Motivic Symbols and Classical Multiplicative Functions Ane Espeseth & Torstein Vik Fagerlia videreg˚aendeskole, Alesund˚ f1; pkg ? Submitted to \Norwegian Contest for Young Scientists" 15 February 2016 Contact details: Ane Espeseth:
[email protected] Torstein Vik:
[email protected] 1 Abstract A fundamental tool in number theory is the notion of an arithmetical function, i.e. a function which takes a natural number as input and gives a complex number as output. Among these functions, the class of multiplicative functions is particularly important. A multiplicative function has the property that all its values are determined by the values at powers of prime numbers. Inside the class of multiplicative functions, we have the smaller class of completely multiplicative functions, for which all values are determined simply by the values at prime numbers. Classical examples of multiplicative functions include the constant func- tion with value 1, the Liouville function, the Euler totient function, the Jordan totient functions, the divisor functions, the M¨obiusfunction, and the Ramanu- jan tau function. In higher number theory, more complicated examples are given by Dirichlet characters, coefficients of modular forms, and more generally by the Fourier coefficients of any motivic or automorphic L-function. It is well-known that the class of all arithmetical functions forms a com- mutative ring if we define addition to be the usual (pointwise) addition of func- tions, and multiplication to be a certain operation called Dirichlet convolution. A commutative ring is a kind of algebraic structure which, just like the integers, has both an addition and a multiplication operation, and these satisfy various axioms such as distributivity: f · (g + h) = f · g + f · h for all f, g and h.