Sign Ambiguities of Gaussian Sums Heon Kim Louisiana State University and Agricultural and Mechanical College, [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Sign Ambiguities of Gaussian Sums Heon Kim Louisiana State University and Agricultural and Mechanical College, Hkim@Math.Lsu.Edu Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2007 Sign Ambiguities of Gaussian Sums Heon Kim Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Applied Mathematics Commons Recommended Citation Kim, Heon, "Sign Ambiguities of Gaussian Sums" (2007). LSU Doctoral Dissertations. 633. https://digitalcommons.lsu.edu/gradschool_dissertations/633 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. SIGN AMBIGUITIES OF GAUSSIAN SUMS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Mathematics by Heon Kim B.S. in Math., Chonbuk National University, 1995 M.S. in Math., Chonbuk National University, 1997 M.A. in Math., University of Georgia, 2002 December 2007 Acknowledgments This dissertation would not be possible without several contributions. The love of family and friends provided my inspiration and was my driving force. It has been a long journey and completing this work is definitely a high point in my academic career. I could not have come this far without the assistance of many individuals and I want to express my deepest appreciation to them. It is a pleasure to thank my dissertation advisor, Dr. Helena Verrill, and coad- visor Dr. Paul van Wamelen for their guidance and suggestions throughout the period of this research. I could not finish without their warm concern and contin- uous encouragement. I really appreciate them. Thank you very much. I wish to thank my dissertation committee members, Dr. Robert Perlis, Dr. Richard Litherland, Dr. Padmanabhan Sundar, Dr. Charles Delzell, and Dr. Martin Feldman for their suggestions. It is a pleasure also to thank Dr. Leonard Richard- son, Dr. James Oxley, Dr. Lawrence Smolinsky, Dr. George Cochran, Dr. Guillermo Ferreyra for providing me with a pleasant working environment. A special thanks to my Korean colleagues and friends Dr. Hwashin Park, Dr. Jongjin Kim, Dr. Jaeup So, Dr. Kyungshik Seo, Dr. Daeyeul Kim, Dr. Shik Lee, Dr. Jongjin Park, Dr. Jiyeun Won, Dr. Daewoong Lee, Dr. Jeongbae Lee, Dr. He- unggi Park, Dr. Jongsook Keum, Dr. Eunhee Lee, Dr. Jeongha An, Dr. Soomi Jung, Dr. Daekyu Kim, Dr. Sanghyun Kim, Dr. Daeshik Park, Dr. Jeonghoon Park, Dr. Sangyeup Lee, Dr. Iwasa Akira, Dr. Youngwon He, Pastor. Kitae Nam, Dr. Sungchul No, Dr. Jongho Uhm, Dr. Jongseob Rim, Dr. Jeonghan Kimn, Dr. Jinhoon Lee, Dr. Wonjoon Jung, Dr. Hakchul Shin, Dr. Gangsun Lee, Jaeyoung Kim, Taehee Han, Seokwon Kim, Hoonshin Jung, Youngjeon Cho, Hyoshik Kim, ii Hongshik Kim, Kwansoo Kim, Woonsoo Lee, Changdeuk Seo, Jeongho Choi, Joon- pyo Hong, Kyeungsoo Han, Changwon Oh, Jaeyoung Kwak for their warm concern and encouragement. This dissertation is dedicated to my whole family members. My parents, Moon- hong Kim and Jeongok Eun, have always believed me and helped me reach my goals. Their support forged my desire to achieve all that I could in life. I owe them everything and wish I could show them just how much I love and appreciate them. My wife, Hyeyoung Ko, whose love and encouragement allowed me to finish this journey, already has my heart so I will just give her a heartfelt “thanks.” My lovely daughter and son, Sol (Carol) and San (Kevin), have always gave me smile, pride, and happiness. I really love you guys and always proud of you. My parant-in-law, Seokdo Ko and Soonrae Kang, always gave me encouragement and faithfulness. Thanks for your patience. I also deeply appreciate to my brothers, Hoon Kim (Soojin Yoon, Minji, Jooun), Hyeok Kim (Joohoon Park, Yoonji, Gun), and sister-in-law, Eunjoo Ko (Yongkyu Choi, Sunhwa, Yeni), and brothers-in-law, Hojoon Ko (Sunmi Choi), Bumjin Ko (Insook Choi, Gun, Seyoung) for their end- less belief and love. Finally, I would like to dedicate this work to my lost “father,” Moonhong Kim, who left us too soon. I hope that this work makes you proud. iii Table of Contents Acknowledgments . ii Abstract . v Introduction ..................................................... 