THE MATHEMATICS of GAUSS Introduction Carl Friedrich Gauss
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints
A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints by Mehrdad Sabetzadeh A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Computer Science University of Toronto Copyright c 2003 by Mehrdad Sabetzadeh Abstract A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints Mehrdad Sabetzadeh Master of Science Graduate Department of Computer Science University of Toronto 2003 Eliciting the requirements for a proposed system typically involves different stakeholders with different expertise, responsibilities, and perspectives. This may result in inconsis- tencies between the descriptions provided by stakeholders. Viewpoints-based approaches have been proposed as a way to manage incomplete and inconsistent models gathered from multiple sources. In this thesis, we propose a category-theoretic framework for the analysis of fuzzy viewpoints. Informally, a fuzzy viewpoint is a graph in which the elements of a lattice are used to specify the amount of knowledge available about the details of nodes and edges. By defining an appropriate notion of morphism between fuzzy viewpoints, we construct categories of fuzzy viewpoints and prove that these categories are (finitely) cocomplete. We then show how colimits can be employed to merge the viewpoints and detect the inconsistencies that arise independent of any particular choice of viewpoint semantics. Taking advantage of the same category-theoretic techniques used in defining fuzzy viewpoints, we will also introduce a more general graph-based formalism that may find applications in other contexts. ii To my mother and father with love and gratitude. Acknowledgements First of all, I wish to thank my supervisor Steve Easterbrook for his guidance, support, and patience. -
Classical Simulation of Quantum Circuits by Half Gauss Sums
CLASSICAL SIMULATION OF QUANTUM CIRCUITS BY HALF GAUSS SUMS † ‡ KAIFENG BU ∗ AND DAX ENSHAN KOH ABSTRACT. We give an efficient algorithm to evaluate a certain class of expo- nential sums, namely the periodic, quadratic, multivariate half Gauss sums. We show that these exponential sums become #P-hard to compute when we omit either the periodic or quadratic condition. We apply our results about these exponential sums to the classical simulation of quantum circuits, and give an alternative proof of the Gottesman-Knill theorem. We also explore a connection between these exponential sums and the Holant framework. In particular, we generalize the existing definition of affine signatures to arbitrary dimensions, and use our results about half Gauss sums to show that the Holant problem for the set of affine signatures is tractable. CONTENTS 1. Introduction 1 2. Half Gausssums 5 3. m-qudit Clifford circuits 11 4. Hardness results and complexity dichotomy theorems 15 5. Tractable signature in Holant problem 18 6. Concluding remarks 20 Acknowledgments 20 Appendix A. Exponential sum terminology 20 Appendix B. Properties of Gauss sum 21 Appendix C. Half Gauss sum for ξd = ω2d with even d 21 Appendix D. Relationship between half− Gauss sums and zeros of a polynomial 22 References 23 arXiv:1812.00224v1 [quant-ph] 1 Dec 2018 1. INTRODUCTION Exponential sums have been extensively studied in number theory [1] and have a rich history that dates back to the time of Gauss [2]. They have found numerous (†) SCHOOL OF MATHEMATICAL SCIENCES, ZHEJIANG UNIVERSITY, HANGZHOU, ZHE- JIANG 310027, CHINA (*) DEPARTMENT OF PHYSICS, HARVARD UNIVERSITY, CAMBRIDGE, MASSACHUSETTS 02138, USA (‡) DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139, USA E-mail addresses: [email protected] (K.Bu), [email protected] (D.E.Koh). -
Modular Arithmetic
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 5 Modular Arithmetic One way to think of modular arithmetic is that it limits numbers to a predefined range f0;1;:::;N ¡ 1g, and wraps around whenever you try to leave this range — like the hand of a clock (where N = 12) or the days of the week (where N = 7). Example: Calculating the day of the week. Suppose that you have mapped the sequence of days of the week (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday) to the sequence of numbers (0;1;2;3;4;5;6) so that Sunday is 0, Monday is 1, etc. Suppose that today is Thursday (=4), and you want to calculate what day of the week will be 10 days from now. Intuitively, the answer is the remainder of 4 + 10 = 14 when divided by 7, that is, 0 —Sunday. In fact, it makes little sense to add a number like 10 in this context, you should probably find its remainder modulo 7, namely 3, and then add this to 4, to find 7, which is 0. What if we want to continue this in 10 day jumps? After 5 such jumps, we would have day 4 + 3 ¢ 5 = 19; which gives 5 modulo 7 (Friday). This example shows that in certain circumstances it makes sense to do arithmetic within the confines of a particular number (7 in this example), that is, to do arithmetic by always finding the remainder of each number modulo 7, say, and repeating this for the results, and so on. -
