Effect of Alkali-Silica Reaction on Confined Reinforced Concrete

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Alkali-Silica Reaction on Confined Reinforced Concrete University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2020 Effect of Alkali-Silica Reaction on Confined Reinforced Concrete Nolan Wesley Hayes University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Hayes, Nolan Wesley, "Effect of Alkali-Silica Reaction on Confined Reinforced Concrete. " PhD diss., University of Tennessee, 2020. https://trace.tennessee.edu/utk_graddiss/5805 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Nolan Wesley Hayes entitled "Effect of Alkali- Silica Reaction on Confined Reinforced Concrete." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Civil Engineering. Z. John Ma, Major Professor We have read this dissertation and recommend its acceptance: Richard M. Bennett, Timothy Truster, Yann Le Pape Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Effect of Alkali-Silica Reaction on Confined Reinforced Concrete A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Nolan Wesley Hayes May 2020 Copyright c by Nolan Wesley Hayes, 2020 All Rights Reserved. ii To God Be the Glory To my wife and To my parents iii Acknowledgments This research was made possible by the support of the US Department of Energy's Office of Nuclear Energy, Light Water Reactor Sustainability Program, under contract number DE-AC05-00OR22725. I would like to thank my advisor, Dr. John Ma, who instilled in me a passion for the progression of knowledge. His expertise, understanding, guidance, and support have encouraged me to achieve more than I could have imagined. I am grateful to Dr. Yann Le Pape whose passion for research was a major driver in developing my own devotion for research. His mentoring and deep understanding of material related to my topic has immensely helped in my own studies. I am thankful to Dr. Farid Benboudjema who hosted my stay in France at the Ecole´ normale sup´eriereParis-Saclay. Through his patience in teaching and mentoring, the inclusion of the concrete models presented in this research was possible. I am also thankful to Dr. Timothy Truster and Dr. Richard Bennett for serving on my committee. I would also like to thank Dr. Sihem Le Pape whose assistance and support in the management of the research project established my work for success. I am grateful to Dr. Alain Giorla whose mentoring and guidance strengthened my analysis of the research data. I am thankful to Larry Roberts and Andy Baker for all their assistance in helping with all the aspects of performing lab-work in structural engineering research. Because of their attention to safety, I still have all my fingers and toes. I am also grateful to Nancy Roberts who through her unending list of contacts was able to help in the procurement of many materials necessary for the research. iv Abstract Alkali-silica reaction (ASR), which was recently discovered in nuclear power plant structures commonly without shear reinforcement, has previously been shown to induce anisotropic expansion in confined concrete. A large-scale testing program on alkali silica reaction (ASR)-affected concrete structural members without shear reinforcement representative of structural members found in nuclear power plants is presented. Three large concrete specimens with ASR and varying levels of confinement were monitored in accelerated testing conditions. Strong anisotropic expansion and oriented ASR-induced cracking resulting from the confinement effect caused by the reinforcement layout and additional structural boundary conditions were observed. Surface cracking is not indicative of internal ASR- induced damage/expansion. The fracture properties (strength, stiffness, and specific fracture energy) of ASR- induced anisotropically-damaged concrete specimens were quantified by varying both the damage level and relative direction of the ASR-induced cracking orientation against the loading direction corresponding to the fracture propagation. The effect of different orientations (0, 45, and 90 degrees relative to the notch of the specimen) of expected ASR-induced cracks on the fracture properties was investigated using a wedge-splitting test (WST). Specimens without ASR expansion generally showed the highest fracture properties; however, the specific fracture energy was highest for ASR-affected specimens in which the expected orientation of ASR-induced cracks was perpendicular to the WST specimen notch. Specimens in which the ASR-induced cracks were parallel to the notch exhibited the lowest strength and fracture energy. A new model was developed for predicting the expansion of concrete structures affected by alkali-silica reaction. The model includes a novel combination of existing models as a v alkali-silica reaction advancement model, a novel casting direction anisotropic expansion model, a novel stress-dependent anisotropic expansion model, and a novel material property evolution model dependent on the degree of ASR expansion. The calibrated model was validated in predicting the ASR-expansion of the large-scale reinforced concrete specimens with confinement of this study. The results of this study highlight the need for additional research to be conducted to investigate a possible size effect for very-large concrete specimens affected by ASR and the need for additional research on multi-axially loaded concrete specimens with ASR. vi Table of Contents 1 