1 1. Preliminaries . 5 1.1 Quadratic Reciprocity . 5 1.2 Extensions of Prime Ideals . 7 2. Gauss Sums over Fp ............................................ 10 2.1 Cyclotomic Fields . 10 2.2 Stickelberger’s Congruence for Gauss Sums . 12 3. Multiplicative Relations . 14 3.1 Multiplicative Relations of Gaussian Sums . 14 3.2 Computational Algorithm . 16 4. Yamamoto’s Sign Ambiguities . 22 4.1 Half Sets . 22 4.2 Some Lemmas . 28 4.3 Yamamoto’s Sign Ambiguity . 39 5. Main Result . 43 5.1 Explicit Signs . 43 5.2 Sign Ambiguities . 47 References . 55 Vita ............................................................. 56 iv Abstract In 1934, two kinds of multiplicative relations, norm and Davenport-Hasse relations, between Gaussian sums, were known. In 1964, H. Hasse conjectured that the norm and Davenport-Hasse relations are the only multiplicative relations connecting the Gaussian sums over Fp. However, in 1966, K. Yamamoto provided a simple counterexample disproving the conjecture when Gaussian sums are considered as numbers. This counterexample was a new type of multiplicative relation, called a sign ambiguity (see Definition 3.3), involving a ± sign not connected to elementary properties of Gauss sums. In Chapter 5, we provide an explicit product formula giving an infinite class of new sign ambiguities and we resolve the ambiguous sign by using the Stickelberger’s theorem. v Introduction In mathematics, the general theory of Gauss sums was developed in the early nineteenth century, with the use of Jacobi sums and their prime decomposition in cyclotomic fields. A Gaussian sum is a particular kind of finite sum of roots of unity. The case originally considered by Carl Friedrich Gauss, in his Disquisitions Arithmeticae 1801, was the quadratic Gauss sums. The quadratic Gauss sums are certain sums over exponential functions with quadratic argument. They are named after C. F. Gauss, who studied them extensively. Definition 0.1. The quadratic Gauss sum G(m, k) over the ring of integers modulo k is defined by k−1 X G(m, k) = exp(2πimn2/k), n=0 where exp(x) is the exponential function. This sum is hard to evaluate, even in the special case that m = 1 and k is an odd positive integer. But, in this case, Gauss showed that this sum has the value √ √ ± k if k ≡ 1 mod 4 and ±i k if k ≡ 3 mod 4. The determination of the sign is a much more difficult problem. The conjecture that the plus sign holds in each case was made by Gauss and recorded in his diary in May 1801. It was not until four years later that he found a proof. Subsequently, he was able to evaluate his quadratic sum for all positive integers k. Theorem 0.2. (The evaluation of the quadratic Gauss sums) If m = 1 and k is an odd positive integer, then √ k if k ≡ 1 mod 4 G(1, k) = √ i k if k ≡ 3 mod 4. 