Forestry Department Food and Agriculture Organization of the United Nations

Total Page:16

File Type:pdf, Size:1020Kb

Forestry Department Food and Agriculture Organization of the United Nations Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers Biosecurity and Forests: An Introduction with particular emphasis on forest pests by Matthew J.W. Cock with inputs from Marc Kenis and Rüdiger Wittenberg December 2003 Forest Resources Development Service Working Paper FBS/2E Forest Resources Division FAO, Rome, Italy Forestry Department Disclaimer This paper is one of a series of FAO documents on forest-related health and biosecurity issues. The purpose of these papers is to provide early information on on-going activities and programmes, and to stimulate discussion. The study was carried out in March 2003, and was financially supported by the FAO-Netherlands Partnership Programme on Agro-Biodiversity. The author would like to thank the following persons for helping to prepare some of the case studies (taken from the Global Invasive Species Programme Toolkit) presented in this paper. Case Study 4 was prepared by S. Soetikno, CAB International South-East Asia Regional Centre, Malaysia Agricultural Research & Development Institute; Case Study 11 was prepared by Ross Morgan, National Manager, Forest Health Forest Health Advisory Services, New Zealand. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Quantitative information has been compiled according to sources, methodologies and protocols identified and selected by the author. For standardized forest inventory methodologies and assessments on forest resources, please refer to FAO, 2003. State of the World’s Forests 2003; and to FAO, 2001. Global Forest Resources Assessment 2000 (FRA 2000). FAO Forestry Paper No 140. Official information can also be found at the FAO Internet site (http://www.fao.org/forestry/Forestry.asp). Comments and feedback are welcome. For further information please contact: Pierre Sigaud, Forestry Officer (Forest Genetic Gillian Allard, Forestry Officer (Forest Health) Resources) Forest Resources Division Forest Resources Division Forestry Department Forestry Department FAO, Viale delle Terme di Caracalla FAO, Viale delle Terme di Caracalla 00100 Rome, Italy 00100 Rome, Italy Fax: + 39 06 570 55 137 Fax: + 39 06 570 55 137 Email: [email protected] Email: [email protected] For citation: Cock, M.J.W. 2003. Biosecurity and Forests: An Introduction – with particular emphasis on forest pests. FAO Forest Health and Biosecurity Working Paper FBS/2E, 2003. © FAO 2003 CONTENTS EXECUTIVE SUMMARY........................................................................................................ 1 1. INTRODUCTION.................................................................................................................. 4 1.1. DEFINITIONS .................................................................................................................... 4 1.3. IMPORTANCE OF BIOSECURITY ......................................................................................... 6 2. THREATS TO FORESTS AND FOREST TREES............................................................ 7 2.1. IMPORTANCE OF ARTHROPOD PESTS AND DISEASES ......................................................... 7 2.1.1. OUTBREAK PESTS.......................................................................................................... 13 2.2. IMPORTANCE OF WEED PESTS........................................................................................... 15 2.3. ALIEN VERSUS INDIGENOUS PESTS AND DISEASES............................................................ 16 2.4. INTRODUCTION OF NEW TREE GENOTYPES ....................................................................... 18 2.5. MONOCULTURE VERSUS MIXED OR NATURAL PLANTATIONS............................................ 18 2.6. SUSCEPTIBILITY OF INDIGENOUS VERSUS EXOTIC TREES IN PLANTATIONS ....................... 20 3. MANAGING THREATS TO FORESTS AND FOREST TREES.................................... 21 3.1. ALIEN SPECIES: PREVENTION ........................................................................................... 21 3.2. ALIEN SPECIES: MONITORING AND SURVEILLANCE .......................................................... 23 3.3. ALIEN SPECIES: ERADICATION.......................................................................................... 25 3.4. ALIEN SPECIES: BIOLOGICAL CONTROL ............................................................................ 28 3.5. OTHER MANAGEMENT OPTIONS ....................................................................................... 31 3.6. CURRENT AND FUTURE TRENDS IN FOREST PEST MANAGEMENT....................................... 34 4. FORESTRY TREES AS INVASIVE ALIEN SPECIES.................................................... 36 5. TRENDS IN THE USE OF GENETICALLY MODIFIED FOREST TREES................ 40 6. FORESTRY AS A PATHWAY FOR THE INTRODUCTION OF ALIEN SPECIES .. 41 6.1. SPECIES INTRODUCED IN ASSOCIATION WITH SILVICULTURAL PRACTICES........................ 41 6.2. MOVEMENT OF GERMPLASM ........................................................................................... 44 6.3. SOLID WOOD PACKAGING MATERIALS.............................................................................. 44 6.4. TIMBER ............................................................................................................................ 46 6.5. AID PROGRAMMES ........................................................................................................... 