Germline Deletion of Cdyl Causes Teratozoospermia and Progressive

Total Page:16

File Type:pdf, Size:1020Kb

Germline Deletion of Cdyl Causes Teratozoospermia and Progressive Xia et al. Cell Death and Disease (2019) 10:229 https://doi.org/10.1038/s41419-019-1455-y Cell Death & Disease ARTICLE Open Access Germline deletion of Cdyl causes teratozoospermia and progressive infertility in male mice Xiaoyu Xia1, Xiaowei Zhou2,YanmeiQuan1,YanqinHu1, Fengying Xing3,ZhengzhengLi1,BufangXu2,ChenXu1 and Aijun Zhang1,2 Abstract Chromodomain Y (CDY) is one of the candidate genes for male dyszoospermia related to Y chromosome microdeletion (YCM). However, the function of CDY in regulating spermatogenesis has not been completely determined. The mouse Cdyl (CDY-like) gene is the homolog of human CDY. In the present study, we generated a germline conditional knockout (cKO) model of mouse Cdyl. Significantly, the CdylcKO male mice suffered from the defects in spermatogonia maintenance and spermatozoon morphogenesis, demonstrating teratozoospermia and a progressive infertility phenotype in early adulthood. Importantly, patterns of specific histone methylation and acetylation were extensively changed, which disturbed the transcriptome in CdylcKO testis. Our findings indicated that Cdyl is crucial for spermatogenesis and male fertility, which provides novel insights into the function of CDY gene, as well as the pathogenesis of YCM-related reproductive failure. 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Introduction transmission to the offspring. To date, genes including Since the turn of the millennium, the global incidence DAZ (deleted in azoospermia)2, RBMY (RNA binding rate of infertility has been rising continuously. Among all motif protein, Y-linked)3, USP9Y (ubiquitin specific pep- infertility cases, ~50% of them can be attributed to male tidase 9, Y-linked)4, TSPY (testis-specific protein, Y- factors, such as idiopathic oligozoospermia or azoos- linked)5, and CDY (chromodomain Y)6 have been identi- permia. One of the most frequent molecular genetic fied as candidates for YCM. In contrast to the DAZ gene, causes of spermatogenic failure is deletion of the azoos- whose critical impact upon human spermatogenesis has permia factor region of the Y chromosome. Y chromo- been fully elucidated, the functional role of the CDY gene some microdeletion (YCM) was detected in about 2–5% cluster remains unknown. The deletion or low expression of patients with severe oligozoospermia and in 5–10% of of CDY genes is closely correlated with male dyszoos- – patients with azoospermia1. Studies on YCM are parti- permia7 12, however, the precise molecular mechanism cularly important because of its potential for genetic involved remains to be investigated. The human CDY gene family originated by transposi- tion of an autosomal genomic Cdyl gene in primates6,13. Correspondence: Bufang Xu ([email protected]) or Chen Xu (chenx@shsmu. edu.cn) or Aijun Zhang ([email protected]) In mice, there is no CDY gene on the Y chromosome; 1Department of Histo-Embryology, Genetics and Developmental Biology, instead, the autosomal Cdyl gene is homologous to the Shanghai Jiao Tong University, School of Medicine; Shanghai Key Laboratory of human CDY gene family. The protein products of either Reproductive Medicine, 280 South Chongqing Road, Shanghai 200025, China 2Reproductive Medical Center of Ruijin Hospital, Shanghai Jiao Tong University, human CDY/CDYL or mouse Cdyl genes share high School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China similarity14. In the present study, we generated a Cdyl Full list of author information is available at the end of the article. germline conditional knockout (CdylcKO) mouse model. These authors contributed equally: Xiaoyu Xia, Xiaowei Zhou, and Yanmei cKO Quan The Cdyl male mice demonstrated a phenotype of Edited by M Agostini © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a linktotheCreativeCommons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Official journal of the Cell Death Differentiation Association Xia et al. Cell Death and Disease (2019) 10:229 Page 2 of 13 229 teratozoospermia and progressive infertility. In particular, mating experiments lasted for at least 16 weeks. The date of the patterns of histone methylation and acetylation were delivery and the numbers of litters and pups were recorded. globally altered in CdylcKO testis, which led to tran- scriptomic changes and various spermatogenic defects. RNA extraction and quantitative real-time reverse These findings revealed an essential role of mouse Cdyl in transcription PCR male fertility, and provided novel insights into the Total RNA was extracted using the TRIzol reagent mechanism of YCM-related reproductive failure. according to the manufacturer’s protocols (Invitrogen). Reverse