1 Let e be a positive integer, e > 2, p be a prime number such that p ≡ 1 mod e th and ζe be a primitive e root of unity. Let Fp be the finite field of p elements. Then we identify Fp with the residues 0, 1, 2, ··· , p − 1 mod p. Denote Fp − {0} ∗ by Fp; that is a cyclic multiplicative group of order p − 1. The following definition generalizes the quadratic Gauss sum. Definition 0.3. Let χ be a multiplicative character (see Definition 2.6) on Fp. For a ∈ Z, the Gauss sum τ(a) is defined by X a t τ(a) = χ (t)ζp. t∈Fp Many applications of Gauss sum evaluations are investigated; not only to number theory but also to physics and to such areas of mathematics as graph theory and combinatorics, operator theory, coding theory, cryptography, combinatorial designs, analysis and algebra. One powerful approach to simplifying the evaluation of Gauss sums is to study multiplicative relations, defined in Section 3.1, between them. The most basic mul- tiplicative relations are the norm relation and Davenport-Hasse product formula, say D-H relation, for Gauss sums. In [3, p.465], H. Hasse conjectured that all the multiplicative relationships of Gaussian sums over Fp can be deduced from the norm and D-H relations. However, in [14], K. Yamamoto provided a simple counterexample disproving the conjecture if we consider Gauss sum, as numbers rather than ideals. This counterexample was a new type of multiplicatively independent relationship of Gaussian sums involving an ambiguous sign not direct consequences of the norm and D-H relations. In [15], K. Yamamoto succeeded in not only proving that in- finitely many exist, but also produced a formula giving the exact “number” of sign ambiguities to be expected in each composite number e (≥ 3) (see Theorem 2 3.4). Shortly thereafter, working in the context of Jacobi sums and with the aid of a computer, further sign ambiguities were discovered by Muskat, Whiteman, and Zee (see [8, 9, 10]) when e = 15, 20, 21, 24, 28, 39, 55, 56. In 2002, B. Murray (see [7, Theorem 3.54]) provided an infinite class of sign ambiguities when e = q1q2, where q1 and q2 are prime numbers such that q1 ≡ 5 mod 8, q2 ≡ 3 mod 4 and q2 is a biquadratic residue modulo q1. In [15, § 5], K. Yamamoto said that the case 2|e, 4 - e is reducible to the case where e is replaced by an odd number e/2.
Recommended publications
  • Classical Simulation of Quantum Circuits by Half Gauss Sums
    CLASSICAL SIMULATION OF QUANTUM CIRCUITS BY HALF GAUSS SUMS † ‡ KAIFENG BU ∗ AND DAX ENSHAN KOH ABSTRACT. We give an efficient algorithm to evaluate a certain class of expo- nential sums, namely the periodic, quadratic, multivariate half Gauss sums. We show that these exponential sums become #P-hard to compute when we omit either the periodic or quadratic condition. We apply our results about these exponential sums to the classical simulation of quantum circuits, and give an alternative proof of the Gottesman-Knill theorem. We also explore a connection between these exponential sums and the Holant framework. In particular, we generalize the existing definition of affine signatures to arbitrary dimensions, and use our results about half Gauss sums to show that the Holant problem for the set of affine signatures is tractable. CONTENTS 1. Introduction 1 2. Half Gausssums 5 3. m-qudit Clifford circuits 11 4. Hardness results and complexity dichotomy theorems 15 5. Tractable signature in Holant problem 18 6. Concluding remarks 20 Acknowledgments 20 Appendix A. Exponential sum terminology 20 Appendix B. Properties of Gauss sum 21 Appendix C. Half Gauss sum for ξd = ω2d with even d 21 Appendix D. Relationship between half− Gauss sums and zeros of a polynomial 22 References 23 arXiv:1812.00224v1 [quant-ph] 1 Dec 2018 1. INTRODUCTION Exponential sums have been extensively studied in number theory [1] and have a rich history that dates back to the time of Gauss [2]. They have found numerous (†) SCHOOL OF MATHEMATICAL SCIENCES, ZHEJIANG UNIVERSITY, HANGZHOU, ZHE- JIANG 310027, CHINA (*) DEPARTMENT OF PHYSICS, HARVARD UNIVERSITY, CAMBRIDGE, MASSACHUSETTS 02138, USA (‡) DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139, USA E-mail addresses: [email protected] (K.Bu), [email protected] (D.E.Koh).
