Journal of 92, 304–314 (2002) doi:10.1006/jnth.2001.2715, available online at http://www.idealibrary.comon

Moments of Generalized Quadratic Gauss Sums Weighted by L-Functions1

Zhang Wenpeng

Research Center for Basic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China

Communicated by D. Goss

Received May 5, 2000

The main purpose of this paper is using estimates for character sums and analytic methods to study the second, fourth, and sixth order moments of generalized quadratic Gauss sums weighted by L-functions. Three asymptotic formulae are obtained. © 2002 Elsevier Science (USA) Key Words: general quadratic Gauss sums; L-functions; asymptotic formula.

1. INTRODUCTION

Let q \ 2 be an integer; q denotes a Dirichlet character modulo q. For any integer n, we define the general quadratic Gauss sums G(n, q;q)as

q na2 G(n, q; q)= C q(a) e 1 2, a=1 q where e(y)=e2piy. This sum is important because it is a generalization of the classical quadratic . But about the properties of G(n, q;q), we know very little at present. The value of |G(n, q;q)| is irregular as q varies. One can only get some upper bound estimates. For example, for any integer n with (n, q)=1, from the general result of Cochrane and Zheng [8] we can deduce

1 w(q) |G(n, q;q)|[ 2 q 2, where w(q) denotes the number of distinct prime divisors of q; the case where q is prime is due to Weil [9].

1 This work is supported by the N.S.F. and the P.N.S.F. of P. R. China. 304 0022-314X/02 $35.00 © 2002 Elsevier Science (USA) ⁄ All rights reserved. GENERALIZED QUADRATIC GAUSS SUMS 305

In this paper we show that G(n, q;p)enjoys many good weighted mean value properties. For convenience, in the following we always suppose that p denotes an odd prime, L(s, q) the Dirichlet L-function corresponding to the character q mod p, and that G(n; q) denotes the classical quadratic Gauss sum. We use estimates for character sums and the analytic methods to prove the following three results:

Theorem 1. For any integer n with (n, p)=1, we have the asymptotic formula

3 2 2 2 C |G(n, q;p)| · |L(1, q)|=C · p +O(p 2 ln p), q ] q0 where r R2S2 R4S2 R2mS2 s C=D 1 2 m p 1+ + +···+ +··· 42 ·p2 44 ·p4 42m ·p2m

; is a constant, q ] q0 denotes the summation over all nonprincipal characters < 2m 2 modulo p, p denotes the product over all primes, and ( m )=(2m)!/(m!) .

Theorem 2. For any integer n with (n, p)=1, we have the asymptotic formula

5 4 3 2 C |G(n, q;p)| · |L(1, q)|=3·C·p +O(p 2 ln p). q ] q0

Theorem 3. Let p be an odd prime with p — 3 mod 4. Then for any fixed positive integer n with (n, p)=1, we have the asymptotic formula

7 6 4 2 C |G(n, q;p)| · |L(1, q)|=10 ·C·p +O(p 2 ln p). q ] q0

Let n be any integer with (n, p)=1. Then using our methods we can easily deduce the identities

n (p−1) 53p2 − 6p − 1+4 1 2 `p6, if p — 1 mod 4; 4 ˛ C |G(n, q;p)|= p q mod p (p − 1)(3p2 − 6p − 1), if p — 3 mod 4, 306 ZHANG WENPENG and

C |G(n, q;p)|6=(p − 1)(10p3 − 25p2 −4p−1), if p — 3 mod 4, q mod p

n where (p) is the . For a general integer m \ 3, whether there exists an asymptotic formula for

C |G(n, q;p)|2m and C |G(n, q;p)|2m |L(1, q)| q mod p q ] q0 is an unsolved problem. We believe that it is true and that we even have the following.

Conjecture. For all positive integer m,

C |G(n, q;p)|2m |L(1, q)| ’ C· C |G(n, q;p)|2m,pQ +., q ] q0 q mod p where C is the same as in Theorem 1.

2. SOME LEMMAS

In order to complete the proof of the theorems, we need the following lemmas.

