quantities of chloral I.M.S. LIEUTENANT-COLONEL, hydrate to make up for the loss in its potency and which would result from dilution. The know- GURBAKHSH SINGH CHOPRA, m.b., b.s. ledge that the drug had hypnotic and narcotic was obtained from the (Drug Addiction Inquiry, Indian Research Fund effects undoubtedly Association) medical profession and compounders work- in It was further learnt that Series No. 15 ing dispensaries. the effects chloral hydrate in many Chloral produced by hydrate and paraldehyde belong to resemble those by alcohol, the of ways produced group drugs known as soporifics or especially when the latter is taken in large The chief use of hypnotics. this class of drugs quantities. When the two articles are taken is in the treatment of one insomnia, of the together they act in a manner synergistic to worst evils of modern times from which man- each other and in this way the effect of either kind can suffer.
    [Show full text]
  • Halogenated Ether, Alcohol, and Alkane Anesthetics Activate TASK-3 Tandem Pore Potassium Channels Likely Through a Common Mechanism S
    Supplemental material to this article can be found at: http://molpharm.aspetjournals.org/content/suppl/2017/03/21/mol.117.108290.DC1 1521-0111/91/6/620–629$25.00 https://doi.org/10.1124/mol.117.108290 MOLECULAR PHARMACOLOGY Mol Pharmacol 91:620–629, June 2017 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics Halogenated Ether, Alcohol, and Alkane Anesthetics Activate TASK-3 Tandem Pore Potassium Channels Likely through a Common Mechanism s Anita Luethy, James D. Boghosian, Rithu Srikantha, and Joseph F. Cotten Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (A.L., J.D.B., and J.F.C.); Department of Anesthesia, Kantonsspital Aarau, Aarau, Switzerland (A.L.); Carver College of Medicine, University of Iowa, Iowa City, Iowa (R.S.) Received January 7, 2017; accepted March 20, 2017 Downloaded from ABSTRACT The TWIK-related acid-sensitive potassium channel 3 (TASK-3; hydrate (165% [161–176]) . 2,2-dichloro- . 2-chloro 2,2,2- KCNK9) tandem pore potassium channel function is activated by trifluoroethanol . ethanol. Similarly, carbon tetrabromide (296% halogenated anesthetics through binding at a putative anesthetic- [245–346]), carbon tetrachloride (180% [163–196]), and 1,1,1,3,3,3- binding cavity. To understand the pharmacologic requirements for hexafluoropropanol (200% [194–206]) activate TASK-3, whereas molpharm.aspetjournals.org TASK-3 activation, we studied the concentration–response of the larger carbon tetraiodide and a-chloralose inhibit. Clinical TASK-3 to several anesthetics (isoflurane, desflurane, sevoflurane, agents activate TASK-3 with the following rank order efficacy: halothane, a-chloralose, 2,2,2-trichloroethanol [TCE], and chloral halothane (207% [202–212]) .
    [Show full text]
  • Oral Chloral Hydrate Compare with Rectal Thiopental in Pediatric Procedural Sedation and Analgesia; a Randomized Clinical Trial
    85 Emergency (2014); 2 (2): 85‐89 ORIGINAL RESEARCH Oral Chloral Hydrate Compare with Rectal Thiopental in Pediatric Procedural Sedation and Analgesia; a Randomized Clinical Trial Reza Azizkhani1, Soheila Kanani1*, Ali Sharifi2, Keihan Golshani1, Babak Masoumi1, Omid Ahmadi1 1. Department of Emergency Medicine, Isfahan University of Medical Sciences, Isfahan, Iran 2. Department of General Surgery, Isfahan University of Medical Sciences, Isfahan, Iran Abstract Introduction: The increasing use of diagnostic imaging in pediatric medicine has resulted in growing need for procedural sedation and analgesia (PSA) to minimize motion artifacts during procedures. The drug of choice in pediatric PSA was not introduced till now. The aim of the present study was comparison of oral chloral hydrate (OCH) and rectal sodium thiopental (RST) in pediatric PSA. Methods: In the present randomized clinical trial, 2‐6 years old pediatrics who referred for performing brain computed tomography scan was enrolled and were randomly divided in to two groups. OCH (50mg/kg) and RST (25mg/kg) were prescribed and a trained nurse recorded the time from drug prescription to receiving the con‐ scious sedation (onset of action), the total time period which the patient has the Ramsay score≥4 (duration of action), and adverse effect of agents. Mann‐Whitney U test and chi‐squared test, and Non‐parametric analysis of covariance (ANCOVA) were used for comparisons. Results: One hundred and forty children were entered to two groups of OCH and RST, randomly. The patients of two groups had similar age, sex, weight, and baseline vital signs except for diastolic blood pressure (p<0.001). The onset of action in OCH and RST groups were 24.5±6.1and 28.7±5.2 minutes, respectively (p<0.001).