47 6.6. CONTAMINANTS OF FOREST FRUITS AND SEEDS ............................................................... 48 7. COMMUNICATION AND STAKEHOLDER INVOLVEMENT.................................... 48 8. DISCUSSION AND CONCLUSIONS ................................................................................. 49 REFERENCES........................................................................................................................... 53 Appendix. Selected invasive alien species affecting forestry eco-systems.................................. 61 Case studies, Tables and Figures Case Study 1: Assessing the impact of introduced conifer aphid pests in Africa........................ 8 Case Study 2: Chestnut blight changes a forest ecosystem.......................................................... 10 Case Study 3: Fordlandia – a classic story of indigenous plantation failure................................ 11 Case Study 4: The threat of South American leaf blight to rubber in Malaysia .......................... 12 Case Study 5: Rubber – an industry under threat......................................................................... 13 Case Study 6: Concurrent outbreaks of insects and diseases: maple defoliators and maple anthracnose................................................................................................................................... 14 Case Study 7: Socio-economic impact of Mikania micrantha in Kerala, India and Malaysia .... 15 Case Study 8: The origin and spread of Dutch elm disease......................................................... 17 Case Study 9: Hybridization threatens the endangered black poplar population in Great Britain........................................................................................................................................... 19 Case Study 10: The precautionary principle ................................................................................ 22 Case Study 11: Early detection and eradication of white-spotted tussock moth in New Zealand24 Case Study 12: Containment versus eradication: Miconia calvescens in Hawaii........................ 26 Case Study 13: Biological control of an insect to save an endemic tree on St Helena................ 28 Case Study 14: Biological control of Eucalyptus weevil in South Africa ................................... 29 Case Study 15: Spread of a biological control agent, Cactoblastis cactorum, in the Caribbean. 30 Case Study 16: Buffers to keep invasive plants out of forest fragments...................................... 31 Case Study 17: Principles of the Forest Stewardship Council relating to biosecurity................. 35 Case Study 18: Paper-bark tree alters habitats in Florida ............................................................ 37 Case study 19: Possible impacts of mycorrhizal introductions associated with forestry trees .... 42 Case Study 20: Solid wood packaging materials: an important potential pathway for the introduction of alien species into the USA................................................................................... 45 Case Study 21: Asian longhorned beetle, a threat to North American forests............................. 46 Case Study 22: Siberian timber imports: analysis of a potentially high-risk pathway ................ 47 Table 1: Components of a generalized IPM system..................................................................... 32 Figure 1: Summary of factors that may interact to create insect pest outbreaks in tropical forestry and strategies for reducing risk ...................................................................................... 33 EXECUTIVE SUMMARY ‘Biosecurity’ in food and agriculture describes the concept and process of managing biological
Recommended publications
  • The Oil Palm (Elaeis Guineensis)
    PALM S Rival & Levang: Oil Palm Vol. 59(1) 2015 ALAIN RIVAL The Oil Palm Centre de Coopération Internationale en Recherche (Elaeis Agronomique pour le Développement guineensis ): Jakarta, Indonesia [email protected] Research AND Challenges PATRICE LEVANG Institut de Recherche pour Beyond le Développement Yaoundé, Cameroon Controversies [email protected] Scientists certainly have a part to play in the debate over oil palm ( Elaeis guineensis Jacq.) cultivation, which has captured and polarized public opinion, kindled and undoubtedly shaped by the media. How can this palm be viewed as a “miracle plant” by both the agro-food industry in the North and farmers in the tropical zone, but a serious ecological threat by non-governmental organizations (NGOs) campaigning for the environment or the rights of indigenous peoples? The time has come to move on from this biased and often irrational debate, which is rooted in topical issues of contemporary society in the North, such as junk food, biodiversity, energy policy and ethical consumption. One of the reasons the public has developed as nuclear energy, genetically modified crops such fixed ideas is that there has been a lack or shale gas) that is causing controversy but an of accurate information on the sector and its entire agrom-food sector that has come to actors and a clear-headed analysis of what is symbolize the conflict between the at stake. We point out that the production and conservation of natural spaces and de- processing of palm oil are part of a complex velopment. Consumers, elected representatives globalized agrom-industrial sector shared by and scientists are finally forced to take sides for multiple actors and stakeholders with often or against palm oil, with no room for ifs and conflicting interests.