Introduction1 1.1 Background....................................1 1.1.1 Alkali-Silica Reaction...........................1 1.1.2 ASR in Nuclear Power Plants......................1 1.2 State-of-the-Art..................................3 1.2.1 Reaction..................................3 1.2.2 Expansion.................................3 1.2.3 Material Property Deterioration.....................4 1.2.4 Modeling of ASR.............................5 1.3 Research Scope and Objectives.........................5 1.4 Dissertation Organization............................6 2 Monitoring of Alkali-Silica Reaction in Confined Reinforced Concrete8 2.1 Introduction and Research Significance.....................8 2.2 Materials and Methods..............................9 2.2.1 Specimen Design.............................9 2.2.2 Dimensions and Reinforcing Details................... 10 2.2.3 Steel Confinement Frame......................... 11 2.2.4 Concrete Formulation........................... 13 2.2.5 Casting and Curing Conditions..................... 14 2.2.6 Material Testing............................. 16 2.3 Monitoring and Sensing Techniques....................... 16 2.3.1 Embedded Strain Sensors........................ 17 vii 2.3.2 Long-Gauge Fiber-Optic Deformation Sensors............. 18 2.4 Results....................................... 19 2.4.1 Early-Age................................. 19 2.4.2 Monitoring Data Correlation....................... 19 2.4.3 ASR-Induced Expansion......................... 20 2.4.4 Material Properties............................ 23 2.5 Discussions.................................... 24 2.5.1 Visual Inspection............................. 24 2.5.2 Sensor Resilience............................. 27 2.5.3 Expansion Anisotropy.......................... 27 2.5.4 Effect of Confinement on Materials Properties............. 29 2.6 Conclusion..................................... 32 3 Effect of Alkali-Silica Reaction on the Fracture Properties of Confined Concrete 33 3.1 Introduction.................................... 33 3.2 Materials and Methods.............................. 35 3.2.1 Materials................................. 35 3.2.2 Specimens................................. 37 3.2.3 Testing................................... 40 3.3 Results....................................... 42 3.3.1 Data analysis............................... 42 3.3.2 Mechanical properties.......................... 44 3.3.3 Crack pattern............................... 48 3.3.4 Petrographic analysis........................... 49 3.4 Discussion..................................... 51 3.4.1 Uncertainties............................... 51 3.4.2 Effect of Alkali-Silica Reaction...................... 52 3.4.3 Effect of micro-cracking orientation................... 54 3.4.4 Consequences for numerical models................... 55 viii 3.5 Conclusion..................................... 56 4 Modeling of Alkali-Silica Reaction in Confined Reinforced Concrete 57 4.1 Introduction.................................... 57 4.2 Model Descriptions................................ 58 4.2.1 Reaction Advancement.......................... 59 4.2.2 Casting Direction Anisotropy...................... 60 4.2.3 Stress-Dependent Anisotropic Expansion................ 61 4.2.4 Material Property Evolution....................... 64 4.3 Model Validation................................. 66 4.3.1 Experiment Description......................... 66 4.3.2 Software and Meshing.........................
Recommended publications
  • Influence of Constituents' Properties on the Fracture Properties of High Strength Concrete
    Influence of Constituents' Properties on the Fracture Properties of High Strength Concrete by Jeffrey Ramzi Karam B.S.C.E., Washington University in St. Louis (1995) SUBMITTED TO THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE MASTER OF SCIENCE IN CIVIL AND ENVIRONMENTAL ENGINEERING at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY January, 1997 © 1997 Massachusetts Institute of Technology. All rights reserved. Signature of Author Depart/cht ofCivil and Environmental Engineering ;ember, 1996 Certified by 3iuyiik6ztrk -pervisor Certified by Joseph M. Sussman Chairman, Departmental Committee on Graduate Students C) 2 I Influence of Constituents' Properties on the Fracture Properties of High Strength Concrete by Jeffrey Ramzi Karam Submitted to the Department of Civil and Environmental Engineering January, 1997 in partial fulfillment of the requirements for the degree of Master of Science in Civil and Environmental Engineering Abstract The mechanical properties of concrete are known to be highly dependent on the characteristics of the interfacial region. Through the use of admixtures the properties of the interfacial region have been altered such that concretes of exceptional strength are now achievable. As with most engineering materials, the improved strength comes at the expense of ductility. The objective of this research was to ascertain how the properties of the basic constituents of concrete affect the ductility. An interface fracture energy methodology was used to study the influence of various internal parameters. The parameters investigated for normal and high strength mortars were: aggregate size, aggregate volume fraction, and aggregate type. Additionally, a novel code-like equation was developed in order to predict the fracture energy of a cementitious composite based on the material properties of the constituents.
