Interaction of Spatially Separated Protein-DNA Complexes For

Total Page:16

File Type:pdf, Size:1020Kb

Interaction of Spatially Separated Protein-DNA Complexes For Proc. Nati. Acad. Sci. USA Vol. 85, pp. 9683-9687, December 1988 Genetics Interaction of spatially separated protein-DNA complexes for control of gene expression: Operator conversions (gal operon/repressor/distal sites/DNA loop) ROBERTA HABER AND SANKAR ADHYA* Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 Communicated by Jon Beckwith, September 19, 1988 (received for review July 18, 1988) ABSTRACT Two operators, spatially separated from each that in the absence ofinducer, Gal repressor protein interacts other and from the promoters, repress the gal operon when with two operator regions (refs. 10 and 22; A. Majumdar and bound to Gal repressor. Conversion of either gal operator to a S.A., unpublished data). The external operator (OE) is lac operator results in derepression, although both Gal and Lac upstream from the promoters: the internal operator (Or) maps repressors are present, suggesting that mere occupation of within the galE structural gene. Both operators, whose operator sites is not sufficient to cause repression. Conversion centers ofsymmetry are separated by 114 base pairs, function ofboth operators to lac operators restores normal repression in in repression of both promoters. We discuss evidence that in the presence of Lac repressor protein. We propose that normal conjunction with Gal repressor protein, wild-type OE and 01 repression requires interaction between operator-bound like elements act in synergy, and we suggest that this synergy repressor molecules; this generates a DNA loop, which is part results in a higher order structure that is required for normal of a higher order structure. RNA polymerase and cyclic AMP repression. receptor protein are present in this complex but unable to initiate transcription because of the higher order structure. MATERIALS AND METHODS Such higher order DNA-multiprotein complexes could occur in a variety of genetic regulatory systems that are controlled from Bacterial Strains, Phage, Plasmids, and Repressor Proteins. distal sites by regulatory proteins. The following E. coli K-12 strains were used: RZ1032 (HfrKL16PO/45[1ysA(61-62)], duti, ungi, thil, relAl, Zbd- DNA control elements are sites within genes or operons that 279::TnlO, supE44) and JM 101 (Mlac-pro, thi, strA, supE, hsdR-jF' endA, sbcB, traD36, proAB, lacP, ZAM15) were interact with specific regulatory proteins to control gene from Jin Kim (National Cancer Institute); TG1 (Mlac-pro, expression. Environmental signals determine whether the supE, thi, hsd5/F'traD36, ProA+B+, lac", lacZAM15), DNA-binding proteins form effective complexes with their HB2151 (ara, Mlac-pro, thi/F' proA+B+, lacIq, lacZAMJS), corresponding sites (1-4). Such DNA sites, classically known and HB2154 (HB2151, mutL::TnlO) were from D. Chattoraj in prokaryotic systems, are now being found in eukaryotic (National Cancer Institute); SA2700 (F-, strr, relAl, systems. Positive-acting sites are called enhancers and up- gal::AOPE cMr) and C600 (F-, thil, thrl, leu106, lacYl, stream activators, and negative-acting sites are termed op- tonA21, supE44) were from the collection of this laboratory. erators or silencers (5-8). Although regulatory sites fre- Y2051 (AcI857, Aatt-int, gal::AOPEcmr), this laboratory; quently overlap or are contiguous with promoters, in both M13-gal, this study. prokaryotes and eukaryotes they have been found at distal Plasmids pUC19 and pBR322 were from the collection of regions on the DNA. In some systems, multiple regulatory this laboratory; plasmid pGR17 is a pBR322 derivative sites are observed, often spaced significant distances from carrying the gaiR gene (23); plasmid pDM1-1 is a pACYC each other and from promoters (5-16). derivative carrying the lacd gene (gift of H. Bujard, Univer- The mechanism(s) by which dispersed and multiple regu- sity of Heidelberg); p124, a pBR322 derivative containing the latory sites and their specific binding proteins control gene entire gal operon and p291, a pBR322 derivative containing expression is one of our considerations. Does each protein- the gal operators, promoters, and part of galE, are from this DNA complex contribute to regulation independently, or is laboratory. communication between protein-DNA complexes a part of Preparation of Gal repressor protein has been described regulation: If regulatory complexes do communicate with (23). Lac repressor was a gift of Kathleen Matthews (Rice each other, how does this occur? University). The gal operon of Escherichia coli is an excellent system Strain Construction. gal operators cloned into M13 phage with which to address these questions. The operon contains were converted to OL and OL' sequences by site-directed three structural genes-galE, galT, and galK (encoding mutagenesis, using published methods (24-26). The presence Uridine diphosphogalactose-4-epimerase, Galactose-1-phos- of the OL sequence on extrachromosomal elements was phate uridyltransferase, and