    [Show full text]
  • Quadratic Reciprocity Via Linear Algebra
    QUADRATIC RECIPROCITY VIA LINEAR ALGEBRA M. RAM MURTY Abstract. We adapt a method of Schur to determine the sign in the quadratic Gauss sum and derive from this, the law of quadratic reciprocity. 1. Introduction Let p and q be odd primes, with p = q. We define the Legendre symbol (p/q) to be 1 if p is a square modulo q and 16 otherwise. The law of quadratic reciprocity, first proved by Gauss in 1801, states− that (p/q)(q/p) = ( 1)(p−1)(q−1)/4. − It reveals the amazing fact that the solvability of the congruence x2 p(mod q) is equivalent to the solvability of x2 q(mod p). ≡ There are many proofs of this law≡ in the literature. Gauss himself published five in his lifetime. But all of them hinge on properties of certain trigonometric sums, now called Gauss sums, and this usually requires substantial background on the part of the reader. We present below a proof, essentially due to Schur [2] that uses only basic notions from linear algebra. We say “essentially” because Schur’s goal was to deduce the sign in the quadratic Gauss sum by studying the matrix A = (ζrs) 0 r n 1, 0 s n 1 ≤ ≤ − ≤ ≤ − where ζ = e2πi/n. For the case of n = p a prime, Schur’s proof is reproduced in [1] and a ‘slicker’ proof was later supplied by Waterhouse [3]. Our point is to show that Schur’s proof can be modified to determine tr A when n is an odd number and this allows us to deduce the law of quadratic reciprocity.
    [Show full text]
  • Moments of Generalized Quadratic Gauss Sums Weighted by L-Functions1
    Journal of Number Theory 92, 304–314 (2002) doi:10.1006/jnth.2001.2715, available online at http://www.idealibrary.comon Moments of Generalized Quadratic Gauss Sums Weighted by L-Functions1 Zhang Wenpeng Research Center for Basic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China Communicated by D. Goss Received May 5, 2000 The main purpose of this paper is using estimates for character sums and analytic methods to study the second, fourth, and sixth order moments of generalized quadratic Gauss sums weighted by L-functions. Three asymptotic formulae are obtained. © 2002 Elsevier Science (USA) Key Words: general quadratic Gauss sums; L-functions; asymptotic formula. 1. INTRODUCTION Let q \ 2 be an integer; q denotes a Dirichlet character modulo q. For any integer n, we define the general quadratic Gauss sums G(n, q;q)as q na2 G(n, q; q)= C q(a) e 1 2, a=1 q where e(y)=e2piy. This sum is important because it is a generalization of the classical quadratic Gauss sum. But about the properties of G(n, q;q), we know very little at present. The value of |G(n, q;q)| is irregular as q varies. One can only get some upper bound estimates. For example, for any integer n with (n, q)=1, from the general result of Cochrane and Zheng [8] we can deduce 1 w(q) |G(n, q;q)|[ 2 q 2, where w(q) denotes the number of distinct prime divisors of q; the case where q is prime is due to Weil [9].