    [Show full text]
  • Non-Timber Forest Products
    Agrodok 39 Non-timber forest products the value of wild plants Tinde van Andel This publication is sponsored by: ICCO, SNV and Tropenbos International © Agromisa Foundation and CTA, Wageningen, 2006. All rights reserved. No part of this book may be reproduced in any form, by print, photocopy, microfilm or any other means, without written permission from the publisher. First edition: 2006 Author: Tinde van Andel Illustrator: Bertha Valois V. Design: Eva Kok Translation: Ninette de Zylva (editing) Printed by: Digigrafi, Wageningen, the Netherlands ISBN Agromisa: 90-8573-027-9 ISBN CTA: 92-9081-327-X Foreword Non-timber forest products (NTFPs) are wild plant and animal pro- ducts harvested from forests, such as wild fruits, vegetables, nuts, edi- ble roots, honey, palm leaves, medicinal plants, poisons and bush meat. Millions of people – especially those living in rural areas in de- veloping countries – collect these products daily, and many regard selling them as a means of earning a living. This Agrodok presents an overview of the major commercial wild plant products from Africa, the Caribbean and the Pacific. It explains their significance in traditional health care, social and ritual values, and forest conservation. It is designed to serve as a useful source of basic information for local forest dependent communities, especially those who harvest, process and market these products. We also hope that this Agrodok will help arouse the awareness of the potential of NTFPs among development organisations, local NGOs, government officials at local and regional level, and extension workers assisting local communities. Case studies from Cameroon, Ethiopia, Central and South Africa, the Pacific, Colombia and Suriname have been used to help illustrate the various important aspects of commercial NTFP harvesting.
    [Show full text]
  • Molecular Basis of Pheromonogenesis Regulation in Moths
    Chapter 8 Molecular Basis of Pheromonogenesis Regulation in Moths J. Joe Hull and Adrien Fónagy Abstract Sexual communication among the vast majority of moths typically involves the synthesis and release of species-specifc, multicomponent blends of sex pheromones (types of insect semiochemicals) by females. These compounds are then interpreted by conspecifc males as olfactory cues regarding female reproduc- tive readiness and assist in pinpointing the spatial location of emitting females. Studies by multiple groups using different model systems have shown that most sex pheromones are synthesized de novo from acetyl-CoA by functionally specialized cells that comprise the pheromone gland. Although signifcant progress was made in identifying pheromone components and elucidating their biosynthetic pathways, it wasn’t until the advent of modern molecular approaches and the increased avail- ability of genetic resources that a more complete understanding of the molecular basis underlying pheromonogenesis was developed. Pheromonogenesis is regulated by a neuropeptide termed Pheromone Biosynthesis Activating Neuropeptide (PBAN) that acts on a G protein-coupled receptor expressed at the surface of phero- mone gland cells. Activation of the PBAN receptor (PBANR) triggers a signal trans- duction cascade that utilizes an infux of extracellular Ca2+ to drive the concerted action of multiple enzymatic steps (i.e. chain-shortening, desaturation, and fatty acyl reduction) that generate the multicomponent pheromone blends specifc to each species. In this chapter, we provide a brief overview of moth sex pheromones before expanding on the molecular mechanisms regulating pheromonogenesis, and con- clude by highlighting recent developments in the literature that disrupt/exploit this critical pathway. J. J. Hull (*) USDA-ARS, US Arid Land Agricultural Research Center, Maricopa, AZ, USA e-mail: [email protected] A.