Galactokinase, respectively)- followed by monitoring derepression of the single copy lac whose transcription is differentially regulated by two pro- operon on an LB plate containing 20 Ag of 5-bromo- moters, PI and P2 (Fig. 1). Cyclic AMP and Cyclic AMP 4-choro-3-indolyl f3-D-galactoside per ml. Conversion from receptor protein, acting as a complex, stimulate initiation of oL to 0L' was followed as loss of the ability to derepress the transcription at PI and inhibit initiation at P2 by site-specific chromosomal lac operon. After mutagenesis was verified by binding to DNA (17, 18). The operon is negatively regulated the dideoxy method of DNA sequencing (27), the replicative by Gal repressor protein, the product of the unlinked galR form DNA containing converted operators and flanking DNA gene(2, 19-21). Genetic analysis, as well as nuclease and was substituted in vitro for the homologous region of the alkyl protection and interference experiments, have shown wild-type gal operon in a pBR322 derivative. Two sets of The publication costs of this article were defrayed in part by page charge *To whom reprint requests should be addressed at: National Insti- payment. This article must therefore be hereby marked "advertisement" tutes of Health, Laboratory of Molecular Biology, 9000 Rockville in accordance with 18 U.S.C. §1734 solely to indicate this fact. Pike, 37/4B06, Bethesda, MD 20892. 9683 Downloaded by guest on October 1, 2021 9684 Genetics: Haber and Adhya Proc. Natl. Acad. Sci. USA 85 (1988) gaIR PG2 PG1 galE galT galK t I I ,,. I _ .4. ,T _ml +I OI Si_ 3? cAMP CRP FIG. 1. The gal operon of E. coli and the unlinked gaIR gene. P1 and P2 are overlapping promoters, differentially regulated by cyclic AMP/cyclic AMP receptor protein (CRP). S1 and S2 represent start points of transcription for P1 and P2, respectively. Each transcript is polycistronic, encoding E, T, and K. Gal repressor protein, the gaiR gene product, interacts with two sites in the operon, OE and 0O, to inhibit gal expression. Both OE and 0O, whose centers of symmetry are 114 base pairs apart, function in repression of both promoters. plasmids resulted: the pI24 set, which contains the entire gal two operators into a lac operator would prevent repression of operon, and the p291 set, which carries only the gal opera- the operon because the heterologous nature of the two tors, promoters, and part of galE. A BstEII restriction protein-DNA complexes would hinder their interaction. To enzyme recognition site between the two operators was test this, we constructed a set of strains in which one or both exploited to construct plasmids with operator conversion at of the gal operators was modified such that it no longer both sites. interacted with Gal repressor protein but, instead, contained A phage Y2051 was used to transfer the converted opera- a synthetic lac operator sequence (32). tors from the plasmids to the gal operon of strain SA2700 as The conversion of gal operators, hereafter termed O¶ and described (28). Of, into lac operator sequences, termed OL, o0, and OF, was In Vitro Filter Binding. Cesium chloride-banded DNA was achieved by using synthetic oligonucleotides to mediate tritiated with S-adenosyl-L-(methyl-3H)methionine (Amer- site-directed mutagenesis of gal DNA that had been cloned sham) and Alu I methylase (New England Biolabs), according into an M13 phage vector (24-26). The DNA sequences used to the supplier's directions. Reaction mixtures (20 ul) con- in operator substitutions are shown in Fig. 2. The substituted taining 2 x 10-15 mol of plasmid DNA were incubated in sequences are identical in size and position to wild-type gal binding buffer (5 mM KCI/5 mM Tris, pH 7.6/5 mM sequences and should not change the overall geometry and MgSO4/0.05 mM EDTA/0.05 mM dithiothreitol/25 4g of angular orientation of the operators. bovine serum albumin per ml) with varying amounts of Gal Operator-Repressor Binding. The repressor binding abili- repressor and Lac repressor at room temperature for 30 min, ties of plasmids carrying various combinations ofgal and lac followed by filtration through nitrocellulose (Schleicher & operator sequences were tested in vitro under equilibrium Schuell). Filters were washed with 200 ,u1 of binding buffer binding conditions. The results, shown in Table 1, confirm and radioactivity bound to the filters was measured by that Gal repressor binds to DNA containing gal operators scintillation counting. (OG-OyI O- I, and OE-OF), but not to oE-o0 or OLEOi Determination of Relative Plasmid Copy Number. Cultures DNA. Lac repressor, on the other hand, binds only to DNA of strain C600 containing plasmids were grown to midloga- that contains the oL sequence (OL OL, OL-Of, O-01 and rithmic phase in LB broth containing ampicillin (50 ,4g/ml). OELk-O1). Lac repressor did not show detectable binding Equal numbers of cells from each transformed culture were to oE-of or &-oI'DNA. mixed with equal volumes ofC600 that had been transformed We also measured the relative affinities in vivo of the same with a smaller plasmid (pUC19).