    [Show full text]
  • HS 172 R5/13 Briefly Review the Objectives, Content and Activities of This Session
    HS 172 R5/13 Briefly review the objectives, content and activities of this session. Upon successfully completing this session the participant will be able to: • Explain a brief history of the CNS Depressant category of drugs. • Identify common drug names and terms associated with this category. • Identify common methods of administration for this category. • Describe the symptoms, observable signs and other effects associated with this category. CONTENT SEGMENTS LEARNING ACTIVITIES A. Overview of the Category Instructor-Led Presentations B. Possible Effects Instructor Led Demonstrations C. OtdDtifEfftOnset and Duration of Effects RdiAiReading Assignmen ts D. Overdose Signs and Symptoms Video Presentations E. Expected Results of the Evaluation Slide Presentations F. Classification Exemplar HS 172 R5/13 9-2 • Explain the typical time parameters, i.e. onset and duration of effects, associated with this category. • List the clues that are likely to emerge when the drug influence evaluation is conducted for a person under the influence of this category of drugs. • Correctly answer the “topics for study” questions at the end of this session. HS 172 R5/13 9-3 A. Overview of the Category CNS Depressants Central Nervous System Depressants slow down the operations of the brain. Point out that other common names for CNS Depressants are “downers” and “sedative-hypnotics.” • Depressants first affect those arareaseas of the brain that control a person’ s conscious, voluntary actions. • Judgment, inhibitions and reaction time are some of the things that CNS Depressants affect first. • As the dose is increased, depressants begin to affect the parts of the brain that control the body’s automatic processes, heartbeat, respiration, etc.
    [Show full text]
  • Appendix D: Important Facts About Alcohol and Drugs
    APPENDICES APPENDIX D. IMPORTANT FACTS ABOUT ALCOHOL AND DRUGS Appendix D outlines important facts about the following substances: $ Alcohol $ Cocaine $ GHB (gamma-hydroxybutyric acid) $ Heroin $ Inhalants $ Ketamine $ LSD (lysergic acid diethylamide) $ Marijuana (Cannabis) $ MDMA (Ecstasy) $ Mescaline (Peyote) $ Methamphetamine $ Over-the-counter Cough/Cold Medicines (Dextromethorphan or DXM) $ PCP (Phencyclidine) $ Prescription Opioids $ Prescription Sedatives (Tranquilizers, Depressants) $ Prescription Stimulants $ Psilocybin $ Rohypnol® (Flunitrazepam) $ Salvia $ Steroids (Anabolic) $ Synthetic Cannabinoids (“K2”/”Spice”) $ Synthetic Cathinones (“Bath Salts”) PAGE | 53 Sources cited in this Appendix are: $ Drug Enforcement Administration’s Drug Facts Sheets1 $ Inhalant Addiction Treatment’s Dangers of Mixing Inhalants with Alcohol and Other Drugs2 $ National Institute on Alcohol Abuse and Alcoholism’s (NIAAA’s) Alcohol’s Effects on the Body3 $ National Institute on Drug Abuse’s (NIDA’s) Commonly Abused Drugs4 $ NIDA’s Treatment for Alcohol Problems: Finding and Getting Help5 $ National Institutes of Health (NIH) National Library of Medicine’s Alcohol Withdrawal6 $ Rohypnol® Abuse Treatment FAQs7 $ Substance Abuse and Mental Health Services Administration’s (SAMHSA’s) Keeping Youth Drug Free8 $ SAMHSA’s Center for Behavioral Health Statistics and Quality’s (CBHSQ’s) Results from the 2015 National Survey on Drug Use and Health: Detailed Tables9 The substances that are considered controlled substances under the Controlled Substances Act (CSA) are divided into five schedules. An updated and complete list of the schedules is published annually in Title 21 Code of Federal Regulations (C.F.R.) §§ 1308.11 through 1308.15.10 Substances are placed in their respective schedules based on whether they have a currently accepted medical use in treatment in the United States, their relative abuse potential, and likelihood of causing dependence when abused.
    [Show full text]
  • Chloral Hydrate Safety Issues
    December 2016 www.nursingcenter.com Chloral Hydrate Safety Issues Chloral hydrate is a sedative-hypnotic that has been associated with serious adverse events in the pediatric population including dosing errors, over-sedation, and administration of the oral liquid by the intravenous (IV) route. In 2012, commercially available chloral hydrate products were discontinued and taken off the market. However, some ambulatory and hospital pharmacies are compounding an oral suspension of chloral hydrate for pediatric sedation in both inpatient and outpatient settings. Section 503A of the Federal Food, Drug and Cosmetic Act permits pharmacists to compound chloral hydrate to provide patient specific prescriptions in limited quantities. Compounded drugs are not approved by the US Food and Drug Administration (FDA), which means the FDA does not verify the safety or effectiveness of compounded drugs. One study found that compared to the commercial formulation, the compounded drug provided a shorter duration of sedation, more frequent need for an additional sedation agent, and frequent sedation failure. Over the last two years, there have been three reported cases of pediatric chloral hydrate overdoses and one death that occurred in the outpatient setting. Respiratory depression and arrest are two serious adverse events that can occur following chloral hydrate administration. Other risks associated with chloral hydrate use include: Resedation after discharge. Chloral hydrate can result in prolonged sedation or resedation with effects lasting longer than 24 hours in children of all ages, even if they appear to have cleared the sedation prior to discharge. Chloral hydrate is converted to trichloroethanol, which has a half-life of up to 66 hours in neonates, 28-40 hours in infants, 8-12 hours in children, and longer following an overdose.
