Bibliography
Total Page:16
File Type:pdf, Size:1020Kb
Bibliography M R denotes reference to Mathematical Rerie11.·s. I. Apostol, 1om M. ( 1970) Euler's <p-function and separable Gauss sums. Proc. A mer. Math. Soc., 24: 482-485; MR 41. # 1661. 2. Apostol, Tom M. ( 1974) Mathematical Analysis, 2nd ed. Reading, Mass.: Addison Wesley Publishing Co. 3. Ayoub, Raymond G. (1963) An Introduction to the Analytic Theory of Numbers. Mathematical Surveys, No. 10. Providence, R. I.: American Mathematical Society. 4. Bell, E. T. (1915) An arithmetical theory of certain numerical functions. University of Washinqton Pub!. in Math. and Phys. Sci., No. 1, Vol. 1: 1-44. 5. Borozdkin, K. G. (1956) K voprosu o postoyanni I. M. Vinogradova. Trudy treteqo z·sesoluznoqo matematic'eskoqo siezda, Vol. I, Moskva [Russian]. 6. Buhstab, A. A. ( 1965) New results in the investigation of the Goldbach-Euler problem and the problem of prime pairs. [Russian]. Dokl. Akad. Nauk SSSR, 162: 735-738; MR 31, #2226. [English translation: (1965) Soviet Math. Dokl. 6: 729-732.) 7. Chandrasekharan, Komaravolu (1968) Introduction to Analytic Number Theory. Die Grundlehren der Mathematischen Wissenschaften, Band 148. New York: Springer-Verlag. 8. Chandrasekharan, Komaravolu (1970) Arithmetical Functions. Die Grundlehren der Mathematischen Wissenschaften, Band 167. New York. Springer-Verlag. 9. Chebyshev, P. L. Sur Ia fonction qui determine Ia totalite des nombres premiers inferieurs a une limite donee. (a) (1851) Mem. Ac. Sc. St. Ntershour,q. 6: 141-157. (b) (1852) Jour. de Math (I) /7: 341-365. [Oeuvres, 1: 27-48.] I 0. Chen, Jing-run ( 1966) On the representation of a large even integer as the sum of a prime and the product of at most two primes. Kexue Tonqhao (Foreign Lang. Ed.). 17: 385-386; MR 34, #7483. 329 Bibliography II. Clarkson, James A. (1966) On the series of prime reciprocals. Proc. Amer. Math. Soc., I7: 541; M R 32, # 5573. 12. Davenport, Harold ( 1967) Multiplicative Number Theory. Lectures in Advanced Mathematics, No. I. Chicago: Markham Publishing Co. 13. Dickson, Leonard Eugene (1919) History of the Theory of Numbers. (3 volumes). Washington, D. C.: Carnegie Institution of Washington. Reprinted by Chelsea Publishing Co., New York, 1966. 14. Dickson, Leonard Eugene (1930) Studies in the Theory of Numbers. Chicago: The University of Chicago Press. 15. Dirichlet, P. G. Lejeune (1837) Beweis des Satzes, dass jede unbegrenzte arith metische Progression, deren erstes Glied und Differenz ganze Zahlen ohne geme inschlaftichen Factor sind, unendliche viele Primzahlen enthalt. Abhand. Ak. Wiss. Berlin: 45-81. [Werke, I: 315-342.] 16. Dirichlet, P. G. Lejeune (1840) Ueber eine Eigenschaft der quadratischen Formen. Bericht Ak. Wiss. Berlin: 49-52. [Werke, I: 497-502.] 17. Edwards, H. M. (1974) Riemann's Zeta Function. New York and London: Academic Press. 18. Ellison, W. J. (1971) Waring's problem. Amer. Math. Monthly, 78: 10-36. 19. Erdos, Paul (1949) On a new method in elementary number theory which leads to an elementary proof of the prime number theorem. Proc. Nat. Acad. Sci. U.S.A., 35: 374-384: MR 10, 595. 20. Euler, Leonhard (1737) Variae observationes circa series infinitas. Commentarii Academiae Scientiarum Jmperialis Petropolitanae, Y: 160-188. [Opera Omnia (1), /4; 216-244.] 