Recommended publications
  • My Name Is Michael Mark Gottesman and My Position Is Deputy Director for Intramural Research at the National Institutes of Health
    NHGRI: OH_Gottesman_Michael_20111113 1 3/1/16 My name is Michael Mark Gottesman and my position is deputy director for intramural research at the National Institutes of Health. I was born on October 7, 1946 in Jersey City, New Jersey. And when I was around two years old, my family moved to Flushing, Queens, and I had most of my formative years growing up in Flushing. I cannot remember a time when I wasn’t interested in science. Probably the first interaction with issues related to public health was as one of many probably millions of children in the United States who got the Salk vaccine as a -- as a test. I remember lining up, they explained to us that this was a trial, and we all got shots, which was not that much fun for a six-year-old or a seven-year-old. And that was a huge sea change. I remember learning about the fact that before then people got polio, kids got polio. They wandered off to camp, they came back paralyzed. And after that period, we didn’t need to worry about polio. So I had the sense that there was a lot that biomedical research could do to alleviate human disease. The next big event scientifically in my life was the launch of Sputnik in 1957, and it was a wake-up call to the United States. We were so-called “falling behind” in the space race, and I was an eleven-year-old boy who was interested in space science. So I spent my childhood after that making rockets, probably not as safely as it should have been, but no unfortunate accidents befell me.
    [Show full text]
  • JOURNAL of BACTERIOLOGY Volume 145 Contents for January 1981 Numberl
    JOURNAL OF BACTERIOLOGY Volume 145 Contents for January 1981 Numberl Morphology and Ultrastructure Structure of the Heptose Region of Lipopolysaccharides from Rho- dospirillum tenue. JOANNA RADZIEJEWSKA-LEBRECHT, U. FEIGE, H. MAYER,* AND J. WECKESSER ...... .............. 138-144 Regulation ofPolarMorphogenesis in Caulobactercrescentus. AKIo FUKUDA,* MAKOTO ASADA, SHIGEO KOYASU, HIDEYA YOSHIDA, KATSUYUKI YAGINUMA, AND YOSHI OKADA ..... ............ 559-572 Isolation and Electron Microscopic Observations of Intracyto- plasmic Inclusions Containing Chlamydia psittaci. AKIRA MATSUMOTO ............................................. 605-612 Isolation and Properties ofPiil from Spores ofBacillus cereus. JOHN P. DEsROSIER AND J. CANO LARA* ....... .................. 613-619 General Microbiology Lectin, a Possible Basis for Symbiosis Between Bacteria and Sponges. WERNER E. G. MULLER,* RUDOLF K. ZAHN, BRANDO KURELEC, CEDOMIL Lucu, ISABEL MULLER, AND GERD UHLENBRUCK ............................................ 548-558 Quantitation of Bacillus subtilis L-Form Growth Parameters in Batch Culture. RICHARD W. GILPIN,* SUZANNE K. PATTER- SON, AND RALPH A. KNIGHT ............................... 651-653 Plant Microbiology Elaboration of Cellulose Fibrils by Agrobacterium tumefaciens Dur- ing Attachment to Carrot Cells. ANN G. MATTHYSSE,* KATH- RYN V. HOLMES, AND ROBIN H. G. GURLITZ ..... ............ 583-595 Genetics and Molecular Biology Methyl-Accepting Chemotaxis Protein III and Transducer Gene trg. GERALD L. HAZELBAUER,* PETER ENGSTROM, AND SHI- GEAKI HARAYAMA .................. ... ... 43-49 Stringent Response of Bacillus stearothermophilus: Evidence for the Existence of Two Distinct Guanosine 3',5'-Polyphosphate Synthetases. SUSANNE FEHR AND DIETMAR RICHTER* ...... 68-73 Plasmid Transfer and Genetic Recombination by Protoplast Fusion in Staphylococci. F. GOTz, S. AHRNE, AND M. LINDBERG* ... 74-81 Naturally Occurring Macrolide-Lincosamide-Streptogramin B Re- sistance in Bacillus licheniformis. A. DOCHERTY, G. GRANDI, R. GRANDI, T. J. GRYCZAN, A. G.