    [Show full text]
  • Chloral Hydrate
    NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDY OF CHLORAL HYDRATE (AD LIBITUM AND DIETARY CONTROLLED) (CAS NO. 302-17-0) IN MALE B6C3F1 MICE (GAVAGE STUDY) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 December 2002 NTP TR 503 NIH Publication No. 03-4437 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health FOREWORD The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Technical Report were performed under the direction of the NCTR and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals.
    [Show full text]
  • Introduced B.,Byhansen, 16
    LB301 LB301 2021 2021 LEGISLATURE OF NEBRASKA ONE HUNDRED SEVENTH LEGISLATURE FIRST SESSION LEGISLATIVE BILL 301 Introduced by Hansen, B., 16. Read first time January 12, 2021 Committee: Judiciary 1 A BILL FOR AN ACT relating to the Uniform Controlled Substances Act; to 2 amend sections 28-401, 28-405, and 28-416, Revised Statutes 3 Cumulative Supplement, 2020; to redefine terms; to change drug 4 schedules and adopt federal drug provisions; to change a penalty 5 provision; and to repeal the original sections. 6 Be it enacted by the people of the State of Nebraska, -1- LB301 LB301 2021 2021 1 Section 1. Section 28-401, Revised Statutes Cumulative Supplement, 2 2020, is amended to read: 3 28-401 As used in the Uniform Controlled Substances Act, unless the 4 context otherwise requires: 5 (1) Administer means to directly apply a controlled substance by 6 injection, inhalation, ingestion, or any other means to the body of a 7 patient or research subject; 8 (2) Agent means an authorized person who acts on behalf of or at the 9 direction of another person but does not include a common or contract 10 carrier, public warehouse keeper, or employee of a carrier or warehouse 11 keeper; 12 (3) Administration means the Drug Enforcement Administration of the 13 United States Department of Justice; 14 (4) Controlled substance means a drug, biological, substance, or 15 immediate precursor in Schedules I through V of section 28-405. 16 Controlled substance does not include distilled spirits, wine, malt 17 beverages, tobacco, hemp, or any nonnarcotic substance if such substance 18 may, under the Federal Food, Drug, and Cosmetic Act, 21 U.S.C.
    [Show full text]
  • Identification and Determination of Flunitrazepam and Its Metabolites in Blood by Gas Chromatography
    Chem. Anal. (Warsaw), 49, 71 (2004) Identification and Determination of Flunitrazepam and Its Metabolites in Blood by Gas Chromatography by Zofia Ch³obowska1, Czes³awa wiegoda1, Pawe³ Kocielniak1,2* and Wojciech Piekoszewski1 1 Institute of Forensic Research, ul. Westerplatte 9, 31033 Cracow 2 Faculty of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30060 Cracow Key words: flunitrazepam, metabolites, gas chromatography Analytical method for the isolation of flunitrazepam and its metabolites (desmethyl- flunitrazepam and 7-amino-flunitrazepam) from blood involving liquid-liquid extraction with diethyl ether, diisopropyl ether and toluene-isoamyl alcohol mixture (95:5) has been developed. In the latter case the extraction yield approached 80%. The analysis of the com- pounds was performed using gas chromatograph with electron capture detector, and a HP1 column. The developed method allowed one to determine flunitrazepam and its metabolites at the level as low as few nanograms. Opracowano metodê analityczn¹ pozwalaj¹c¹ na ekstrakcyjne wyizolowanie flunitrazepamu i jego metabolitów (desmetyloflunitrazepamu i 7-aminoflunitrazepamu) z krwi przy u¿yciu eteru dietylowego, eteru diizpropylowego lub mieszaniny toluenu z alkoholem izoamylowym (95:5). W ostatnim przypadku osi¹gniêto wydajnoæ na poziomie 80%. Do analizy wymie- nionych substancji zastosowano chromatografiê gazow¹ z detektorem wychwytu elektronów oraz kolumnê HP1. Opracowana metoda pozwala wykrywaæ zawartoæ flunitrazepamu i jego metabolitów we krwi na poziomie kilku nanogramów. * Corresponding author. E-mail: [email protected] 72 Z. Ch³obowska, C. wiegoda, P. Kocielniak and W. Piekoszewski Flunitrazepam (Rohypnol), the fluoro derivative of benzodiazepine, is a sedative and hypnotic drug. It is easily absorbed from alimentary tract and undergoes biotrans- formation via N-dimethylation, hydroxylation and reduction with moderate rapidity [1].
    [Show full text]