    [Show full text]
  • A History of Stickelberger's Theorem
    A History of Stickelberger’s Theorem A Senior Honors Thesis Presented in Partial Fulfillment of the Requirements for graduation with research distinction in Mathematics in the undergraduate colleges of The Ohio State University by Robert Denomme The Ohio State University June 8, 2009 Project Advisor: Professor Warren Sinnott, Department of Mathematics 1 Contents Introduction 2 Acknowledgements 4 1. Gauss’s Cyclotomy and Quadratic Reciprocity 4 1.1. Solution of the General Equation 4 1.2. Proof of Quadratic Reciprocity 8 2. Jacobi’s Congruence and Cubic Reciprocity 11 2.1. Jacobi Sums 11 2.2. Proof of Cubic Reciprocity 16 3. Kummer’s Unique Factorization and Eisenstein Reciprocity 19 3.1. Ideal Numbers 19 3.2. Proof of Eisenstein Reciprocity 24 4. Stickelberger’s Theorem on Ideal Class Annihilators 28 4.1. Stickelberger’s Theorem 28 5. Iwasawa’s Theory and The Brumer-Stark Conjecture 39 5.1. The Stickelberger Ideal 39 5.2. Catalan’s Conjecture 40 5.3. Brumer-Stark Conjecture 41 6. Conclusions 42 References 42 2 Introduction The late Professor Arnold Ross was well known for his challenge to young students, “Think deeply of simple things.” This attitude applies to no story better than the one on which we are about to embark. This is the century long story of the generalizations of a single idea which first occurred to the 19 year old prodigy, Gauss, and which he was able to write down in no less than 4 pages. The questions that the young genius raised by offering the idea in those 4 pages, however, would torment the greatest minds in all the of the 19th century.
    [Show full text]
  • Moments of Quadratic Hecke $ L $-Functions of Imaginary Quadratic
    MOMENTS OF QUADRATIC HECKE L-FUNCTIONS OF IMAGINARY QUADRATIC NUMBER FIELDS PENG GAO AND LIANGYI ZHAO Abstract. In this paper, we study the moments of central values of Hecke L-functions associated with quadratic char- acters in Q(i) and Q(ω) with ω = exp(2πi/3) and establish some quantitative non-vanishing result for these L-values. Mathematics Subject Classification (2010): 11M41, 11L40 Keywords: quadratic Hecke characters, Hecke L-functions 1. Introduction The values of L-functions at the central point of its symmetry encode a lot of arithmetic information. For example, the Birch-Swinnerton-Dyer conjecture asserts that the algebraic rank of an elliptic curve equals the order of vanishing of the L-function associated with the curve at its central point. The average value of L-functions at s =1/2 over a family of characters of a fixed order has been a subject of extensive study. M. Jutila [19] gave the evaluation of the mean value of L(1/2,χ) for quadratic Dirichlet characters. The error term in the asymptotic formula in [19] was later improved in [11, 25, 26]. S. Baier and M. P. Young [1] studied the moments of L(1/2,χ) for cubic Dirichlet characters. Literature also abounds in the investigation of moments of Hecke L-functions associated with various families of characters of a fixed order [6–8, 10, 12, 21]. In this paper, we shall investigate the first and second moments of the central values of a family of L-functions associated with quadratic Hecke characters. From these results, we deduce results regarding the non-vanishing of these L-functions at s =1/2.
    [Show full text]
  • Summer Research Journal
    2005 Summer Research Journal Bob Hough Last updated: August 11, 2005 Contents 0 Preface 3 1 Gaussian Sums and Reciprocity 6 1.1 Quadratic Gauss sums and quadratic reciprocity . 6 1.1.1 Quadratic reciprocity and the algebraic integers . 8 1.2 General Gauss sums . 10 1.2.1 The general character . 10 1.2.2 The general Gauss sum . 11 1.2.3 Jacobi sums . 13 1.3 Cubic reciprocity . 14 1.3.1 The ring Z[ω]............................... 15 1.3.2 The cubic character . 16 1.3.3 The Law of Cubic Reciprocity . 16 1.4 Biquadratic reciprocity . 20 2 Gauss Sums, Field Theory and Fourier Analysis 24 2.1 Cyclotomic extensions and the duality between χ and g(χ).......... 24 2.2 Fourier analysis on Zp .............................. 25 2.2.1 Fourier coefficients and Fourier expansion . 25 2.2.2 Two exercises in Fourier techniques . 26 2.3 Estermann’s determination of g(χ2)....................... 29 2.3.1 A similar approach to a related sum . 32 2.4 The Davenport-Hasse Identity . 35 2.4.1 Gauss sums over Fq ............................ 35 2.4.2 The character of a prime ideal . 37 2.4.3 The Davenport-Hasse identity in several formulations . 37 2.5 A conjecture of Hasse . 39 2.5.1 Multiplicatively independent Gauss sums . 39 2.5.2 A counter-example when Gauss sums are numbers . 43 2.6 Eisenstein Reciprocity . 46 2.6.1 The Eisenstein Law . 47 1 2.6.2 Breaking down g(χ)l ........................... 47 2.6.3 Two lemmas on cyclotomic fields .