transcription reactions were executed using Pri- Materials and methods meScript RT reagent Kit (Takara). The quantitative real- Animals time PCR reaction was prepared using the SYBR Premix The mice used in this study were bred on the C57BL/ Ex Taq Kit (Takara) and performed using an ABI 7500 6 × 129 background. All animal experiments were carried System (Applied Biosystems). Gapdh was used as the out in accordance with the guidelines for the Use of internal control. The primers used in this experiment are Animals in Research issued by the Shanghai Jiao Tong listed in Table S2. University, School of Medicine. Protein preparation and western blotting Whole-mount immunofluorescence staining To prepare the proteins from testes and mouse/human Embryonic day 15.5 (E15.5) embryos were dissected sperm, the samples were lysed in Radio- from euthanized pregnant females, and XY embryonic immunoprecipitation assay buffer and then homogenized gonads (EGs) were collected according a previously pub- on ice. The lysates were then centrifuged at 12,000 × g for lished method15. EGs were washed in phosphate-buffered 10 min at 4 °C to collect the supernatant. Protein con- saline (PBS), transferred into 4% paraformaldehyde, and centrations were measured using a BCA Protein Assay Kit fixed overnight at 4 °C on a rocker. The EGs were then (Beyotime). All samples were processed using 10–12% subjected to three 15 min washes with PBS containing sodium dodecyl sulfate polyacrylamide gel electrophoresis 0.1% Triton-X (PBS-T). All the antibodies were diluted in and electrotransferred to polyvinylidene fluoride mem- PBS-T containing 1 mg/ml bovine serum albumin (BSA). branes. Membranes were blocked for 1 h at room tem- The samples were incubated with primary antibodies for perature with 5% BSA and then incubated with primary 2 days at 4 °C, washed with PBS-T, and then incubated antibodies overnight at 4 °C. After incubation with labeled with the Alexa Fluor-conjugated secondary antibodies for secondary antibodies, signals were obtained using a 1 h at room temperature. After washing with PBS-T, the Visualizer Western Blot Detection Kit (Millipore). The EGs were viewed and photographed under a fluorescence primary antibodies are listed in Table S1. microscope (Leica). The antibodies used in this research are listed in Table S1. Histological and immunohistochemistry assays Male mice were killed at 6 weeks, 14 weeks, or 5 months Generation of cKO mouse and genotyping old. The weights of the whole body, testis, and epididymis Conditional Cdyl knockout mice were generated by were recorded. Tissues were fixed in Bouin’ssolution inserting loxP sites flanking the fifth exon of the ubiqui- overnight. Paraffinsections(5μm) were prepared using tously expressed Cdyl transcript. The targeting vector was standard procedures. Periodic acid-Schiff (PAS) staining electroporated into embryonic stem cells (ESCs) to con- was performed according to the manufacturer's instructions + fl struct the heterozygous Cdyl / ox ESCs, followed by injec- (Beyotime). Staging of mouse seminiferous tubule cross- + fl tion of the Cdyl / ox ESCs into mouse blastocysts. After the sections was performed according to a published method16. fl fl standard breeding procedures, homozygous Cdyl ox/ ox For the immunohistochemical assays, antigen retrieval mice were obtained, which were phenotypically normal. was executed by incubation in buffered citrate (pH 6.0) for fl fl The female Cdyl ox/ ox mice were crossed to the male Vasa- 15 min at 105 °C. The sections were blocked in counter- + fl fl Cre transgenic mice to obtain the Vasa-Cre , Cdyl ox/ ox part IgG for 30 min at room temperature and then incu- fl fl + fl mice (CdylcKO). Either Cdyl ox/ ox or Cdyl / ox male mice bated with primary antibodies at 4 °C overnight. On the were used as controls (CdylCtrl) in this study. DNA was following day, the signals were visualized using a extracted from mouse tails and subjected to PCR. The Histostain-Plus Kit (Life Technologies). Images were fl Δ primers used to detect Vasa-Cre, Cdyl ox, Cdyl (Cdyl captured under a microscope BX53F (Olympus). The deletion) in this assay are listed in Table S2. antibodies used in this assay are listed in Table S1. Mating experiment CASA analysis and sperm staining Each CdylcKO or control male mouse was bred with two The cauda epididymis was dissected from an individual wild-type adult females continuously from 6 weeks old. The mouse, and then incubated in Tyrode’s Solution Official journal of the Cell Death Differentiation Association Xia et al. Cell Death and Disease (2019) 10:229 Page 3 of 13 229 (Solarbio) at 37 °C for 15 min to release the sperms. The was 200 μL. Each tube was fully vortexed before collection supernatant was collected, and sperm counts and motility to ensure equal dispersion of cells and beads.