21. Euler, Leonhard (1748) lntroductio in Analysin Jnfinitorum, Vol. I. Lausanne: Bousquet. [Opera Omnia (1), 8.] 22. Franklin, F. (1881) Sur lc developpement du produit infini (I - x)(l - x 2 ) (I - x 3 )(1 - x4 ). • .. Comptes Rendus Acad. Sci. (Paris), 92: 448-450. 23. Gauss, C. F. (1801) Disquisitiones Arithmeticae. Lipsiae. [English translation: Arthur A. Clarke (1966) New Haven: Yale University Press. 24. Gauss, C. F. (1849) Letter to Encke, dated 24 December. [Werke, Vol. II, 444-447.] 25. Gerstenhaber, Murray (1963) The 152nd proof of the law of quadratic reciprocity. Amer. Math. Monthly, 70: 397--398; MR 27, # 100. 26. Goldbach, C. (1742) Letter to Euler, dated 7 June. 27. Grosswald, Emil (1966) Topics from the Theory of Numbers. New York: The Macmillan Co. 28. Hadamard, J. ( 1896) Sur Ia distribution des zeros de Ia fonction ((s) et ses conse quences arithmetiques. Bull. Soc. Math. France, 24: 199-220. 29. Hagis, Peter, Jr. (1973) A lower bound for the set of odd perfect numbers. Math. Comp., 27: 951-953; MR 48, #3854. 30. Hardy, G. H. (1940) Ramanujan. Twelve Lectures on Subjects Suyyested by His Life and Work. Cambridge: The University Press. 31. Hardy, G. H. and Wright, E. M. (1960) An Introduction to the Theory of Numbers, 4th ed. Oxford: Clarendon Press. 32. Herner, Ove (1954) Notes on the Diophantine equation y 2 - k = x3. Ark. Mat., 3: 67-77; MR 15,776. 33. Ingham, A. E. (1932) The Distribution of Prime Numbers. Cambridge Tracts in Mathematics and Mathematical Physics, No. 30. Cambridge: The University Press. 330 Bibliography 34. Jacobi. C. G. J. (1829) Fundamenta Nova Theoriae Functionum Ellipticarum. [Gesammelte Werke, Band I, 49-239.] 35. Kolesnik, G. A. ( 1969) An improvement of the remainder term in the divisor prob lem. (Russian). Mat. Zametki, 6: 545-554; MR 41, # 1659. [English translation: (1969), Math. Notes, 6: 784--791.] 36. Kruyswijk. D. (1950) On some well-known properties of the partition function p(n) and Euler's infinite product. Nieuw Arch. Wisk., (2) 23: 97-107; MR II, 715. 37. Landau, E. (1909) Handbuch der Lehre von der Verteilung der Primzahlen. Leipzig: Teubner. Reprinted by Chelsea, 1953. 38. Landau, E. (1927) Vorlesungen iiber Zahlentheorie (3 volumes). Leipzig: Hirzel. Reprinted by Chelsea, 1947. 39. Leech, J. (1957) Note on the distribution of prime numbers. J. London Math. Soc., 32: 56-58: MR 18.642. 40. Legendre, A.M. (1798) Essai sur Ia Theorie des Nombres. Paris: Duprat. 41. Lehmer, D. H. (1959) On the exact number of primes less than a given limit. JllinoisJ. Math., 3: 381-388; MR 21, #5613. 42. Lehmer, D. H. (1936) On a conjecture of Ramanujan. J. London Math. Soc., 11: 114--118. 43. Lehmer, D. N. (1914) List of prime numbers from I to 10,006,721. Washington, D.C.: Carnegie Institution of Washington, Pub I. No. 165. 44. LeVeque, W. J. (1956) Topics in Number Theory (2 volumes). Reading, Mass.: Addison-Wesley Publishing Co. 45. LeVeque, W. J. (1974) Reviews in Number Theory (6 volumes). Providence, RI: American Mathematical Society. 46. Levinson, N. ( 1969) A motivated account of an elementary proof of the prime number theorem. Amer. Math. Monthly, 76: 225-245; MR 39, #2712. 