Lemma 1. For any odd prime p, we have the estimate

p−1 C : C q(a) |L(1, q)|:=O(p ln p). a=1 q ] q0

Proof. Let N=p3/2, q be a nonprincipal character mod p, and ; A(q, y)= N

q +. q C (n) F A( ,y) L(1, q)= + 2 dy n [ N n N y q(n) ln p = C +O 1 2. n [ N n p GENERALIZED QUADRATIC GAUSS SUMS 307

So that

q(n) ln p (1) |L(1, q)|=: C :+O 1 2. n [ N n p

On the other hand, let r(n) be a multiplicative function defined by R2aS a r(pa)= and r(1)=1, 4a where p is a prime and a is any positive integer. For this number-theoretic function r(n), it is easily proved that (see Lemma 1 of [6])

n C r(d) · r 1 2=1 d|n d and

q(n) r(n) 2 q(nm) r(m) r(n) (2) 1 C 2 = C C n [ N n m [ N n [ N mn q(n) q(n) r(n, N) = C + C , n [ N n N

n r(n, N)= C r(d) · r 1 2. d|n d n d, d [ N From (2), Cauchy’s inequality, and the orthogonality relationships for character sums

p−1, if n — 1 mod p; C q(n)=˛ q mod p 0, otherwise, and

p−1 p−1, if q=q0 ; C q(a)=˛ a=1 0, otherwise, 308 ZHANG WENPENG we have the estimates

p−1 q(n) q(n) r(n) 2 (3) C : C q(a) 1: C : − : C : 2: a=1 q n [ N n n [ N n 1 p−1 2 2 q(n) q(n) r(n) 2 [ p1/2 · 5 C : C q(a) 1: C : − : C : 2:6 a=1 q n [ N n n [ N n 1 2 q(n) q(n) q(n) r(n, N) 2 [ p·5C 1: C : − : C + C :2 6 q n [ N n n [ N n N

p−1 q(n) r(n) 2 p−1 r(m) r(n) (4) C : C q(a) : C : :=(p−1) C C C a=1 q n [ N n a=1 m [ N n [ N mn am — n mod p r(m) 2 =(p−1)·1 C 2 ° p ln p. m [ N m Combining (1), (3), and (4) we obtain

p−1 C : C q(a) |L(1, q)| : a=1 q ] q0 p−1 q(n) = C : C q(a) : C :+O(ln p) : a=1 q ] q0 n [ N n p−1 q(n) = C : C q(a) : C ::+O(p ln p) a=1 q n [ N n p−1 q(n) q(n) r(n) 2 ° C : C q(a) 1: C : − : C : 2: a=1 q n [ N n n [ N n p−1 q(n) r(n) 2 + C : C q(a) : C : :+p ln p a=1 q n [ N n ° p·ln p.

This proves Lemma 1. L GENERALIZED QUADRATIC GAUSS SUMS 309

Lemma 2. For any odd prime p, we have the asymptotic formula

1 1 CŒ 2 |L(1, q)|=2 · C · p+O(p · ln p), q(−1)=1 where

R2S2 R4S2 R2nS2 . r2(n) r s C= C =D 1 2 n n2 1+ + +···+ +··· n=1 p 42 ·p2 44 ·p4 42n ·p2n

;− is an absolute constant, and q(−1)=1 denotes the summation over all nonprincipal even characters mod p.

Proof. Let N=p3/2. Note the orthogonality relationship for character sums

1 2 (p − 1), if n — ±1mod p; C q(n)=˛ q(−1)=1 0, otherwise.

By (1), (2), and the method of proving Lemma 1 we have

q(n) CŒ |L(1, q)|= CŒ : C :+O(ln p) q(−1)=1 q(−1)=1 n [ N n q(n) r(n) 2 = C : C : +O(ln p) q(−1)=1 n [ N n q(n) q(n) r(n) 2 + C 1: C : − : C : 2 q(−1)=1 n [ N n n [ N n 1 r(m) · r(n) = (p−1)· C C +O(ln p) 2 m [ N n [ N mn m — ±n mod p q(n) · r(n, N) +O 1C : C :2 q N

. 2 1 r (n) 1 C 2 = p· 2 +O(p · ln p) 2 n=1 n

1 1 = · C · p+O(p 2 · ln p). 2

This proves Lemma 2. L

Lemma 3. For any integer q \ 1, we have the formula

`q if q — 1(mod 4);

− piq 0 if q — 2(mod 4); 1 ˛ G(1; q)= `q (1+i)(1+e 2 )= 2 i `q if q — 3(mod 4); (1+i) `q if q — 0(mod 4).