Recommended publications
  • The Human Y Chromosome's Azoospermia Factor B (Azfb) Region
    18 ORIGINAL ARTICLE J Med Genet: first published as 10.1136/jmg.40.1.18 on 1 January 2003. Downloaded from The human Y chromosome’s azoospermia factor b (AZFb) region: sequence, structure, and deletion analysis in infertile men A Ferlin, E Moro, A Rossi, B Dallapiccola, C Foresta ............................................................................................................................. J Med Genet 2003;40:18–24 See end of article for authors’ affiliations Microdeletions of the Y chromosome long arm are the most common mutations in infertile males, where ....................... they involve one or more “azoospermia factors” (AZFa, b, and c). Understanding of the AZF structure and gene content and mapping of the deletion breakpoints in infertile men are still incomplete. We Correspondence to: Professor C Foresta, have assembled a complete 4.3 Mb map of AZFb and surrounding regions by means of 38 BAC University of Padova, clones. The proximal part of AZFb consists of large repeated sequences organised in palindromes, but Department of Medical and most of it is single copy sequence. A number of known and novel genes and gene families map in this Surgical Sciences, Clinica interval, and most of them are testis specific or have testis specific transcripts. STS mapping allowed us Medica 3, Via Ospedale to identify four severely infertile subjects with a deletion in AZFb with similar breakpoints, therefore 105, 35128 Padova, Italy; [email protected] suggesting a common deletion mechanism. This deletion includes at least five single copy genes and two duplicated genes, but does not remove the historical AZFb candidate gene RBMY1. These data Revised version received suggest that other genes in AZFb may have important roles in spermatogenesis.
    [Show full text]
  • Taf7l Cooperates with Trf2 to Regulate Spermiogenesis
    Taf7l cooperates with Trf2 to regulate spermiogenesis Haiying Zhoua,b, Ivan Grubisicb,c, Ke Zhengd,e, Ying Heb, P. Jeremy Wangd, Tommy Kaplanf, and Robert Tjiana,b,1 aHoward Hughes Medical Institute and bDepartment of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California, Berkeley, CA 94720; cUniversity of California Berkeley–University of California San Francisco Graduate Program in Bioengineering, University of California, Berkeley, CA 94720; dDepartment of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104; eState Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, People’s Republic of China; and fSchool of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel Contributed by Robert Tjian, September 11, 2013 (sent for review August 20, 2013) TATA-binding protein (TBP)-associated factor 7l (Taf7l; a paralogue (Taf4b; a homolog of Taf4) (9), TBP-related factor 2 (Trf2) (10, of Taf7) and TBP-related factor 2 (Trf2) are components of the core 11), and Taf7l (12, 13). For example, mice bearing mutant or promoter complex required for gene/tissue-specific transcription deficient CREM showed decreased postmeiotic gene expression of protein-coding genes by RNA polymerase II. Previous studies and defective spermiogenesis (14). Mice deficient in Taf4b, reported that Taf7l knockout (KO) mice exhibit structurally abnor- a testis-specific homolog of Taf4, are initially normal but undergo mal sperm, reduced sperm count, weakened motility, and compro- progressive germ-cell loss and become infertile by 3 mo of age −/Y mised fertility.