    [Show full text]
  • Current Knowledge on Interspecific Hybrid Palm Oils As Food and Food
    foods Review Current Knowledge on Interspecific Hybrid Palm Oils as Food and Food Ingredient Massimo Mozzon , Roberta Foligni * and Cinzia Mannozzi * Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche 10, 60131 Ancona, Italy; m.mozzon@staff.univpm.it * Correspondence: r.foligni@staff.univpm.it (R.F.); c.mannozzi@staff.univpm.it (C.M.); Tel.: +39-071-220-4010 (R.F.); +39-071-220-4014 (C.M.) Received: 6 April 2020; Accepted: 10 May 2020; Published: 14 May 2020 Abstract: The consumers’ opinion concerning conventional palm (Elaeis guineensis) oil is negatively affected by environmental and nutritional issues. However, oils extracted from drupes of interspecific hybrids Elaeis oleifera E. guineensis are getting more and more interest, due to their chemical and × nutritional properties. Unsaturated fatty acids (oleic and linoleic) are the most abundant constituents (60%–80% of total fatty acids) of hybrid palm oil (HPO) and are mainly acylated in position sn-2 of the glycerol backbone. Carotenes and tocotrienols are the most interesting components of the unsaponifiable matter, even if their amount in crude oils varies greatly. The Codex Committee on Fats and Oils recently provided HPO the “dignity” of codified fat substance for human consumption and defined the physical and chemical parameters for genuine crude oils. However, only few researches have been conducted to date on the functional and technological properties of HPO, thus limiting its utilization in food industry. Recent studies on the nutritional effects of HPO softened the initial enthusiasm about the “tropical equivalent of olive oil”, suggesting that the overconsumption of HPO in the most-consumed processed foods should be carefully monitored.
    [Show full text]
  • Oil Palm in Indonesia— the Limits of Certification and Zero— Deforestation Pledges
    LEAVES POLICY BRIEF FEBRUARY 2019 OIL PALM IN INDONESIA— THE LIMITS OF CERTIFICATION AND ZERO— DEFORESTATION PLEDGES Highlights • Oil palm (Elaeis guineensis) is one of the more visible and profitable agricultural commodities driving the expansion of industrial- and small-scale plantations into forest areas, particularly in Southeast Asia. • Between 2000 and 2010, around 4.5 million hectares (ha) of forests were lost in Indonesia with others estimating that the total amount could be over 7 million ha. Around 20% of this deforestation occurred on oil palm plantations. • In Indonesia, initiatives that mitigate and manage deforestation due to palm oil production include standards and certification, zero-deforestation pledges, improvements to smallholder productivity, and jurisdictional management. This policy brief examines how well these initiatives address the causes deforestation and environmental degradation and their acceptability among stakeholders. • Palm oil production in Africa and Asia has as of yet to cause large scale deforestation of primary forest as much of the land being used for plantations was previously cleared for agriculture. • Development partners can further mitigate palm oil’s impact on deforestation by identifying financially viable and sustainable small-scale models, improving the taxation models for plantations and supply chains, strengthening the legality of jurisdictional approaches, and improving traceability in the palm oil supply chain. Introduction and eventual conversion of natural forests and peatland beginning with forestry concessions. In Southeast Asia, Globally, tropical deforestation, forest fires, and peatland oil palm cultivation has become synonymous with tropical degradation are a major cause of greenhouse gas emissions deforestation and subject to numerous environmental and biodiversity loss.