Proof. This is a remarkable formula of Gauss. See Theorem 9.16 of [1]. L

Lemma 4. Let p be an odd prime, q be any nonprincipal even character

(i.e., q(−1)=1 and q ] q0 ) mod p. Then for any integer n with (n, p)=1, we have the identity

n p−1 a2 −1 |G(n, q;p)|2=2p+1 2 G(1; p) C q(a) 1 2, p a=1 p

n where (p) is the Legendre symbol. Proof. First we note that if p^ |n, then (See Theorem 7.5.4 of [7])

n (5) G(n; p)=1 2 G(1; p). p

From (5) we know that if q is a nonprincipal even character mod p, then

p−1 p−1 na2 −nb2 |G(n, q;p)|2= C C q(a) q¯(b) e 1 2 a=1 b=1 p p−1 p−1 n(a2 −b2) = C C q(ab¯)e1 2 a=1 b=1 p p−1 p−1 nb2(a2 −1) = C C q(a) e 1 2 a=1 b=1 p GENERALIZED QUADRATIC GAUSS SUMS 311

p−1 p nb2(a2 −1) = C q(a) 5 C e 1 2 −16 a=1 b=1 p

p−2 p−1 =2p+ C q(a) G(n(a2 − 1); p) − C q(a) a=2 a=1

n p−1 a2 −1 =2p+1 2 G(1; p) C q(a) 1 2. p a=1 p

This proves Lemma 4.

3. PROOF OF THE THEOREMS

In this section, we shall complete the proof of the theorems. We only prove Theorem 2 and Theorem 3, the proof of Theorem 1 being similar. Note that if q is an odd character modulo p, then

p a2n G(n, q; p)= C q(a) e 1 2=0. a=1 p

Thus for any integer n with (n, p)=1, from Lemma 4 we have

(6) C |G(n, q;p)|4 · |L(1, q)| q ] q0

= C |G(n, q;p)|4 · |L(1, q)| q ] q0 q(−1)=1

n p−1 a2 −1 2 = C 52p+1 2 G(1; p) C q(a) 1 26 · |L(1, q)| q ] q0 p a=1 p q(−1)=1

n p−1 a2 −1 = C 54p2+4p 1 2 G(1; p) C q(a) 1 26· |L(1, q)| q ] q0 p a=1 p q(−1)=1

p−1 p−1 a2 −1 b2 −1 +G2(1; p) · C C C q(ab) 1 21 2 · |L(1, q)|. q ] q0 a=1 b=1 p p q(−1)=1 312 ZHANG WENPENG

Note the identities p−1 p−1 a2 −1 b2 −1 (7) C C q(ab) 1 21 2 a=1 b=1 p p p−1 p−1 a2b¯ 2 −1 b2 −1 = C C q(a) 1 21 2 a=1 b=1 p p p−1 p−1 a2 −b2 b2 −1 = C C q(a) 1 21 2 a=1 b=1 p p −1 p−2 p−1 a2 −b2 b2 −1 =2 1 2 (p − 3)+ C C q(a) 1 21 2 p a=2 b=1 p p and p−2 a2 −b2 C 1 2 C q(a) |L(1, q)| a=2 p q(−1)=−1 p−1 a2 −1 = C 1 2 C q(a) |L(1, q)|=0, a=1 p q(−1)=−1 and the estimate of Weil p−1 b2 −a2 b2 −1 (8) C 1 21 2 [ 3 `p ,a2 – 1 mod p. b=1 p p From (6), (7), (8), Lemma 1, Lemma 2, and Lemma 3 we have