    [Show full text]
  • Solutions for Practice Problems for Molecular Biology, Session 5
    Solutions to Practice Problems for Molecular Biology, Session 5: Gene Regulation and the Lac Operon Question 1 a) How does lactose (allolactose) promote transcription of LacZ? 1) Lactose binds to the polymerase and increases efficiency. 2) Lactose binds to a repressor protein, and alters its conformation to prevent it from binding to the DNA and interfering with the binding of RNA polymerase. 3) Lactose binds to an activator protein, which can then help the RNA polymerase bind to the promoter and begin transcription. 4) Lactose prevents premature termination of transcription by directly binding to and bending the DNA. Solution: 2) Lactose binds to a repressor protein, and alters its conformation to prevent it from binding to the DNA and interfering with the binding of RNA polymerase. b) What molecule is used to signal low glucose levels to the Lac operon regulatory system? 1) Cyclic AMP 2) Calcium 3) Lactose 4) Pyruvate Solution: 1) Cyclic AMP. Question 2 You design a summer class where you recreate experiments studying the lac operon in E. coli (see schematic below). In your experiments, the activity of the enzyme b-galactosidase (β -gal) is measured by including X-gal and IPTG in the growth media. X-gal is a lactose analog that turns blue when metabolisize by b-gal, but it does not induce the lac operon. IPTG is an inducer of the lac operon but is not metabolized by b-gal. I O lacZ Plac Binding site for CAP Pi Gene encoding β-gal Promoter for activator protein Repressor (I) a) Which of the following would you expect to bind to β-galactosidase? Circle all that apply.
    [Show full text]
  • Visualizing Transcription in Real-Time
    Cent. Eur. J. Biol. • 3(1) • 2008 • 11-18 DOI: 10.2478/s11535-008-0001-1 Central European Journal of Biology Visualizing transcription in real-time Mini-Review Yehuda Brody, Yaron Shav-Tal* The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel Received 31 October 2007; Accepted 10 December 2007 Abstract: The transcriptional process is at the center of the gene expression pathway. In eukaryotes, the transcription of protein-coding genes into messenger RNAs is performed by RNA polymerase II. This enzyme is directed to bind at upstream gene sequences by the aid of transcription factors that assemble transcription-competent complexes. A series of biochemical and structural modifications render the polymerase transcriptionally active so that it can proceed from an initiation state into a functional elongating phase. Recent experi- mental efforts have attempted to visualize these processes as they take place on genes in living cells and to quantify the kinetics of in vivo transcription. Keywords: mRNA transcription • Nucleus • Live-cell imaging • Cellular dynamics © Versita Warsaw and Springer-Verlag Berlin Heidelberg. 1. Introduction review will describe the developments in the field of live-cell imaging that have allowed the analysis of mammalian RNA polymerase II transcription kinetics as The central dogma of molecular biology describes the they unfold in real-time. flow of information in the living cell from DNA to RNA to protein [1]. Information can also flow back from protein to nucleic acids. The fundamental process within this pathway that enables the mobility of genetic information 2. Lighting-up the nucleus from the stagnant DNA molecules contained within the cell nucleus to the ribosomal centers of protein Fluorescence microscopy provides the capability of translation and production in the cytoplasm is the following specific molecules as they are produced and process of messenger RNA (mRNA) transcription.