    [Show full text]
  • Download Download
    Jear_2013_1:Hrev_master 23/04/13 09.55 Pagina 27 JournalJournal of of Entomological Entomological and and Acarological Acarological Research Research 2013; 2012; volume volume 45:e7 44:e Some biological aspects of Leucothyreus femoratus (Burmeister) (Coleoptera, Scarabaeidae), in oil palm plantations from Colombia L.C. Martínez,1 A. Plata-Rueda2 1Departamento de Entomologia, Universidade Federal de Viçosa; 2Departamento de Fitotecnia, Universidade Federal de Viçosa, Minas Gerais, Brasil weight of the insect are proportional to the growth stage. Daily food Abstract consumption rate was evaluated in adult L. femoratus, and damage to leaves of Elaeis guineensis is described. Adult L. femoratus consumed The scarabaeid Leucothyreus femoratus (Burmeister) is described 13 mm2 of foliage per day, and injury to leaves of E. guineensis was as causing damage to oil palm leaves, marking its first report as a pest square or rectangular in shape. This insect’s life cycle duration and in Colombia. The presence of this insect has necessitated determina- size are factors that could be considered in determining its feeding tion of its life cycle, biometrics and food consumption as important habits and pest status. Details of the life cycle, physical description aspects of its biology. Experiments were conducted under laboratory and consumption rate of L. femoratus can help in the development of conditions in the municipality of San Vicente, Santander, Colombia. strategies to manage its populations in oil palm plantations. Mass rearing of L. femoratus was conducted, simulating field condi- only tions and eating habits under laboratory conditions. Its life cycle and description of its developmental stages were determined, taking into Introduction account stage-specific survival.
    [Show full text]
  • Strategies for the Eradication Or Control of Gypsy Moth in New Zealand
    Strategies for the eradication or control of gypsy moth in New Zealand Travis R. Glare1, Patrick J. Walsh2*, Malcolm Kay3 and Nigel D. Barlow1 1 AgResearch, PO Box 60, Lincoln, New Zealand 2 Forest Research Associates, Rotorua (*current address Galway-Mayo Institute of Technology, Dublin Road, Galway, Republic of Ireland) 3Forest Research, Private Bag 3020, Rotorua Efforts to remove gypsy moth from an elm, Malden, MA, circa 1891 May 2003 STATEMENT OF PURPOSE The aim of the report is to provide background information that can contribute to developing strategies for control of gypsy moth. This is not a contingency plan, but a document summarising the data collected over a two year FRST-funded programme on biological control options for gypsy moth relevant to New Zealand, completed in 1998 and subsequent research on palatability of New Zealand flora to gypsy moth. It is mainly aimed at discussing control options. It should assist with rapidly developing a contingency plan for gypsy moth in the case of pest incursion. Abbreviations GM gypsy moth AGM Asian gypsy moth NAGM North America gypsy moth EGM European gypsy moth Bt Bacillus thuringiensis Btk Bacillus thuringiensis kurstaki MAF New Zealand Ministry of Agriculture and Forestry MOF New Zealand Ministry of Forestry (defunct, now part of MAF) NPV nucleopolyhedrovirus LdNPV Lymantria dispar nucleopolyhedrovirus NZ New Zealand PAM Painted apple moth, Teia anartoides FR Forest Research PIB Polyhedral inclusion bodies Strategies for Asian gypsy moth eradication or control in New Zealand page 2 SUMMARY Gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae), poses a major threat to New Zealand forests. It is known to attack over 500 plant species and has caused massive damage to forests in many countries in the northern hemisphere.
    [Show full text]
  • Mechanical Properties of Oil Palm Wood (Elaeis Guineensis JACQ.)