    [Show full text]
  • The Role of Y Chromosome Deletions in Male Infertility
    European Journal of Endocrinology (2000) 142 418–430 ISSN 0804-4643 INVITED REVIEW The role of Y chromosome deletions in male infertility Kun Ma, Con Mallidis and Shalender Bhasin Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, California 90050, USA (Correspondence should be addressed to K Ma; Email: [email protected]) Abstract Male infertility affects approximately 2–7% of couples around the world. Over one in ten men who seek help at infertility clinics are diagnosed as severely oligospermic or azoospermic. Recent extensive molecular studies have revealed that deletions in the azoospermia factor region of the long arm of the Y chromosome are associated with severe spermatogenic impairment (absent or severely reduced germ cell development). Genetic research into male infertility, in the last 7 years, has resulted in the isolation of a great number of genes or gene families on the Y chromosome, some of which are believed to influence spermatogenesis. European Journal of Endocrinology 142 418–430 Introduction of Infertility, with the objective of creating a standard protocol for the investigation of infertile couples. Normal Defective spermatogenesis is the result of a multitude of semen was classified as containing a sperm concentra- causes, such as diseases, malnutrition, endocrinological 6 tion of at least 20 × 10 /ml, of which more than 40% disorders, genetic defects or environmental hazards (1). are progressively motile, more than 60% are alive, and Genetic defects, such as mutations and chromosomal over 50% show normal morphology. In addition, the abnormalities, have been estimated to account for at 6 semen should contain no more than 1 × 10 /ml of white least 30% of male infertility (2).
    [Show full text]
  • Genetic Signatures of High-Altitude Adaptation and Geographic
    www.nature.com/scientificreports OPEN Genetic signatures of high‑altitude adaptation and geographic distribution in Tibetan sheep Jianbin Liu1,2*, Chao Yuan1,2, Tingting Guo1,2, Fan Wang3, Yufeng Zeng1, Xuezhi Ding1, Zengkui Lu1,2, Dingkao Renqing4, Hao Zhang5, Xilan Xu6, Yaojing Yue1,2, Xiaoping Sun1,2, Chune Niu1,2, Deqing Zhuoga7* & Bohui Yang1,2* Most sheep breeding programs designed for the tropics and sub‑tropics have to take into account the impacts of environmental adaptive traits. However, the genetic mechanism regulating the multiple biological processes driving adaptive responses remains unclear. In this study, we applied a selective sweep analysis by combing 1% top values of Fst and ZHp on both altitude and geographic subpopulations (APS) in 636 indigenous Tibetan sheep breeds. Results show that 37 genes were identifed within overlapped genomic regions regarding Fst signifcantly associated with APS. Out of the 37 genes, we found that 8, 3 and 6 genes at chromosomes (chr.) 13, 23 and 27, respectively, were identifed in the genomic regions with 1% top values of ZHp. We further analyzed the INDEL variation of 6 genes at chr.27 (X chromosome) in APS together with corresponding orthologs of 6 genes in Capra, Pantholops, and Bos Taurus. We found that an INDEL was located within 5′UTR region of HAG1 gene. This INDEL of HAG1 was strongly associated with the variation of APS, which was further confrmed by qPCR. Sheep breeds carrying “C‑INDEL” of HAG1 have signifcantly greater body weight, shear amount, corpuscular hemoglobin and globulin levels, but lower body height, than those carrying “CA‑INDEL” of HAG1.