Appendices A. Quadratic Reciprocity Via Gauss Sums
1 Appendices We collect some results that might be covered in a first course in algebraic number theory. A. Quadratic Reciprocity Via Gauss Sums A1. Introduction In this appendix, p is an odd prime unless otherwise specified. A quadratic equation 2 modulo p looks like ax + bx + c =0inFp. Multiplying by 4a, we have 2 2ax + b ≡ b2 − 4ac mod p Thus in studying quadratic equations mod p, it suffices to consider equations of the form x2 ≡ a mod p. If p|a we have the uninteresting equation x2 ≡ 0, hence x ≡ 0, mod p. Thus assume that p does not divide a. A2. Definition The Legendre symbol a χ(a)= p is given by 1ifa(p−1)/2 ≡ 1modp χ(a)= −1ifa(p−1)/2 ≡−1modp. If b = a(p−1)/2 then b2 = ap−1 ≡ 1modp,sob ≡±1modp and χ is well-defined. Thus χ(a) ≡ a(p−1)/2 mod p. A3. Theorem a The Legendre symbol ( p ) is 1 if and only if a is a quadratic residue (from now on abbre- viated QR) mod p. Proof.Ifa ≡ x2 mod p then a(p−1)/2 ≡ xp−1 ≡ 1modp. (Note that if p divides x then p divides a, a contradiction.) Conversely, suppose a(p−1)/2 ≡ 1modp.Ifg is a primitive root mod p, then a ≡ gr mod p for some r. Therefore a(p−1)/2 ≡ gr(p−1)/2 ≡ 1modp, so p − 1 divides r(p − 1)/2, hence r/2 is an integer. But then (gr/2)2 = gr ≡ a mod p, and a isaQRmodp. -
Modulo of a Negative Number1 1 Modular Arithmetic
Algologic Technical Report # 01/2017 Modulo of a negative number1 S. Parthasarathy [email protected] Ref.: negamodulo.tex Ver. code: 20170109e Abstract This short article discusses an enigmatic question in elementary num- ber theory { that of finding the modulo of a negative number. Is this feasible to compute ? If so, how do we compute this value ? 1 Modular arithmetic In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" upon reaching a certain value - the modulus (plural moduli). The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae, published in 1801. Modular arithmetic is a fascinating aspect of mathematics. The \modulo" operation is often called as the fifth arithmetic operation, and comes after + − ∗ and = . It has use in many practical situations, particu- larly in number theory and cryptology [1] [2]. If x and n are integers, n < x and n =6 0 , the operation \ x mod n " is the remainder we get when n divides x. In other words, (x mod n) = r if there exists some integer q such that x = q ∗ n + r 1This is a LATEX document. You can get the LATEX source of this document from [email protected]. Please mention the Reference Code, and Version code, given at the top of this document 1 When r = 0 , n is a factor of x. When n is a factor of x, we say n divides x evenly, and denote it by n j x . The modulo operation can be combined with other arithmetic operators. -
The Development and Understanding of the Concept of Quotient Group
HISTORIA MATHEMATICA 20 (1993), 68-88 The Development and Understanding of the Concept of Quotient Group JULIA NICHOLSON Merton College, Oxford University, Oxford OXI 4JD, United Kingdom This paper describes the way in which the concept of quotient group was discovered and developed during the 19th century, and examines possible reasons for this development. The contributions of seven mathematicians in particular are discussed: Galois, Betti, Jordan, Dedekind, Dyck, Frobenius, and H61der. The important link between the development of this concept and the abstraction of group theory is considered. © 1993 AcademicPress. Inc. Cet article decrit la d6couverte et le d6veloppement du concept du groupe quotient au cours du 19i~me si~cle, et examine les raisons possibles de ce d6veloppement. Les contributions de sept math6maticiens seront discut6es en particulier: Galois, Betti, Jordan, Dedekind, Dyck, Frobenius, et H61der. Le lien important entre le d6veloppement de ce concept et l'abstraction de la th6orie des groupes sera consider6e. © 1993 AcademicPress, Inc. Diese Arbeit stellt die Entdeckung beziehungsweise die Entwicklung des Begriffs der Faktorgruppe wfihrend des 19ten Jahrhunderts dar und untersucht die m/)glichen Griinde for diese Entwicklung. Die Beitrfi.ge von sieben Mathematikern werden vor allem diskutiert: Galois, Betti, Jordan, Dedekind, Dyck, Frobenius und H61der. Die wichtige Verbindung zwischen der Entwicklung dieses Begriffs und der Abstraktion der Gruppentheorie wird betrachtet. © 1993 AcademicPress. Inc. AMS subject classifications: 01A55, 20-03 KEY WORDS: quotient group, group theory, Galois theory I. INTRODUCTION Nowadays one can hardly conceive any more of a group theory without factor groups... B. L. van der Waerden, from his obituary of Otto H61der [1939] Although the concept of quotient group is now considered to be fundamental to the study of groups, it is a concept which was unknown to early group theorists. -
From Abraham De Moivre to Johann Carl Friedrich Gauss