    Mechanical Properties of Oil Palm Wood (Elaeis guineensis JACQ.) K. Fruehwald-Koenig†* †University of Applied Sciences Ostwestfalen-Lippe, Liebigstr. 87, 32657 Lemgo, Germany, [email protected] Oil palms (Elaeis guineensis JACQ.) are mainly cultivated in large plantations for palm oil production to be used for food, chemicals, pharmaceuticals and energy material. Worldwide, oil palms cover an area of nearly 25 million ha of which 75 % are located in Asia. After 25 years of age, the palms are felled and replaced due to declining oil production. Like all other biomass, the trunks remain on the plantation site for nutrient recycling. This leads to increased insect and fungi populations causing problems for the new palm generation. Many regions where oil palms grow currently suffer from a decline in timber harvested from their tropical forests. The average annual total volume of trunks from plantation clearings amounts to more than 100 million m³. Recent research has explored the commercial uses of oil palm wood. In many cases, the wood can substitute for tropical hardwoods, e. g. as panels (block-boards, flash doors, multi-layer solid wood panels) and construction timber. Appropriate use of the wood requires defined elasto-mechanical properties and therefore grading of the lumber. Being monocotyledons, palms show distinct differences in the anatomical structure compared to common wood species. Only lateral and no radial growth of the stem means no growth rings, no wood rays, no knots. The wood consists of lengthwise oriented vascular bundles (VB) embedded in parenchymatous ground tissue. The vascular bundles are composed of vessels for water transport and sclerenchymatous fiber cells (fiber caps) with thick walls formed to fiber bundles for structural stability; the density of the VB is high between 0.8 to 1.4 g/cm³.
    [Show full text]
  • Root Lignin Composition and Content in Oil Palm (Elaeis Guineensis Jacq.) Genotypes with Different Defense Responses to Ganoderma Boninense
    agronomy Article Root Lignin Composition and Content in Oil Palm (Elaeis guineensis Jacq.) Genotypes with Different Defense Responses to Ganoderma boninense Nisha Govender 1, Idris Abu-Seman 2 and Wong Mui-Yun 3,4,* 1 Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; [email protected] 2 Ganoderma and Disease Research of Oil Palm Unit, Malaysian Palm Oil Board, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia; [email protected] 3 Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia 4 Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia * Correspondence: [email protected]; Tel.: +60-03-9769-1014 Received: 31 July 2020; Accepted: 2 September 2020; Published: 29 September 2020 Abstract: Basal stem rot of oil palms (OPs) is caused by Ganoderma boninense, a white-rot fungus. Root tissues are the primary route for G. boninense penetration and subsequent pathogenesis on OPs. Little is known on the host lignin biochemistry and selectivity for G. boninense degradation. Oil palm genotypes with different defense responses to G. boninense (highly tolerant, intermediately tolerant, and susceptible) were assessed for root lignin biochemistry (lignin content and composition), plant functional traits (height, fresh weight, girth), chlorophyll content, and root elemental nutrient content. One-year-old seedlings and five-year-old trees were screened for root thioglycolic acid lignin (TGA) content, lignin composition, and elemental nutrient depositions, while plant functional traits were evaluated in the one-year-old seedlings only. The TGA lignin in all the oil palm seedlings and 1 trees ranged from 6.37 to 23.72 pM µg− , whereas the nitrobenzene oxidation products showed a syringyl (S)-to-guaiacyl (G) ratios of 0.18–0.48.
    [Show full text]
  • Genetic Diversity of Elaeis Oleifera
    Ithnin et al. BMC Genetics (2017) 18:37 DOI 10.1186/s12863-017-0505-7 RESEARCH ARTICLE Open Access Genetic diversity of Elaeis oleifera (HBK) Cortes populations using cross species SSRs: implication’s for germplasm utilization and conservation Maizura Ithnin1*†, Chee-Keng Teh1,2† and Wickneswari Ratnam3 Abstract Background: The Elaeis oleifera genetic materials were assembled from its center of diversity in South and Central America. These materials are currently being preserved in Malaysia as ex situ living collections. Maintaining such collections is expensive and requires sizable land. Information on the genetic diversity of these collections can help achieve efficient conservation via maintenance of core collection. For this purpose, we have applied fourteen unlinked microsatellite markers to evaluate 532 E. oleifera palms representing 19 populations distributed across Honduras, Costa Rica, Panama and Colombia. Results: In general, the genetic diversity decreased from Costa Rica towards the north (Honduras) and south-east (Colombia). Principle coordinate analysis (PCoA) showed a single cluster indicating low divergence among palms. The phylogenetic tree and STRUCTURE analysis revealed clusters based on country of origin, indicating considerable gene flow among populations within countries. Based on the values of the genetic diversity parameters, some genetically diverse populations could be identified. Further, a total of 34 individual palms that collectively captured maximum allelic diversity with reduced redundancy were also identified. High pairwise genetic differentiation (Fst > 0.250) among populations was evident, particularly between the Colombian populations and those from Honduras, Panama and Costa Rica. Crossing selected palms from highly differentiated populations could generate off-springs that retain more genetic diversity.