    [Show full text]
  • Partial Azfc Deletions and Duplications: Clinical Correlates in the Italian Population
    FLORE Repository istituzionale dell'Università degli Studi di Firenze Partial AZFc deletions and duplications: clinical correlates in the Italian population. Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione: Original Citation: Partial AZFc deletions and duplications: clinical correlates in the Italian population / Giachini C; Laface I; Guarducci E; Balercia G; Forti G; Krausz C.. - In: HUMAN GENETICS. - ISSN 0340-6717. - STAMPA. - 124(2008), pp. 399-410. Availability: This version is available at: 2158/333113 since: 2019-11-07T18:24:55Z Terms of use: Open Access La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze (https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf) Publisher copyright claim: (Article begins on next page) 28 September 2021 Hum Genet (2008) 124:399–410 DOI 10.1007/s00439-008-0561-1 ORIGINAL INVESTIGATION Partial AZFc deletions and duplications: clinical correlates in the Italian population Claudia Giachini · Ilaria Laface · Elena Guarducci · Giancarlo Balercia · Gianni Forti · Csilla Krausz Received: 7 August 2008 / Accepted: 9 September 2008 / Published online: 21 September 2008 © Springer-Verlag 2008 Abstract The role of partial AZFc deletions of the Y potential methodological and selection biases were care- chromosome in spermatogenic impairment is currently fully avoided to detect the clinical signiWcance of partial debated. Recently, it was also reported that duplications of AZFc deletions and duplications. Our study provides strong the same region are associated with oligozoospermia in evidence that gr/gr deletion is a risk factor for impaired Han-Chinese men.
    [Show full text]
  • A Familial Study of Azoospermic Men Identifies Three Novel Causative Mutations in Three New Human Azoospermia Genes
    ORIGINAL RESEARCH ARTICLE © American College of Medical Genetics and Genomics A familial study of azoospermic men identifies three novel causative mutations in three new human azoospermia genes Moran Gershoni, PhD1, Ron Hauser, MD2, Leah Yogev, PhD2, Ofer Lehavi, MD2, Foad Azem, MD2, Haim Yavetz, MD2, Shmuel Pietrokovski, PhD1 and Sandra E. Kleiman PhD2 Purpose: Up to 1% of all men experience azoospermia, a condition of Results: We identified three novel likely causative mutations of azo- complete absence of sperm in the semen. The mechanisms and genes ospermia in three genes: MEIOB, TEX14, and DNAH6. These genes involved in spermatogenesis are mainly studied in model organisms, are associated with different meiotic processes: meiotic crossovers, and their relevance to humans is unclear because human genetic daughter cell abscission, and possibly rapid prophase movements. studies are very scarce. Our objective was to uncover novel human Conclusion: The genes and pathways we identified are fundamental mutations and genes causing azoospermia due to testicular meiotic for delineating common causes of azoospermia originating in muta- maturation arrest. tions affecting diverse meiotic processes and have great potential for Methods: Affected and unaffected siblings from three families were accelerating approaches to diagnose, treat, and prevent infertility. subjected to whole-exome or whole-genome sequencing, followed by comprehensive bioinformatics analyses to identify mutations suspected Genet Med advance online publication 16 February 2017 to cause azoospermia. These likely mutations were further screened in azoospermic and normozoospermic men and in men proven to be fer- Key Words: azoospermia; crossover; meiosis; rapid prophase tile, as well as in a reference database of local populations.
    [Show full text]
  • Genetics of Azoospermia
    International Journal of Molecular Sciences Review Genetics of Azoospermia Francesca Cioppi , Viktoria Rosta and Csilla Krausz * Department of Biochemical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; francesca.cioppi@unifi.it (F.C.); viktoria.rosta@unifi.it (V.R.) * Correspondence: csilla.krausz@unifi.it Abstract: Azoospermia affects 1% of men, and it can be due to: (i) hypothalamic-pituitary dysfunction, (ii) primary quantitative spermatogenic disturbances, (iii) urogenital duct obstruction. Known genetic factors contribute to all these categories, and genetic testing is part of the routine diagnostic workup of azoospermic men. The diagnostic yield of genetic tests in azoospermia is different in the different etiological categories, with the highest in Congenital Bilateral Absence of Vas Deferens (90%) and the lowest in Non-Obstructive Azoospermia (NOA) due to primary testicular failure (~30%). Whole- Exome Sequencing allowed the discovery of an increasing number of monogenic defects of NOA with a current list of 38 candidate genes. These genes are of potential clinical relevance for future gene panel-based screening. We classified these genes according to the associated-testicular histology underlying the NOA phenotype. The validation and the discovery of novel NOA genes will radically improve patient management. Interestingly, approximately 37% of candidate genes are shared in human male and female gonadal failure, implying that genetic counselling should be extended also to female family members of NOA patients. Keywords: azoospermia; infertility; genetics; exome; NGS; NOA; Klinefelter syndrome; Y chromosome microdeletions; CBAVD; congenital hypogonadotropic hypogonadism Citation: Cioppi, F.; Rosta, V.; Krausz, C. Genetics of Azoospermia. 1. Introduction Int. J. Mol. Sci.