    [Show full text]
  • Bicyclomycin Sensitivity and Resistance Affect Rho Factor-Mediated Transcription Termination in the Tna Operon of Escherichia Coli
    JOURNAL OF BACTERIOLOGY, Aug. 1995, p. 4451–4456 Vol. 177, No. 15 0021-9193/95/$04.0010 Copyright 1995, American Society for Microbiology Bicyclomycin Sensitivity and Resistance Affect Rho Factor-Mediated Transcription Termination in the tna Operon of Escherichia coli CHARLES YANOFSKY* AND VIRGINIA HORN Department of Biological Sciences, Stanford University, Stanford, California 94305-5020 Received 13 March 1995/Accepted 27 May 1995 The growth-inhibiting drug bicyclomycin, known to be an inhibitor of Rho factor activity in Escherichia coli, was shown to increase basal level expression of the tryptophanase (tna) operon and to allow growth of a tryptophan auxotroph on indole. The drug also relieved polarity in the trp operon and permitted growth of a trp double nonsense mutant on indole. Nine bicyclomycin-resistant mutants were isolated and partially characterized. Recombination data and genetic and biochemical complementation analyses suggest that five have mutations that affect rho, three have mutations that affect rpoB, and one has a mutation that affects a third locus, near rpoB. Individual mutants showed decreased, normal, or increased basal-level expression of the tna operon. All but one of the resistant mutants displayed greatly increased tna operon expression when grown in the presence of bicyclomycin. The tna operon of the wild-type drug-sensitive parent was also shown to be highly expressed during growth with noninhibitory concentrations of bicyclomycin. These findings demonstrate that resistance to this drug may be acquired by mutations at any one of three loci, two of which appear to be rho and rpoB. Zwiefka et al. (24) found that the antibiotic bicyclomycin segment and interacts with the transcribing RNA polymerase (bicozamycin), an inhibitor of the growth of several gram- molecule, causing it to terminate transcription (7, 9).
    [Show full text]
  • Perspectives
    Copyright Ó 2009 by the Genetics Society of America DOI: 10.1534/genetics.109.110007 Perspectives Anecdotal, Historical and Critical Commentaries on Genetics Letting Escherichia coli Teach Me About Genome Engineering James A. Shapiro1 Department of Biochemistry and Molecular Biology, University of Chicago, Gordon Center for Integrative Science, Chicago, Illinois 60637 ABSTRACT A career of following unplanned observations has serendipitously led to a deep appreciation of the capacity that bacterial cells have for restructuring their genomes in a biologically responsive manner. Routine characterization of spontaneous mutations in the gal operon guided the discovery that bacteria transpose DNA segments into new genome sites. A failed project to fuse l sequences to a lacZ reporter ultimately made it possible to demonstrate how readily Escherichia coli generated rearrangements necessary for in vivo cloning of chromosomal fragments into phage genomes. Thinking about the molecular mechanism of IS1 and phage Mu-transposition unexpectedly clarified how transposable elements mediate large-scale rearrangements of the bacterial genome. Following up on lab lore about long delays needed to obtain Mu-mediated lacZ protein fusions revealed a striking connection between physiological stress and activation of DNA rearrangement functions. Examining the fate of Mudlac DNA in sectored colonies showed that these same functions are subject to developmental control, like controlling elements in maize. All these experiences confirmed Barbara McClintock’s view that cells frequently respond to stimuli by restructuring their genomes and provided novel insights into the natural genetic engineering processes involved in evolution. HIS article is the reminiscence of a bacterial genet- The worlds of transcriptional regulation beyond simple T icist studying the processes of mutation and DNA repressor–operator models, signal transduction, chro- rearrangements.
    [Show full text]
  • I = Chpt 15. Positive and Negative Transcriptional Control at Lac BMB
    BMB 400 Part Four - I = Chpt 15. Positive and Negative Transcriptional Control at lac B M B 400 Part Four: Gene Regulation Section I = Chapter 15 POSITIVE AND NEGATIVE CONTROL SHOWN BY THE lac OPERON OF E. COLI A. Definitions and general comments 1. Operons An operon is a cluster of coordinately regulated genes. It includes structural genes (generally encoding enzymes), regulatory genes (encoding, e.g. activators or repressors) and regulatory sites (such as promoters and operators). 2. Negative versus positive control a. The type of control is defined by the response of the operon when no regulatory protein is present. b. In the case of negative control, the genes in the operon are expressed unless they are switched off by a repressor protein. Thus the operon will be turned on constitutively (the genes will be expressed) when the repressor in inactivated. c. In the case of positive control, the genes are expressed only when an active regulator protein, e.g. an activator, is present. Thus the operon will be turned off when the positive regulatory protein is absent or inactivated. Table 4.1.1. Positive vs. negative control BMB 400 Part Four - I = Chpt 15. Positive and Negative Transcriptional Control at lac 3. Catabolic versus biosynthetic operons a. Catabolic pathways catalyze the breakdown of nutrients (the substrate for the pathway) to generate energy, or more precisely ATP, the energy currency of the cell. In the absence of the substrate, there is no reason for the catabolic enzymes to be present, and the operon encoding them is repressed. In the presence of the substrate, when the enzymes are needed, the operon is induced or de-repressed.
