Promoter-Proximal Pausing of RNA Eolymerase II Defines a General Rate- Limiting Step After Transcription Initiation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Investigating the Role of the ETS Transcription Factor ELK1 in Stem Cell Transcription
Investigating the role of the ETS transcription factor ELK1 in stem cell transcription A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Biology, Medicine and Health 2017 Ian E. Prise Division of Molecular & Cellular Function School of Biological Sciences I. Table of Contents II. List of Figures ...................................................................................................................................... 5 III. Abstract .............................................................................................................................................. 7 IV. Declaration ......................................................................................................................................... 8 V. Copyright Statement ........................................................................................................................... 8 VI. Experimental Contributions ............................................................................................................... 9 VII. Acknowledgments .......................................................................................................................... 10 1. Introduction ...................................................................................................................................... 12 1.I Pluripotency ................................................................................................................................. 12 1.II Chromatin -
An Initiator Element Mediates Autologous Down- Regulation of the Human Type a ␥-Aminobutyric Acid Receptor 1 Subunit Gene
An initiator element mediates autologous down- regulation of the human type A ␥-aminobutyric acid receptor 1 subunit gene Shelley J. Russek, Sabita Bandyopadhyay, and David H. Farb* Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, 80 East Concord Street, Boston, MA 02118 Edited by Erminio Costa, University of Illinois, Chicago, IL, and approved May 15, 2000 (received for review November 19, 1999) The regulated expression of type A ␥-aminobutyric acid receptor The 1 subunit gene is located in the 1-␣4-␣2-␥1 gene cluster (GABAAR) subunit genes is postulated to play a role in neuronal on chromosome 4 (12) and is most highly expressed in the adult maturation, synaptogenesis, and predisposition to neurological rat hippocampus. Seizure activity decreases hippocampal 1 disease. Increases in GABA levels and changes in GABAAR subunit mRNA levels by about 50% while increasing 3 levels (11). gene expression, including decreased 1 mRNA levels, have been Because the subtype of  subunit influences the sensitivity of the observed in animal models of epilepsy. Persistent exposure to GABAAR to GABA and to allosteric modulators such as GABA down-regulates GABAAR number in primary cultures of etomidate, loreclezole, barbiturates, and mefenamic acid (13– neocortical neurons, but the regulatory mechanisms remain un- 17), a change in  subunit composition may alter receptor known. Here, we report the identification of a TATA-less minimal function and pharmacology in vivo. Modulation of receptor  promoter of 296 bp for the human GABAAR 1 subunit gene that function by phosphorylation is also influenced by subunit is neuron specific and autologously down-regulated by GABA. -
Focused Transcription from the Human CR2/CD21 Core Promoter Is Regulated by Synergistic Activity of TATA and Initiator Elements in Mature B Cells
Cellular & Molecular Immunology (2016) 13, 119–131 ß 2015 CSI and USTC. All rights reserved 1672-7681/15 $32.00 www.nature.com/cmi RESEARCH ARTICLE Focused transcription from the human CR2/CD21 core promoter is regulated by synergistic activity of TATA and Initiator elements in mature B cells Rhonda L Taylor1,2, Mark N Cruickshank3, Mahdad Karimi2, Han Leng Ng1, Elizabeth Quail2, Kenneth M Kaufman4,5, John B Harley4,5, Lawrence J Abraham1, Betty P Tsao6, Susan A Boackle7 and Daniela Ulgiati1 Complement receptor 2 (CR2/CD21) is predominantly expressed on the surface of mature B cells where it forms part of a coreceptor complex that functions, in part, to modulate B-cell receptor signal strength. CR2/CD21 expression is tightly regulated throughout B-cell development such that CR2/CD21 cannot be detected on pre-B or terminally differentiated plasma cells. CR2/CD21 expression is upregulated at B-cell maturation and can be induced by IL-4 and CD40 signaling pathways. We have previously characterized elements in the proximal promoter and first intron of CR2/CD21 that are involved in regulating basal and tissue-specific expression. We now extend these analyses to the CR2/CD21 core promoter. We show that in mature B cells, CR2/CD21 transcription proceeds from a focused TSS regulated by a non-consensus TATA box, an initiator element and a downstream promoter element. Furthermore, occupancy of the general transcriptional machinery in pre-B versus mature B-cell lines correlate with CR2/CD21 expression level and indicate that promoter accessibility must switch from inactive to active during the transitional B-cell window. -