International Journal of Engineering Science Invention (IJESI) ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org ||Volume 7 Issue 6 Ver V || June 2018 || PP 28-34 A Brief Historical Overview Of the Gaussian Curve: From Abraham De Moivre to Johann Carl Friedrich Gauss Edel Alexandre Silva Pontes1 1Department of Mathematics, Federal Institute of Alagoas, Brazil Abstract : If there were only one law of probability to be known, this would be the Gaussian distribution. Faced with this uneasiness, this article intends to discuss about this distribution associated with its graph called the Gaussian curve. Due to the scarcity of texts in the area and the great demand of students and researchers for more information about this distribution, this article aimed to present a material on the history of the Gaussian curve and its relations. In the eighteenth and nineteenth centuries, there were several mathematicians who developed research on the curve, including Abraham de Moivre, Pierre Simon Laplace, Adrien-Marie Legendre, Francis Galton and Johann Carl Friedrich Gauss. Some researchers refer to the Gaussian curve as the "curve of nature itself" because of its versatility and inherent nature in almost everything we find. Virtually all probability distributions were somehow part or originated from the Gaussian distribution. We believe that the work described, the study of the Gaussian curve, its history and applications, is a valuable contribution to the students and researchers of the different areas of science, due to the lack of more detailed research on the subject. Keywords - History of Mathematics, Distribution of Probabilities, Gaussian Curve. ----------------------------------------------------------------------------------------------------------------------------- --------- Date of Submission: 09-06-2018 Date of acceptance: 25-06-2018 ----------------------------------------------------------------------------------------------------------------------------- ---------- I. -
Carl Friedrich Gauss Seminarski Rad
SREDNJA ŠKOLA AMBROZA HARAČIĆA PODRUČNI ODJEL CRES CARL FRIEDRICH GAUSS SEMINARSKI RAD Cres, 2014. SREDNJA ŠKOLA AMBROZA HARAČIĆA PODRUČNI ODJEL CRES CARL FRIEDRICH GAUSS SEMINARSKI RAD Učenice: Marina Kučica Giulia Muškardin Brigita Novosel Razred: 3.g. Mentorica: prof. Melita Chiole Predmet: Matematika Cres, ožujak 2014. II Sadržaj 1. UVOD .................................................................................................................................... 1 2. DJETINJSTVO I ŠKOLOVANJE ......................................................................................... 2 3. PRIVATNI ŽIVOT ................................................................................................................ 5 4. GAUSSOV RAD ................................................................................................................... 6 4.1. Prvi znanstveni rad .......................................................................................................... 6 4.2. Teorija brojeva ................................................................................................................ 8 4.3. Geodezija ......................................................................................................................... 9 4.4. Fizika ............................................................................................................................. 11 4.5. Astronomija ................................................................................................................... 12 4.6. Religija -
2 a Revolutionary Science
2 A Revolutionary Science When the Parisian crowds stormed the Bastille fortress and prison on 14 July 1789, they set in motion a train of events that revolutionized European political culture. To many contem- porary commentators and observers of the French Revolution, it seemed that the growing disenchantment with the absolutist regime of Louis XVI had been fostered in part by a particular kind of philosophy. French philosophes condemning the iniqui- ties of the ancien regime´ drew parallels between the organization of society and the organization of nature. Like many other En- lightenment thinkers, they took it for granted that science, or natural philosophy,could be used as a tool to understand society as well as nature. They argued that the laws of nature showed how unjust and unnatural the government of France really was. It also seemed, to some at least, that the French Revolution pro- vided an opportunity to galvanize science as well as society. The new French Republic was a tabula rasa on which the reform- ers could write what they liked. They could refound society on philosophical principles, making sure this time around that the organization of society really did mirror the organization of nature. Refounding the social and intellectual structures of sci- ence itself was to be part of this process. In many ways, therefore, the storming of the Bastille led to a revolution in science as well. To many in this new generation of radical French natu- ral philosophers, mathematics seemed to provide the key to 22 A Revolutionary Science 23 understanding nature. This was nothing new in itself, of course. -
