materials Article A Computational Study of the Shear Behavior of Reinforced Concrete Beams Affected from Alkali–Silica Reactivity Damage Bora Gencturk 1,* , Hadi Aryan 1, Mohammad Hanifehzadeh 1, Clotilde Chambreuil 2 and Jianqiang Wei 3 1 Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 S. Vermont Avenue, KAP 210, Los Angeles, CA 90089-2531, USA;
[email protected] (H.A.);
[email protected] (M.H.) 2 LMT—Laboratoire de Mécanique et Technologie, University Paris-Saclay, ENS Paris-Saclay, CNRS, 91190 Gif-sur-Yvette, France;
[email protected] 3 Department of Civil and Environmental Engineering, University of Massachusetts, Lowell, MA 01854-5104, USA;
[email protected] * Correspondence:
[email protected]; Tel.: +1-(213)-821-1036; Fax: +1-(213)-744-1426 Abstract: In this study, an investigation of the shear behavior of full-scale reinforced concrete (RC) beams affected from alkali–silica reactivity damage is presented. A detailed finite element model (FEM) was developed and validated with data obtained from the experiments using several metrics, including a force–deformation curve, rebar strains, and crack maps and width. The validated FEM was used in a parametric study to investigate the potential impact of alkali–silica reactivity (ASR) degradation on the shear capacity of the beam. Degradations of concrete mechanical properties were correlated with ASR expansion using material test data and implemented in the FEM for Citation: Gencturk, B.; Aryan, H.; different expansions. The finite element (FE) analysis provided a better understanding of the failure Hanifehzadeh, M.; Chambreuil, C.; mechanism of ASR-affected RC beam and degradation in the capacity as a function of the ASR Wei, J.