Nuclear Respiratory Factor 1
bioRxiv preprint doi: https://doi.org/10.1101/321257; this version posted May 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Nuclear Respiratory Factor 1 (NRF-1) Controls the Activity Dependent Transcription of the 2 GABA-A Receptor Beta 1 Subunit Gene in Neurons 3 4 Zhuting Li*1,2, Meaghan Cogswell*1, Kathryn Hixson1, Amy R. Brooks-Kayal3, and Shelley J. Russek#1,4 5 6 1Laboratory of Translational Epilepsy, Department of Pharmacology and Experimental Therapeutics, 7 Boston University School of Medicine, Boston, MA 02118 8 2Department of Biomedical Engineering, College of Engineering, Boston, MA 02215 9 3Department of Pediatrics, Division of Neurology, University of Colorado School of Medicine, Aurora, 10 CO, 80045 USA; Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and 11 Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 12 4Department of Biology, Boston, MA 02215 13 #To whom correspondence should be addressed: Shelley J. Russek, Departments of Pharmacology and 14 Biology, Boston University School of Medicine, 72 East Concord St., Boston, MA, 02118, USA. Tel.: 15 (617) 638-4319, E-mail: [email protected] 16 * The work of these individuals was equally important to the reported findings. 17 18 Running Title: NRF-1 regulates GABRB1 transcription in neurons 19 20 Keywords: GABA-A receptor; GABRB1; NRF-1; Cortical Neurons 21 22 Funding: This work was supported by grants from the National Institutes of Health [NIH/NINDS R01 23 NS4236301 to SJR and ABK, T32 GM00854 to ZL, MC, and KH]. -
Solutions for Practice Problems for Molecular Biology, Session 5
Solutions to Practice Problems for Molecular Biology, Session 5: Gene Regulation and the Lac Operon Question 1 a) How does lactose (allolactose) promote transcription of LacZ? 1) Lactose binds to the polymerase and increases efficiency. 2) Lactose binds to a repressor protein, and alters its conformation to prevent it from binding to the DNA and interfering with the binding of RNA polymerase. 3) Lactose binds to an activator protein, which can then help the RNA polymerase bind to the promoter and begin transcription. 4) Lactose prevents premature termination of transcription by directly binding to and bending the DNA. Solution: 2) Lactose binds to a repressor protein, and alters its conformation to prevent it from binding to the DNA and interfering with the binding of RNA polymerase. b) What molecule is used to signal low glucose levels to the Lac operon regulatory system? 1) Cyclic AMP 2) Calcium 3) Lactose 4) Pyruvate Solution: 1) Cyclic AMP. Question 2 You design a summer class where you recreate experiments studying the lac operon in E. coli (see schematic below). In your experiments, the activity of the enzyme b-galactosidase (β -gal) is measured by including X-gal and IPTG in the growth media. X-gal is a lactose analog that turns blue when metabolisize by b-gal, but it does not induce the lac operon. IPTG is an inducer of the lac operon but is not metabolized by b-gal. I O lacZ Plac Binding site for CAP Pi Gene encoding β-gal Promoter for activator protein Repressor (I) a) Which of the following would you expect to bind to β-galactosidase? Circle all that apply. -
Visualizing Transcription in Real-Time
Cent. Eur. J. Biol. • 3(1) • 2008 • 11-18 DOI: 10.2478/s11535-008-0001-1 Central European Journal of Biology Visualizing transcription in real-time Mini-Review Yehuda Brody, Yaron Shav-Tal* The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel Received 31 October 2007; Accepted 10 December 2007 Abstract: The transcriptional process is at the center of the gene expression pathway. In eukaryotes, the transcription of protein-coding genes into messenger RNAs is performed by RNA polymerase II. This enzyme is directed to bind at upstream gene sequences by the aid of transcription factors that assemble transcription-competent complexes. A series of biochemical and structural modifications render the polymerase transcriptionally active so that it can proceed from an initiation state into a functional elongating phase. Recent experi- mental efforts have attempted to visualize these processes as they take place on genes in living cells and to quantify the kinetics of in vivo transcription. Keywords: mRNA transcription • Nucleus • Live-cell imaging • Cellular dynamics © Versita Warsaw and Springer-Verlag Berlin Heidelberg. 1. Introduction review will describe the developments in the field of live-cell imaging that have allowed the analysis of mammalian RNA polymerase II transcription kinetics as The central dogma of molecular biology describes the they unfold in real-time. flow of information in the living cell from DNA to RNA to protein [1]. Information can also flow back from protein to nucleic acids. The fundamental process within this pathway that enables the mobility of genetic information 2. Lighting-up the nucleus from the stagnant DNA molecules contained within the cell nucleus to the ribosomal centers of protein Fluorescence microscopy provides the capability of translation and production in the cytoplasm is the following specific molecules as they are produced and process of messenger RNA (mRNA) transcription. -