    [Show full text]
  • Evaluation of the Quadratic Gauss Sum
    The Mathematics Student ISSN: 0025-5742 Vol. 86, Nos. 1-2, January-June (2017), xx-yy EVALUATION OF THE QUADRATIC GAUSS SUM M. RAM MURTY1 AND SIDDHI PATHAK (Received : 06 - 05 - 2017 ; Revised : 17 - 05 - 2017) Abstract. For any natural number n and (m; n) = 1, we analyse the eigen- mrs values and their multiplicities of the matrix A(n; m) := (ζn ) for 0 ≤ r; s ≤ n − 1. As a consequence, we evaluate the quadratic Gauss sum and derive the law of quadratic reciprocity using only elementary methods. 1. Introduction For natural numbers n and k, a general Gauss sum is defined as n−1 X k G(k) := e2πij =n: (1.1) j=0 When k = 1, (1.1) reduces to the sum of all n-th roots of unity, which is a geometric sum and can be easily evaluated to be zero. The case k = 2 turns out to be more difficult, and it took Gauss several years to determine (1.1) when n is an odd prime in order to prove the law of quadratic reciprocity. For further reading on Gauss sums, we refer the reader to [2] and [3]. In this article, we focus on the quadratic Gauss sum, namely, n−1 X 2 G(2) = e2πij =n: (1.2) j=0 It can be shown that Theorem 1.1. For a natural number n, 8p n if n ≡ 1 mod 4; > > <>0 if n ≡ 2 mod 4; G(2) = p >i n if n ≡ 3 mod 4; > p :>(1 + i) n if n ≡ 0 mod 4: There are many proofs of Theorem 1.1 in the literature.
    [Show full text]
  • Quadratic and Cubic Reciprocity Suzanne Rousseau Eastern Washington University
    Eastern Washington University EWU Digital Commons EWU Masters Thesis Collection Student Research and Creative Works 2012 Quadratic and cubic reciprocity Suzanne Rousseau Eastern Washington University Follow this and additional works at: http://dc.ewu.edu/theses Part of the Physical Sciences and Mathematics Commons Recommended Citation Rousseau, Suzanne, "Quadratic and cubic reciprocity" (2012). EWU Masters Thesis Collection. 27. http://dc.ewu.edu/theses/27 This Thesis is brought to you for free and open access by the Student Research and Creative Works at EWU Digital Commons. It has been accepted for inclusion in EWU Masters Thesis Collection by an authorized administrator of EWU Digital Commons. For more information, please contact [email protected]. QUADRATIC AND CUBIC RECIPROCITY A Thesis Presented To Eastern Washington University Cheney, Washington In Partial Fulfillment of the Requirements for the Degree Master of Science By Suzanne Rousseau Spring 2012 THESIS OF SUZANNE ROUSSEAU APPROVED BY DATE: DR. DALE GARRAWAY, GRADUATE STUDY COMMITTEE DATE: DR. RON GENTLE, GRADUATE STUDY COMMITTEE DATE: LIZ PETERSON, GRADUATE STUDY COMMITTEE ii MASTERS THESIS In presenting this thesis in partial fulfillment of the requirements for a mas- ter's degree at Eastern Washington University, I agree that the JFK Library shall make copies freely available for inspection. I further agree that copying of this project in whole or in part is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this thesis for commercial purposes, or for financial gain, shall not be allowed without my written permission. Signature Date iii Abstract In this thesis, we seek to prove results about quadratic and cubic reciprocity in great detail.