47. Levinson, Norman ( 1974) More than one third of zeros of Riemann's zeta-function are on a = 1/2. Advances Math., 13: 383--436. 48. van Lint, Jacobus Hendricus (1974) Combinatorial Theory Seminar (Eindhoven University of Technology), Lecture Notes in Mathematics 382. Springer-Verlag, Chapter 4. 49. Littlewood, J. E. (1914) Sur Ia distribution des nombres premiers. Comptes Rendus Acad. Sci. (Paris), 158: 1869-1872. 50. Mills, W. H. (1947) A prime-representing function. Bull. Amer. Math. Soc., 53: 604; MR 8, 567. 51. Nevanlinna." V. (1962) Ober den elementaren Beweis des Primzahlsatzes. Soc. Sci. Fenn. Comment. Phys.-Math,. 27 No.3, 8 pp.; MR 26, #2416. 52. Niven, I. and Zuckerman, H. S. (1972) An Introduction to the Theory of Numbers, 3rd ed. New York: John Wiley and Sons, Inc. 53. Prachar, Karl (1957) Primzahlverteilun,q. Die Grundlehren der Mathematischen Wissenschaften, Band 91. Berlin-Gottingen-Heidelberg: Springer-Verlag. 54. Rademacher, Hans (1937) On the partition functionp(n). Proc. London Math. Soc., 43: 241-254. 55. Rademacher, Hans (1964) Lectures on Elementary Number Theory. New York: Blaisdell Publishing Co. 56. Rademacher, Hans (1973) Topics in Analytic Number Theory. Die Grundlehren der Mathematischen Wissenschaften, Band 169. New York-Heidelberg-Berlin: Springer-Verlag. 331 Bibliography 57. Renyi, A. ( 1948) On the representation of an even number as the sum of a single prime and a single almost-prime number. (Russian). b·. Akad. Nauk SSSR Ser. Mat., 12: 57-78; M R 9, 413. [English translation: ( 1962) A mer. Math. Soc. Trans/. 19 (2): 299-321.] 58. Riemann. B. (1859) Ober die Anzahl der Primzahlen unter einer gegebener Grosse. Monatsber. Akad. Berlin. 671-680. 59. Robinson, R. M. ( 1958) A report on primes of the form k · 2" + I and on factors of Fermat numbers. Proc. Amer. Math. Soc .. 9:673-681; MR 20, #3097. 60. Rosser. J. Barkley. and Schoenfeld. Lowell ( 1962) Approximate formulas for some functions of prime number theory. 11/inois J. Math., 6: 69-94; M R 25, # 1139. 61. Schnirelmann. L. (1930) On additive properties of numbers. (Russian). /zr. Don skmm Politechn. lnst. ( Nmi'Otscherkask), 14 (2-3): 3-28. 62. Selberg, A tie ( 1949) An elementary proof of the prime number theorem. Ann. of Math., 50: 305-313; MR 10,595. 63. Shanks. Daniel ( 1951) A short proof of an identity of Euler. Proc. A mer. Math. Soc .. 2: 747-749; MR 13, 321. 64. Shapiro. Harold N. ( 1950) On the number of primes less than or equal x. Proc. Amer. Math. Soc., 1: 346-348; MR 12, 80. 65. Shapiro, Harold N. (1952) On primes in arithmetic progression II. Ann. of Math. 52:231-243: MR 12, 81. 66. Shen, Mok-Kong ( 1964) On checking the Goldbach conjecture. Nordisk Tidskr. 1nformations-Behandling, 4: 243-245; M R 30, # 3051. 67. Sierpinski. Waclaw ( 1964) Element an· Theorv of Nwnhers. Translated from Polish by A. Hulanicki. Monografie Matematyczne, Tom 42. Warsaw:. Panstwowe Wzdawnictwo Naukowe. 68. Tatuzawa, Tikao, and Iseki Kaneshiro ( 1951) On Selberg's elementary proof of the prime number theorem. Proc. Japan Acad., 27: 340 342; MR 13,725. 69. Titchmarsh, E. C. (1951) The Theory of the Riemann Zeta Function. Oxford: Clarendon Press. 70. Uspensky, J. V., and Heaslett, M.A. (1939) Elementary Number Theory. New York: McGraw-Hill Book Co. 71. Vallee Poussin. Ch.