Bicyclomycin Sensitivity and Resistance Affect Rho Factor-Mediated Transcription Termination in the Tna Operon of Escherichia Coli
JOURNAL OF BACTERIOLOGY, Aug. 1995, p. 4451–4456 Vol. 177, No. 15 0021-9193/95/$04.0010 Copyright 1995, American Society for Microbiology Bicyclomycin Sensitivity and Resistance Affect Rho Factor-Mediated Transcription Termination in the tna Operon of Escherichia coli CHARLES YANOFSKY* AND VIRGINIA HORN Department of Biological Sciences, Stanford University, Stanford, California 94305-5020 Received 13 March 1995/Accepted 27 May 1995 The growth-inhibiting drug bicyclomycin, known to be an inhibitor of Rho factor activity in Escherichia coli, was shown to increase basal level expression of the tryptophanase (tna) operon and to allow growth of a tryptophan auxotroph on indole. The drug also relieved polarity in the trp operon and permitted growth of a trp double nonsense mutant on indole. Nine bicyclomycin-resistant mutants were isolated and partially characterized. Recombination data and genetic and biochemical complementation analyses suggest that five have mutations that affect rho, three have mutations that affect rpoB, and one has a mutation that affects a third locus, near rpoB. Individual mutants showed decreased, normal, or increased basal-level expression of the tna operon. All but one of the resistant mutants displayed greatly increased tna operon expression when grown in the presence of bicyclomycin. The tna operon of the wild-type drug-sensitive parent was also shown to be highly expressed during growth with noninhibitory concentrations of bicyclomycin. These findings demonstrate that resistance to this drug may be acquired by mutations at any one of three loci, two of which appear to be rho and rpoB. Zwiefka et al. (24) found that the antibiotic bicyclomycin segment and interacts with the transcribing RNA polymerase (bicozamycin), an inhibitor of the growth of several gram- molecule, causing it to terminate transcription (7, 9). -
I = Chpt 15. Positive and Negative Transcriptional Control at Lac BMB
BMB 400 Part Four - I = Chpt 15. Positive and Negative Transcriptional Control at lac B M B 400 Part Four: Gene Regulation Section I = Chapter 15 POSITIVE AND NEGATIVE CONTROL SHOWN BY THE lac OPERON OF E. COLI A. Definitions and general comments 1. Operons An operon is a cluster of coordinately regulated genes. It includes structural genes (generally encoding enzymes), regulatory genes (encoding, e.g. activators or repressors) and regulatory sites (such as promoters and operators). 2. Negative versus positive control a. The type of control is defined by the response of the operon when no regulatory protein is present. b. In the case of negative control, the genes in the operon are expressed unless they are switched off by a repressor protein. Thus the operon will be turned on constitutively (the genes will be expressed) when the repressor in inactivated. c. In the case of positive control, the genes are expressed only when an active regulator protein, e.g. an activator, is present. Thus the operon will be turned off when the positive regulatory protein is absent or inactivated. Table 4.1.1. Positive vs. negative control BMB 400 Part Four - I = Chpt 15. Positive and Negative Transcriptional Control at lac 3. Catabolic versus biosynthetic operons a. Catabolic pathways catalyze the breakdown of nutrients (the substrate for the pathway) to generate energy, or more precisely ATP, the energy currency of the cell. In the absence of the substrate, there is no reason for the catabolic enzymes to be present, and the operon encoding them is repressed. In the presence of the substrate, when the enzymes are needed, the operon is induced or de-repressed. -
The General Transcription Factors of RNA Polymerase II
Downloaded from genesdev.cshlp.org on October 7, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW The general transcription factors of RNA polymerase II George Orphanides, Thierry Lagrange, and Danny Reinberg 1 Howard Hughes Medical Institute, Department of Biochemistry, Division of Nucleic Acid Enzymology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-5635 USA Messenger RNA (mRNA) synthesis occurs in distinct unique functions and the observation that they can as- mechanistic phases, beginning with the binding of a semble at a promoter in a specific order in vitro sug- DNA-dependent RNA polymerase to the promoter re- gested that a preinitiation complex must be built in a gion of a gene and culminating in the formation of an stepwise fashion, with the binding of each factor promot- RNA transcript. The initiation of mRNA transcription is ing association of the next. The concept of ordered as- a key stage in the regulation of gene expression. In eu- sembly recently has been challenged, however, with the karyotes, genes encoding mRNAs and certain small nu- discovery that a subset of the GTFs exists in a large com- clear RNAs are transcribed by RNA polymerase II (pol II). plex with pol II and other novel transcription factors. However, early attempts to reproduce mRNA transcrip- The existence of this pol II holoenzyme suggests an al- tion in vitro established that purified pol II alone was not ternative to the paradigm of sequential GTF assembly capable of specific initiation (Roeder 1976; Weil et al. (for review, see Koleske and Young 1995). -