    [Show full text]
  • ENANTIOMERS of (Z,Z)-6,9-HENEICOSADIEN-11-OL: SEX PHEROMONE COMPONENTS of Orgyia Detrita
    P1: GRA Journal of Chemical Ecology [joec] pp990-joec-473399 October 15, 2003 14:26 Style file version June 28th, 2002 Journal of Chemical Ecology, Vol. 29, No. 10, October 2003 (C 2003) ENANTIOMERS OF (Z,Z)-6,9-HENEICOSADIEN-11-OL: SEX PHEROMONE COMPONENTS OF Orgyia detrita REGINE GRIES,1,4 GRIGORI KHASKIN,1 EUGENE KHASKIN,1 JOHN L. FOLTZ,2 PAUL W. SCHAEFER,3 and GERHARD GRIES1, 1Department of Biological Sciences Simon Fraser University Burnaby, British Columbia, Canada, V5A 1S6 2Department of Entomology & Nematology University of Florida Gainesville, Florida 32611-0620, USA 3United States Department of Agriculture Agricultural Research Service Beneficial Insects Introduction Research Laboratory Newark, Delaware 19713, USA (Received November 1, 2002; accepted June 17, 2003) Abstract—(6Z,9Z,11S)-6,9-Heneicosadien-11-ol (Z6Z9-11S-ol-C21) and (6Z,9Z,11R)-6,9-heneicosadien-11-ol (Z6Z9-11R-ol-C21) were identified as major sex pheromone components of female tussock moths, Orgyia detrita Gu´erin-M´eneville (Lepidoptera: Lymantriidae), on the basis of (1) analyses of pheromone gland extracts of female O. detrita by coupled gas chromatographic- electroantennographic detection (GC-EAD) and GC mass spectrometry, and (2) field trapping experiments with synthetic standards. Z6Z9-11S-ol-C21 and Z6Z9-11R-ol-C21 in combination, but not singly, attracted significant numbers of male moths. Racemic Z6Z9-11-ol-C21 was more attractive than the 1:3.5 (R:S) blend ratio found in pheromone gland extracts from female moths. Lower and higher homologues of Z6Z9-11-ol-C21 were also detected in GC-EAD recordings of pheromone extracts, and the racemic compounds enhanced attrac- tiveness of Z6Z9-11-ol-C21 in field experiments.
    [Show full text]
  • The New Zealand Economy
    as a result of a weakened surveillance ef- Changes continued to be made International fort. Nonetheless, horticultural exports by successive governments throughout Perspectives in from New Zealand continue to grow at the 1990s which were characterised around 10% per annum and many sec- mainly by substantial changes to and tors remain very competitive on world even removal of some of the legislation Horticultural markets. that provided statutory protection for Extension—A New producer boards. These producer boards he New Zealand economy were organisations that provided for col- Zealand Viewpoint has been strongly dependent lective and compulsory marketing of sec- Ton agricultural exports since tor products such as apples, kiwifruit, Ian J. Warrington,1 original European settlement in the meat, dairy and wool. mid 1800s. The country has always These reforms were driven by a Barrie D. Wallace,2 and lacked signifi cant natural resources, number of forces including a shift to 3 such as petroleum reserves and valu- more conservative politics; a tighter Sandy Scarrow able minerals, but it does have plentiful fi scal environment where the role of water supplies, a moderate climate and government focussed increasingly on ADDITIONAL INDEX WORDS. privatization, highly productive soils. These permit the provision of health, education, wel- government funding, extension services, the cultivation of a wide range of pas- fare and defence services; and a com- biosecurity, technology transfer, user pays ture species, extensive exotic forests, mitment by government to supporting and a diverse range of horticultural new sectors in the economy such as SUMMARY. The government-funded crops ranging from warm temperate electronics and biotechnology.
    [Show full text]