    [Show full text]
  • Research PUBLICATION NO
    THE NORDIC CONCRETE FEDERATION 1/2014 PUBLICATION N0. 49 Nordic Concrete Research PUBLICATION NO. 49 1/2014 NORDIC CONCRETE RESEARCH EDITED BY THE NORDIC CONCRETE FEDERATION CONCRETE ASSOCIATIONS OF: DENMARK FINLAND ICELAND NORWAY SWEDEN PUBLISHER: NORSK BETONGFORENING POSTBOKS 2312, SOLLI N - 0201 OSLO NORWAY VODSKOV, JUNE 2014 Preface Nordic Concrete Research is since 1982 the leading scientific journal concerning concrete research in the five Nordic countries, e.g., Denmark, Finland, Iceland, Norway and Sweden. The content of Nordic Concrete Research reflects the major trends in the concrete research. Nordic Concrete Research is published by the Nordic Concrete Federation which also organizes the Nordic Concrete Research Symposia that have constituted a continuous series since 1953 in Stockholm. The Symposium circulates between the five countries and takes normally place every third year. The next symposium, no. XXII, will be held Reykjavik, Iceland 13 - 15 August 2014, in parallel with the ECO-CRETE conference. More information on the research symposium can be found on www.rheo.is. More than 110 papers will be presented. Since 1982, 414 papers have been published in the journal. Since 1994 the abstracts and from 1998 both the abstracts and the full papers can be found on the Nordic Concrete Federation’s homepage: www.nordicconcrete.net. The journal thus contributes to dissemination of Nordic concrete research, both within the Nordic countries and internationally. The abstracts and papers can be downloaded for free. The high quality of the papers in NCR are ensured by the group of reviewers presented on the last page. All papers are reviewed by three of these, chosen according to their expert knowledge.
    [Show full text]
  • Alkali-Silica Reactivity: an Overview of Research
    SHRP-C-342 Alkali-Silica Reactivity: An Overview of Research Richard Helmuth Construction Technology Laboratories, Inc. With contributions by: David Stark Construction Technology Laboratories, Inc. Sidney Diamond Purdue University Micheline Moranville-Regourd Ecole Normale Superieure de Cachan Strategic Highway Research Program National Research Council Washington, DC 1993 Publication No. SHRP-C-342 ISBN 0-30cL05602-0 Contract C-202 Product No. 2010 Program Manager: Don M. Harriott Project Maxtager: Inam Jawed Program AIea Secretary: Carina Hreib Copyeditor: Katharyn L. Bine Brosseau May 1993 key words: additives aggregate alkali-silica reaction cracking expansion portland cement concrete standards Strategic Highway Research Program 2101 Consti!ution Avenue N.W. Washington, DC 20418 (202) 334-3774 The publicat:Lon of this report does not necessarily indicate approval or endorsement by the National Academy of Sciences, the United States Government, or the American Association of State Highway and Transportation Officials or its member states of the findings, opinions, conclusions, or recommendations either inferred or specifically expressed herein. ©1993 National Academy of Sciences 1.5M/NAP/593 Acknowledgments The research described herein was supported by the Strategic Highway Research Program (SHRP). SHRP is a unit of the National Research Council that was authorized by section 128 of the Surface Transportation and Uniform Relocation Assistance Act of 1987. This document has been written as a product of Strategic Highway Research Program (SHRP) Contract SHRP-87-C-202, "Eliminating or Minimizing Alkali-Silica Reactivity." The prime contractor for this project is Construction Technology Laboratories, with Purdue University, and Ecole Normale Superieure de Cachan, as subcontractors. Fundamental studies were initiated in Task A.