    [Show full text]
  • Targeted Next-Generation Sequencing Identifies Novel Sequence Variations of Genes Associated with Nonobstructive Azoospermia In
    CLINICAL RESEARCH e-ISSN 1643-3750 © Med Sci Monit, 2019; 25: 5801-5812 DOI: 10.12659/MSM.915375 Received: 2019.01.26 Accepted: 2019.04.09 Targeted Next-Generation Sequencing Identifies Published: 2019.08.04 Novel Sequence Variations of Genes Associated with Nonobstructive Azoospermia in the Han Population of Northeast China Authors’ Contribution: BCE 1 Xiangyin Liu 1 Center for Reproductive Medicine and Center of Prenatal Diagnosis, First Hospital, Study Design A BDF 1 Qi Xi Jilin University, Changchun, P.R. China Data Collection B 2 Changchun Jida Middle School Experimental School, Changchun, Jilin, P.R. China Statistical Analysis C BF 1 Leilei Li Data Interpretation D CF 2 Qiyuan Wang Manuscript Preparation E BD 1 Yuting Jiang Literature Search F Funds Collection G EF 1 Hongguo Zhang CFG 1 Ruizhi Liu AG 1 Ruixue Wang Corresponding Author: Ruixue Wang, e-mail: [email protected] Source of support: Funding was provided by the Science and Technology Department of Jilin Province (20160101048JC) Background: This study aimed to screen common and low-frequency variants of nonobstructive azoospermia (NOA)-associated genes, and to construct a database for NOA-associated single nucleotide variants (SNVs). Material/Methods: Next-generation sequencing of 466 NOA-associated genes was performed in 34 patients with NOA (mean age, 29.06±4.49 years) and 40 sperm donors (mean age, 25.08±5.75 years) from the Han population of northeast China. The SNV database was constructed by summarizing NOA non-negatively-associated SNVs showing sta- tistical differences between NOA cases and controls, and then selecting low-frequency variants using Baylor’s pipeline, to identify statistically valid SNVs.
    [Show full text]
  • Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
    Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo
    [Show full text]
  • Unique Signatures of Natural Background Radiation on Human Y Chromosomes from Kerala, India
    Unique Signatures of Natural Background Radiation on Human Y Chromosomes from Kerala, India Sanjay Premi, Jyoti Srivastava, Sebastian Padinjarel Chandy, Sher Ali* Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India Abstract Background: The most frequently observed major consequences of ionizing radiation are chromosomal lesions and cancers, although the entire genome may be affected. Owing to its haploid status and absence of recombination, the human Y chromosome is an ideal candidate to be assessed for possible genetic alterations induced by ionizing radiation. We studied the human Y chromosome in 390 males from the South Indian state of Kerala, where the level of natural background radiation (NBR) is ten-fold higher than the worldwide average, and that from 790 unexposed males as control. Results: We observed random microdeletions in the Azoospermia factor (AZF) a, b and c regions in .90%, and tandem duplication and copy number polymorphism (CNP) of 11 different Y-linked genes in about 80% of males exposed to NBR. The autosomal homologues of Y-linked CDY genes largely remained unaffected. Multiple polymorphic copies of the Y-linked genes showing single Y-specific signals suggested their tandem duplication. Some exposed males showed unilocus duplication of DAZ genes resulting in six copies. Notably, in the AZFa region, approximately 25% of exposed males showed deletion of the DBY gene, whereas flanking genes USP9Y and UTY remained unaffected. All these alterations were detected in blood samples but not in the germline (sperm) samples. Conclusions: Exposure to high levels of NBR correlated with several interstitial polymorphisms of the human Y chromosome.