    [Show full text]
  • Appendix A: Chronology M.J
    International Dimensions of Ethics Education in Science and Engineering Case Study Series: Asilomar Conference on Laboratory Precautions Appendix A: Chronology M.J. Peterson Version 1, June 2010 Key Green major developments in scientists’ collective discussions of recombinant DNA research Blue national government regulations of recombinant DNA research Purple international standards relevant to conduct of recombinant DNA research 1950 Further studies confirm double helix structure of DNA 1953 Apr. James Watson and Francis Crick, The Double Helix: A Personal Account of the Discovery of the Structure of DNA, proposing double helix structure of DNA published by Nature. 1960 continued research opens up possibility of creating recombinant DNA (rDNA) by combining genetic material from different organisms to produce offspring with desired traits. 1968-1971 gradual tightening of lab safety standards among researchers working with viruses. This case was created by the International Dimensions of Ethics Education in Science and Engineering (IDEESE) Project at the University of Massachusetts Amherst with support from the National Science Foundation under grant number 0734887. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. More information about the IDEESE and copies of its modules can be found at http://www.umass.edu/sts/ethics. This case should be cited as: M.J. Peterson. 2010. “Asilomar Conference on Laboratory Precautions When Conducting Recombinant DNA Research.” International Dimensions of Ethics Education in Science and Engineering. Available www.umass.edu/sts/ethics. © 2010 IDEESE Project Appendix A 1969 Dec. Science publishes letter from Jim Shapiro, Jon Beckwith, and Larry Eron of Harvard announcing isolation of a bacterial germ, highlighting it as a first step towards genetic engineering, and warning against government misuse of science.
    [Show full text]
  • Explain the Importance of Gene Regulation in Both Prokaryotes And
    Unit 4 - Gene Expression and Module 4A – Control of Gene Expression Genetic Technology Every cell contains thousands of genes 4A. Control of Gene Expression which code for proteins. However, every gene is not actively 4B. Biotechnology producing proteins at all times. 4C. Genomics In this module, we will examine some 4D. Genes and Development of the factors that help regulate when a gene is active, and how strongly it is expressed. 1 2 Objective # 1 Objective 1 Prokaryotes: Explain the importance of gene ¾ are unicellular or colonial regulation in both prokaryotes ¾ evolved to quickly exploit transient and eukaryotes. resources ¾ main role of gene regulation is to allow cells to adjust to changing conditions ¾ in the same cell, different genes are active at different times 3 4 Objective 1 Objective # 2 Eukaryotes: ¾ mostly complex multicellular organisms List and describe the different ¾ evolved the ability to maintain a stable levels of gene regulation, and internal environment (homeostasis) identify the level where genes ¾ main role of gene regulation is to allow are most commonly regulated. specialization and division of labor among cells ¾ at the same time, different genes are active in different cells 5 6 1 Objective 2 Objective 2 We can classify levels of gene To be expressed, a gene must be regulation into 2 main categories: transcribed into m-RNA, the m-RNA must be translated into a protein, and ¾ Transcriptional controls - factors that the protein must become active. regulate transcription ¾ Posttranscriptional controls – factors Gene regulation can theoretically occur that regulate any step in gene at any step in this process.