    [Show full text]
  • THE MATHEMATICS of GAUSS Introduction Carl Friedrich Gauss
    THE MATHEMATICS OF GAUSS DAVID SAVITT Introduction Carl Friedrich Gauss was born on April 30, 1777, in Brunswick, Germany, the son of Gebhard Dietrich Gauss, a bricklayer, and Dorothea Emerenzia Gauss. Carl Friedrich's mathematical talents showed themselves early: when he was three years old, he found an error in his father's payroll calculations. At the age of seven, he entered St. Katharine's Volksschule, where he was taught by J.G. BÄuttner. The most famous incident from Gauss's youth took place when BÄuttnerassigned to his class the task of summing the numbers from 1 to 100. While the other pupils busied themselves with the task, Gauss almost immediately wrote an answer on his tablet and handed it in. BÄuttner,at ¯rst skeptical, found that Gauss's solution was completely correct. Gauss explained himself: he had noticed that 1 + 100 = 101, 2 + 99 = 101, and so on, so that 1 + ¢ ¢ ¢ + 100 = 50 ¢ 101 = 5050. Gauss quickly outpaced what he could be taught at the Katharineum, and began to be tutored privately in mathematics by a neighbor, Johann Bartels, who himself would later become a professor of mathematics. At the age of 14, Gauss came to the attention of the Duke of Brunswick: the Duchess saw Gauss reading in the palace yard one day, and was much impressed that Gauss understood what he was reading. When Gauss entered the Collegium Carolinum in 1792, the Duke paid his tuition. At the Collegium, Gauss studied the works of Newton, Euler, and Lagrange. His investigations on the distribution of primes in 1792 or 1793 give an early indication of his interest in number theory.
    [Show full text]
  • Bibliography
    Bibliography M R denotes reference to Mathematical Rerie11.·s. I. Apostol, 1om M. ( 1970) Euler's <p-function and separable Gauss sums. Proc. A mer. Math. Soc., 24: 482-485; MR 41. # 1661. 2. Apostol, Tom M. ( 1974) Mathematical Analysis, 2nd ed. Reading, Mass.: Addison­ Wesley Publishing Co. 3. Ayoub, Raymond G. (1963) An Introduction to the Analytic Theory of Numbers. Mathematical Surveys, No. 10. Providence, R. I.: American Mathematical Society. 4. Bell, E. T. (1915) An arithmetical theory of certain numerical functions. University of Washinqton Pub!. in Math. and Phys. Sci., No. 1, Vol. 1: 1-44. 5. Borozdkin, K. G. (1956) K voprosu o postoyanni I. M. Vinogradova. Trudy treteqo z·sesoluznoqo matematic'eskoqo siezda, Vol. I, Moskva [Russian]. 6. Buhstab, A. A. ( 1965) New results in the investigation of the Goldbach-Euler problem and the problem of prime pairs. [Russian]. Dokl. Akad. Nauk SSSR, 162: 735-738; MR 31, #2226. [English translation: (1965) Soviet Math. Dokl. 6: 729-732.) 7. Chandrasekharan, Komaravolu (1968) Introduction to Analytic Number Theory. Die Grundlehren der Mathematischen Wissenschaften, Band 148. New York: Springer-Verlag. 8. Chandrasekharan, Komaravolu (1970) Arithmetical Functions. Die Grundlehren der Mathematischen Wissenschaften, Band 167. New York. Springer-Verlag. 9. Chebyshev, P. L. Sur Ia fonction qui determine Ia totalite des nombres premiers inferieurs a une limite donee. (a) (1851) Mem. Ac. Sc. St. Ntershour,q. 6: 141-157. (b) (1852) Jour. de Math (I) /7: 341-365. [Oeuvres, 1: 27-48.] I 0. Chen, Jing-run ( 1966) On the representation of a large even integer as the sum of a prime and the product of at most two primes.