    [Show full text]
  • Novel Targets of Apparently Idiopathic Male Infertility
    International Journal of Molecular Sciences Review Molecular Biology of Spermatogenesis: Novel Targets of Apparently Idiopathic Male Infertility Rossella Cannarella * , Rosita A. Condorelli , Laura M. Mongioì, Sandro La Vignera * and Aldo E. Calogero Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; [email protected] (R.A.C.); [email protected] (L.M.M.); [email protected] (A.E.C.) * Correspondence: [email protected] (R.C.); [email protected] (S.L.V.) Received: 8 February 2020; Accepted: 2 March 2020; Published: 3 March 2020 Abstract: Male infertility affects half of infertile couples and, currently, a relevant percentage of cases of male infertility is considered as idiopathic. Although the male contribution to human fertilization has traditionally been restricted to sperm DNA, current evidence suggest that a relevant number of sperm transcripts and proteins are involved in acrosome reactions, sperm-oocyte fusion and, once released into the oocyte, embryo growth and development. The aim of this review is to provide updated and comprehensive insight into the molecular biology of spermatogenesis, including evidence on spermatogenetic failure and underlining the role of the sperm-carried molecular factors involved in oocyte fertilization and embryo growth. This represents the first step in the identification of new possible diagnostic and, possibly, therapeutic markers in the field of apparently idiopathic male infertility. Keywords: spermatogenetic failure; embryo growth; male infertility; spermatogenesis; recurrent pregnancy loss; sperm proteome; DNA fragmentation; sperm transcriptome 1. Introduction Infertility is a widespread condition in industrialized countries, affecting up to 15% of couples of childbearing age [1]. It is defined as the inability to achieve conception after 1–2 years of unprotected sexual intercourse [2].
    [Show full text]
  • Male Infertility G.R
    Guidelines on Male Infertility G.R. Dohle, A. Jungwirth, G. Colpi, A. Giwercman, T. Diemer, T.B. Hargreave © European Association of Urology 2008 TABLE OF CONTENTS PAGE 1. INTRODUCTION 6 1.1 Definition 1.2 Epidemiology and aetiology 6 1.3 Prognostic factors 6 1.4 Recommendations 7 1.5 References 7 2. INVESTIGATIONS 7 2.1 Semen analysis 7 2.1.1 Frequency of semen analysis 7 2.2 Recommendations 8 2.3 References 8 3. PRIMARY SPERMATOGENIC FAILURE 8 3.1 Definition 8 3.2 Aetiology 8 3.3 History and physical examination 8 3.4 Investigations 9 3.4.1 Semen analysis 9 3.4.2 Hormonal determinations 9 3.4.3 Testicular biopsy 9 3.5 Treatment 9 3.6 Conclusions 10 3.7 Recommendations 10 3.8 References 10 4. GENETIC DISORDERS IN INFERTILITY 14 4.1 Introduction 14 4.2 Chromosomal abnormalities 14 4.2.1 Sperm chromosomal abnormalities 14 4.2.2 Sex chromosome abnormalities (Klinefelter’s syndrome and variants [mosaicism] 14 4.2.3 Autosomal abnormalities 14 4.2.4 Translocations 15 4.3 Genetic defects 15 4.3.1 X-linked genetic disorders and male fertility 15 4.3.2 Kallmann’s syndrome 15 4.3.3 Androgen insensitivity: Reifenstein’s syndrome 15 4.3.4 Other X-disorders 15 4.3.5 X-linked disorders not associated with male infertility 15 4.4. Y genes and male infertility 15 4.4.1 Introduction 15 4.4.2 Clinical implications of Y microdeletions 16 4.4.2.1 Testing for Y microdeletions 16 4.4.2.2 Recommendations 16 4.4.3 Autosomal defects with severe phenotypic abnormalities as well as infertility 16 4.5 Cystic fibrosis mutations and male infertility 17 4.6 Unilateral or bilateral absence/abnormality of the vas and renal anomalies 17 4.7 Other single gene disorders 18 4.8 Unknown genetic disorders 18 4.9 Genetic and DNA abnormalities in sperm 18 4.10 Genetic counselling and ICSI 18 4.11 Conclusions 19 4.12 Recommendations 19 4.13 References 19 2 UPDATE MARCH 2007 5.
    [Show full text]