C |G(n, q;p)|4 · |L(1, q)| q ] q0 −1 =14p2+G2(1; p) · 2 1 2 (p−3)2 · C |L(1, q)| p q ] q0 q(−1)=1 n p−1 a2 −1 +4p 1 2 G(1; p) C 1 2 C q(a) |L(1, q)| p a=1 p q ] q0 q(−1)=1 p−2 p−1 a2 −b2 b2 −1 +G2(1; p) C C 1 21 2 C q(a) |L(1, q)| a=2 b=1 p p q ] q0 q(−1)=1 p−2 =(6p2 − 6p) C |L(1, q)|+O 1 p3/2 C : C q(a) |L(1, q)| :2 q ] q0 a=2 q ] q0 q(−1)=1 5 3 2 =3 · C · p +O(p 2 · ln p). This proves Theorem 2. GENERALIZED QUADRATIC GAUSS SUMS 313

Now we prove Theorem 3. For any odd prime p with p — 3 mod 4 and integer n with (p, n)=1, from Lemma 4 we have

(9) C |G(n, q;p)|6 · |L(1, q)| q ] q0 n p−1 a2 −1 3 = C 52p+1 2 G(1; p) C q(a) 1 26 |L(1, q)| q ] q0 p a=1 p q(−1)=1 and

(10) C |G(n, q;p)|6 · |L(1, q)|= C |G(n, q;p)|6 · |L(1, q)| q ] q0 q ] q0 p−1 −na2 6 = C : C q¯(a) e 1 2: · |L(1, q¯)| q ] q0 a=1 p p−1 −na2 6 = C : C q(a) e 1 2: · |L(1, q)| q ] q0 a=1 p −n p−1 a2 −1 3 = C 52p+1 2 G(1; p) C q(a) 1 26 · |L(1, q)|. q ] q0 p a=1 p q(−1)=1

−n n Note that ( p )=−(p), from (7), (8), (9), (10), Lemma 1, Lemma 2, and Lemma 3 we obtain the asymptotic formula

C |G(n, q;p)|6 · |L(1, q)| q ] q0 1 = 5 C |G(n, q;p)|6 · |L(1, q)|+ C |G(n, q;p)|6 · |L(1, q)|6 2 q ] q0 q ] q0 1 n p−1 a2 −1 3 = C 52p+1 2 G(1; p) C q(a) 1 26 |L(1, q)| 2 q ] q0 p a=1 p q(−1)=1 1 n p−1 a2 −1 3 + C 52p − 1 2 G(1; p) C q(a) 1 26 |L(1, q)| 2 q ] q0 p a=1 p q(−1)=1 p−1 a2 −1 2 = C 5(2p)3+6pG2(1; p) 1 C q(a) 1 22 6 · |L(1, q)| q ] q0 a=1 p q(−1)=1 7 4 2 =10·C·p +O(p 2 · ln p).

This completes the proof of Theorem 3. 314 ZHANG WENPENG

ACKNOWLEDGMENT

The author expresses his gratitude to the referee for his very helpful and detailed comments.

REFERENCES

1. T. M. Apostol, ‘‘Introduction to Analytic Number Theory,’’ Springer-Verlag, New York, 1976. 2. S. Chowla, On Kloostermann’s sum, Norske Vid. Selbsk. Fak. Frondheim 40 (1967), 70–72. 3. Z. Wenpeng, On the 2k-th power mean of inversion of Dirichlet L-function, Chinese J. Contemp. Math. 14 (1993), 1–7. 4. R. C. Vaughan, An elementary method in theory, in ‘‘Recent Progress in Analytic Number Theory,’’ Vol. 1, pp. 341–347, Academic Press, San Diego, 1981. 5. D. A. Burgess, On character sums and L-series, Proc. London Math. Soc. 12 (1962), 193–206. 6. R. Jianhua and Z. Wenpeng, On the average of Dirichlet L-functions, J. Sichuan Univ. Nat. Sci. Ed. 26 (1990), 75–79. 7. L. K. Hua, ‘‘Introduction to Number Theory,’’ Science Press, Beijing, 1979. 8. T. Cochrane and Z. Y. Zheng, Pure and mixed exponential sums, Acta Arith. 91 (1999), 249–278. 9. A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 203–210.