    [Show full text]
  • 2013 Lecture 10 Copy
    Lecture 10 Gene Regulation I: Promoters and Control Circuits SPs: Figs 12-27, 28, 29, 32, 40, 44 Vocabulary:operon/regulatory gene/repressor/inducer/ co-repressor/derepression/positive vs. negative control/ cis vs. trans acting factors/deletion mutant/enhancer Operon Structure Fig 12-28 Lactose metabolism in E. coli Lactose= disaccharide of galactose + glucose Lactose (inducer) β-galactosidase expressed lactose glucose + galactose Inducible Operon: The Lac operon If Lac present, repressor inactivated Fig 12-29 Operon induced, mRNA transcribed This is ‘Induction’ Translation of mRNA yields 3 enzymes that convert: Lactose Glucose + Galactose What happens when lactose supply is reduced? Binding of lactose to repressor is transient, so as [lactose] falls, repressor becomes active Repressor now able to bind to the operator Repression occurs: transcription blocked Repressible Operon: TRP Operon Used to make the amino acid tryptophan Default is ON, unless TRP is present • If TRP present, repression occurs • TRP acts as corepressor Fig 12-29 Repressed state: no TRP production As TRP used, [TRP] falls Thus no co-repressor present & repressor no longer functions Derepression (reactivation) occurs mRNA processed and translation yields 5 enzymes that convert precursors to tryptophan Cis vs. Trans: ‘Cis-acting promoter sequence to which a trans-acting transcription factor binds Trans: (trans-acting/ e.g. a transcription factor) promoter Coding region Cis: “on the same strand”; e.g. DNA sequence that serves as a binding site for a TF. Positive vs. negative control: depends on the active form of the trans-acting factor (e.g. repressor), and its effect upon binding to its target cis-acting sequence.
    [Show full text]
  • Diphosphate 3
    Proc. Natl. Acad. Sci. USA Vol. 76, No. 4, pp. 1726-1730, April 1979 Biochemistry Positive control of lac operon expression in vitro by guanosine 5'-diphosphate 3'-diphosphate (coupled protein synthesis in vitro/transcription initiation/supercontrol systems/overlapping metabolic domains/stringent phenomenon) PAUL PRIMAKOFF* AND STANLEY W. ARTZtf *Department of Microbiology and Molecular Geneties, Harvard Medical School, Boston, Massachusetts 02115; and tDepartment of Bacteriology, University of California, Davis, California 95616 and Department of Biochemistry, University of California, Berkeley, California 94720 Communicated by Bruce N. Ames, February 2, 1979 ABSTRACT Maximal expression of the Escherichia coli positive regulatory response to ppGpp of 3-galactosidase syn- lactose operon in a coupled in vitro transcription-translation thesis in vitro and have shown that this response is greatly di- system from a Salmonella typhimurium reIA mutant was strongly dependent upon addition of guanosine 5'-diphosphate minished by altering the DNA sequence of the wild-type lac 3'-diphosphate (ppGpp). Without added ppGpp, at saturating promoter. These results are considered in terms of overlap of 3',5'-cyclic AMP (cAMP) concentrations, synthesis of ft-galac- the 3',5'-cyclic AMP (cAMP) (5) and ppGpp (2) metabolic tosidase (P-D-galactoside galactoh drolase, EC 3.2.1.23) was domains (6). reproducibly only 5-7% of that which can be obtained with 0.5-0.8 mM ppGpp. Experiments in which transcription was MATERIALS AND METHODS uncoupled from translation indicated that this 14- to 20-fold stimulation by ppGpp occurred at the level of transcription. Bacterial Strains. S. typhimurium strain TA705 (his- When coupled I-galactosidase synthesis was primed with a AOGDCBH2253 hisT1504 relAl, refs.
    [Show full text]
  • Professional Ethics Report
    ........................................................................ Professional Ethics Report Publication of the American Association for the Advancement of Science Scientific Freedom, Responsibility & Law Program in collaboration with Committee on Scientific Freedom & Responsibility Professional Society Ethics Group VOLUME XVI NUMBER 1 Winter 2003 Best Statistical Practices to Promote Research experienced official of the University of Illinois — explained why she felt Integrity the research misconduct definition “will not work.” In her experience, institutional colleagues are generally reluctant to brand any actions as By John S. Gardenier “research misconduct” even when they are recognized as immoral, disgusting and scientifically wrong. Absent a finding of “research miscon- Dr. John S. Gardenier is a researcher, ethicist, and guest lecturer in duct,” any deficient scientific practice such as incompetence, sloppiness, Research Ethics. He can be reached at [email protected]. misleading reporting or abuse of colleagues may be excused as “honest error” or acceptable academic conduct. We need a more robust concept of “The statistician’s role in a biomedical research project is to drive the responsible conduct in scientific research than the dichotomy between a p-value below 0.05" finding of research misconduct and a presumption of total innocence. Generally accepted practice? Research misconduct? Both? Such a concept is entirely compatible with the IOM’s 2002 report, Integrity The Concept of Research Misconduct in Scientific Research:
    [Show full text]