Explain the Importance of Gene Regulation in Both Prokaryotes And
Unit 4 - Gene Expression and Module 4A – Control of Gene Expression Genetic Technology Every cell contains thousands of genes 4A. Control of Gene Expression which code for proteins. However, every gene is not actively 4B. Biotechnology producing proteins at all times. 4C. Genomics In this module, we will examine some 4D. Genes and Development of the factors that help regulate when a gene is active, and how strongly it is expressed. 1 2 Objective # 1 Objective 1 Prokaryotes: Explain the importance of gene ¾ are unicellular or colonial regulation in both prokaryotes ¾ evolved to quickly exploit transient and eukaryotes. resources ¾ main role of gene regulation is to allow cells to adjust to changing conditions ¾ in the same cell, different genes are active at different times 3 4 Objective 1 Objective # 2 Eukaryotes: ¾ mostly complex multicellular organisms List and describe the different ¾ evolved the ability to maintain a stable levels of gene regulation, and internal environment (homeostasis) identify the level where genes ¾ main role of gene regulation is to allow are most commonly regulated. specialization and division of labor among cells ¾ at the same time, different genes are active in different cells 5 6 1 Objective 2 Objective 2 We can classify levels of gene To be expressed, a gene must be regulation into 2 main categories: transcribed into m-RNA, the m-RNA must be translated into a protein, and ¾ Transcriptional controls - factors that the protein must become active. regulate transcription ¾ Posttranscriptional controls – factors Gene regulation can theoretically occur that regulate any step in gene at any step in this process. -
2013 Lecture 10 Copy
Lecture 10 Gene Regulation I: Promoters and Control Circuits SPs: Figs 12-27, 28, 29, 32, 40, 44 Vocabulary:operon/regulatory gene/repressor/inducer/ co-repressor/derepression/positive vs. negative control/ cis vs. trans acting factors/deletion mutant/enhancer Operon Structure Fig 12-28 Lactose metabolism in E. coli Lactose= disaccharide of galactose + glucose Lactose (inducer) β-galactosidase expressed lactose glucose + galactose Inducible Operon: The Lac operon If Lac present, repressor inactivated Fig 12-29 Operon induced, mRNA transcribed This is ‘Induction’ Translation of mRNA yields 3 enzymes that convert: Lactose Glucose + Galactose What happens when lactose supply is reduced? Binding of lactose to repressor is transient, so as [lactose] falls, repressor becomes active Repressor now able to bind to the operator Repression occurs: transcription blocked Repressible Operon: TRP Operon Used to make the amino acid tryptophan Default is ON, unless TRP is present • If TRP present, repression occurs • TRP acts as corepressor Fig 12-29 Repressed state: no TRP production As TRP used, [TRP] falls Thus no co-repressor present & repressor no longer functions Derepression (reactivation) occurs mRNA processed and translation yields 5 enzymes that convert precursors to tryptophan Cis vs. Trans: ‘Cis-acting promoter sequence to which a trans-acting transcription factor binds Trans: (trans-acting/ e.g. a transcription factor) promoter Coding region Cis: “on the same strand”; e.g. DNA sequence that serves as a binding site for a TF. Positive vs. negative control: depends on the active form of the trans-acting factor (e.g. repressor), and its effect upon binding to its target cis-acting sequence. -
Transcriptional Pausing and Activation at Exons-1 and -2, Respectively, Mediate the MGMT Gene Expression in Human Glioblastoma Cells
G C A T T A C G G C A T genes Article Transcriptional Pausing and Activation at Exons-1 and -2, Respectively, Mediate the MGMT Gene Expression in Human Glioblastoma Cells Mohammed A. Ibrahim Al-Obaide and Kalkunte S. Srivenugopal * Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-806-414-9212; Fax: +1-806-356-4770 Abstract: Background: The therapeutically important DNA repair gene O6-methylguanine DNA methyltransferase (MGMT) is silenced by promoter methylation in human brain cancers. The co- players/regulators associated with this process and the subsequent progression of MGMT gene transcription beyond the non-coding exon 1 are unknown. As a follow-up to our recent finding of a predicted second promoter mapped proximal to the exon 2 [Int. J. Mol. Sci. 2021, 22(5), 2492], we addressed its significance in MGMT transcription. Methods: RT-PCR, RT q-PCR, and nuclear run-on transcription assays were performed to compare and contrast the transcription rates of exon 1 and exon 2 of the MGMT gene in glioblastoma cells. Results: Bioinformatic characterization of the predicted MGMT exon 2 promoter showed several consensus TATA box and INR motifs and the absence of CpG islands in contrast to the established TATA-less, CpG-rich, and GAF-bindable exon 1 promoter. RT-PCR showed very weak MGMT-E1 expression in MGMT-proficient SF188 and Citation: Al-Obaide, M.A.I.; T98G GBM cells, compared to active transcription of MGMT-E2.