Newton's Notebook
Newton’s Notebook The Haverford School’s Math & Applied Math Journal Issue I Spring 2017 The Haverford School Newton’s Notebook Spring 2017 “To explain all nature is too difficult a task for any one man or even for any one age. ‘Tis much better to do a little with certainty & leave the rest for others that come after you.” ~Isaac Newton Table of Contents Pure Mathematics: 7 The Golden Ratio.........................................................................................Robert Chen 8 Fermat’s Last Theorem.........................................................................Michael Fairorth 9 Math in Coding............................................................................................Bram Schork 10 The Pythagoreans.........................................................................................Eusha Hasan 12 Transfinite Numbers.................................................................................Caleb Clothier 15 Sphere Equality................................................................................Matthew Baumholtz 16 Interesting Series.......................................................................................Aditya Sardesi 19 Indirect Proofs..............................................................................................Mr. Patrylak Applied Mathematics: 23 Physics in Finance....................................................................................Caleb Clothier 26 The von Bertalanffy Equation..................................................................Will -
Professor I Hemmelig Tjeneste
Professor i hemmelig tjeneste Matematikeren, datapioneren og kryptologen Ernst Sejersted Selmer Øystein Rygg Haanæs 1 Forord Denne populærvitenskapelige biografien er skrevet på oppdrag fra Universitetet i Bergen og Nasjonal sikkerhetsmyndighet for å markere at det er 100 år siden Ernst Sejersted Selmer ble født. La meg være helt ærlig. For ni måneder siden ante jeg ikke hvem Selmer var. Det gjorde nesten ingen av mine venner og bekjente heller. Jeg har faktisk mistanke om at svært få i Norge utenfor det matematiske miljøet kjenner til navnet. Det er en skam. Fra midten av forrige århundre ble høyere utdanning i Norge reformert og åpnet for massene. Universitetet i Bergen vokste ut av kortbuksene og begynte å begå virkelig seriøs vitenskap. De første digitale computerne ble bygd og tatt i bruk i forskning og forvaltning. Norge fikk en «EDB-politikk». Alle nordmenn fikk et permanent fødselsnummer. Forsvaret etablerte en kryptologitjeneste på høyt nivå, og norsk kryptoindustri ble kapabel til å levere utstyr til NATO-alliansen. Ernst Sejersted Selmer hadde minst én finger med i spillet i alle disse prosessene. Selmer hadde lange armer og stor rekkevidde. Han satte overveldende mange spor etter seg, og denne boken er et forsøk på å gå opp disse sporene og gi Selmer den oppmerksomheten han fortjener. Enda en innrømmelse når vi først er i gang. Jeg er ikke matematiker. Det har selvsagt sine sider når oppdraget er å skrive en biografi om nettopp en matematiker. Da jeg startet arbeidet, hadde jeg ikke det minste begrep om hva en diofantisk ligning eller et skiftregister var. Heldigvis har jeg fått uvurderlig hjelp av de tidligere Selmer-studentene Christoph Kirfel og Tor Helleseth. -
Arxiv:0804.2233V4 [Math.NT]
October 26, 2018 MEAN VALUES WITH CUBIC CHARACTERS STEPHAN BAIER AND MATTHEW P. YOUNG Abstract. We investigate various mean value problems involving order three primitive Dirichlet characters. In particular, we obtain an asymptotic formula for the first moment of central values of the Dirichlet L-functions associated to this family, with a power saving in the error term. We also obtain a large-sieve type result for order three (and six) Dirichlet characters. 1. Introduction and Main results Dirichlet characters of a given order appear naturally in many applications in number theory. The quadratic characters have seen a lot of attention due to attractive questions to ranks of elliptic curves, class numbers, etc., yet the cubic characters have been relatively neglected. In this article we are interested in mean values of L-functions twisted by characters of order three, and also large sieve-type inequalities for these characters. Our first result on such L-functions is the following Theorem 1.1. Let w : (0, ) R be a smooth, compactly supported function. Then ∞ → q (1) ∗ L( 1 , χ)w = cQw(0) + O(Q37/38+ε), 2 Q (q,3)=1 χ (mod q) X χX3=χ 0 b where c> 0 is a constant that can be given explicitly in terms of an Euler product (see (23) below), and w is the Fourier transform of w. Here the on the sum over χ restricts the sum ∗ to primitive characters, and χ0 denotes the principal character. This resultb is most similar (in terms of method of proof) to the main result of [L], who considered the analogous mean value but for the case of cubic Hecke L-functions on Q(ω), ω = e2πi/3.