    [Show full text]
  • The Quintic Gauss Sums
    1 THE QUINTIC GAUSS SUMS Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaflichen Fakult¨aten der Georg-August Universit¨at zu Goettingen vorgelegt von L´eopold Fossi Talom Aus Bandjoun/ Yom V, Kamerun G¨ottingen 2002 D7 Referent: Prof. S.J. Patterson Korreferentin: Frau Prof. Dr. I. Kersten. Tag der Disputation: Contents List of Figures 7 Chapter 1. INTRODUCTION 9 Chapter 2. Generalities on Cyclotomic Fields 17 1. Introduction 17 2. Power residue Symbol 24 3. The primary choice of the prime factor in Q(ζ5) 26 Chapter 3. GAUSS SUMS 29 1. Gauss sums in number fields 29 2. Factorization of Gauss sums 36 3. Gauss sums over finite fields and the Davenport-Hasse relations 39 4. The Gauss sum and Jacobi sum as complex numbers 40 5. The moment Gauss sums and the uniform distribution 45 Chapter 4. CYCLOTOMIC CRYSTAL 49 1. Introduction 49 2. The cyclotomic case 51 3. The vertices 56 4. The geometry and the combinatoric of the fundamental domain for n = 3,5 59 5. Generalization 65 6. Cyclotomy revisited 69 Chapter 5. THE GAUSS SUMS AND THE FUNDAMENTAL DOMAIN 75 1. First identity 77 2. Second identity 79 3. Third identity 80 4. Cassels' formula 82 5. A generalized of a formula of Cassels' type 83 6. Conjectures on the partial sums of the Gauss sums 89 Chapter 6. APPENDIX 105 1. The Gauss periods or the Lagrange resolvents 105 2. The quadratic Gauss sums 109 3. Algorithm for the computation of the Gauss sums 111 4. data 115 Bibliography 143 5 List of Figures 1 Fundamental domain for n=3 and 3-faces for n=5 74 1 Graphic of the
    [Show full text]
  • Quadratic Reciprocity
    Quadratic Reciprocity Robert Hines October 16, 2015 Contents 1 Proofs Using the Quadratic Gauss Sum 1 2 Some Related Lemmata and a Few More Proofs 3 3 A Proof Using Jacobi Sums 6 4 The Quadratic Character of 2 and −1 7 5 Appendix: Sign of the Quadratic Gauss Sum 8 1 Proofs Using the Quadratic Gauss Sum Definition. A Gauss sum g(a; χ) associated to a character χ of modulus n (a homomor- phism χ :(Z=nZ)× ! C extended to Z, χ(k) = 0 if (k; n) > 1) is n−1 X g(a; χ) = χ(k)e2πiak=n k=1 Observe that for (a; n) = 1 n−1 n−1 X X g(a; χ) = χ(k)e2πiak=n = χ(l)¯χ(a)e2πil=n =χ ¯(a)g(1; χ) k=1 l=1 with l = ka. Also observe that X g(a; χ) = χ¯(k)e−2πiak=n =χ ¯(−1)g(a; χ¯): k Proposition. For a non-principal character χ of prime modulus p and (a; p) = 1 we have jg(a; χ)j2 = p: 1 P Proof. We evaluate a g(a; χ)g(a; χ) two different ways: X X X X g(a; χ)g(a; χ) = χ(kl−1)e2πia(k−l)=p = χ(kl−1) e2πia(k−l)=p a a;k;l k;l a X −1 = χ(kl )pδkl = p(p − 1); k;l X X g(a; χ)g(a; χ) = χ¯(a)g(1; χ)χ(a)g(1; χ) a a = (p − 1)jg(1; χ)j2: For χ real, the above says g(1; χ)2 = χ(−1)p, which we will use below.
    [Show full text]