    [Show full text]
  • The Effects of Alkali-Silica Reaction on the Mechanical Properties of Concretes with Three Different Types of Reactive Aggregate
    Technical Paper Okpin Na* DOI: 10.1002/suco.201400062 Yunping Xi Edward Ou Victor E. Saouma The effects of alkali-silica reaction on the mechanical properties of concretes with three different types of reactive aggregate This paper investigates the degradation of the mechanical prop- environment, the product of ASR is expansive, which is erties of concretes made with three types of aggregate affected detrimental to concrete structures [1, 2]. by alkali-silica reaction (ASR). Three standard testing methods ASR is a chemical reaction between the reactive – ASTM C289, JASS 5N T-603 and ASTM C1260 – were used to silica in the aggregate and the alkalis (Na2O and K2O) in identify the reactivity of ASR of the three aggregates selected. Portland cement. This chemical reaction produces alkali- The test results show that all three aggregates are potentially silica gel swelling with the absorption of the moisture deleterious. A new acceleration method based on JASS 5N T-603 from the surrounding cement paste. The expansive gel and ASTM C1260 was proposed for concrete specimens. In the can cause cracking in the concrete. Therefore, the neces- acceleration method, cylindrical concrete specimens were used, sary conditions for the expansive ASR gel to form in the additional alkali material was added to the concrete mixture and concrete are a sufficiently high alkali concentration in the the specimens were stored under conditions similar to ASTM cement, high moisture content in the concrete and reac- C1260. The preconditioned concrete specimens were then used tive aggregates. for evaluating the mechanical properties of the ASR-affected In order to control or prevent the occurrence of concrete in terms of strength and stiffness.
    [Show full text]
  • Reinforced Concrete Failure Mechanisms
    Reinforced Concrete Failure Mechanisms Best Practices in Dam and Levee Safety Risk Analyses Part E – Concrete Structures Chapter E-2 Last modified June 2017, Presented July 2019 Reinforced Concrete Failure Mechanisms OUTLINE: • Types of Structures • Spillway Piers • Navigation Lock Walls • Floodwalls • Slabs • Buttresses • Factors influencing strength and stability of reinforced concrete sections • National code requirements in the context of risk • Considerations when determining risk analysis failure probabilities based on structural analysis results • Typical event tree of the progression of failure 2 Reinforced Concrete Failure Mechanisms OBJECTIVES: • Get a broad overview of potential failure modes for different kinds of reinforced concrete structures • Understand the mechanisms that affect reinforced concrete failures • Understand how to construct an event tree to represent reinforced concrete failures • Understand how to estimate event probabilities and probability of breach Reinforced Concrete Failure Mechanisms SUMMARY OF KEY CONCEPTS: • Significant uncertainty for reinforced concrete failure mechanisms under seismic loading due to limited case histories • Concrete and reinforcement material properties can be determined with confidence for dams and floodwalls. • Type and duration of loading is important to understand – consider both static and earthquake loading • Ductile and Brittle Failure mechanisms • Seismic reinforcement details have changed dramatically over the past few decades; older concrete hydraulic structures may be
    [Show full text]
  • Guide to Concrete Repair Second Edition
    ON r in the West August 2015 Guide to Concrete Repair Second Edition Prepared by: Kurt F. von Fay, Civil Engineer Concrete, Geotechnical, and Structural Laboratory U.S. Department of the Interior Bureau of Reclamation Technical Service Center August 2015 Mission Statements The U.S. Department of the Interior protects America’s natural resources and heritage, honors our cultures and tribal communities, and supplies the energy to power our future. The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Acknowledgments Acknowledgment is due the original author of this guide, W. Glenn Smoak, for all his efforts to prepare the first edition. For this edition, many people were involved in conducting research and field work, which provided valuable information for this update, and their contributions and hard work are greatly appreciated. They include Kurt D. Mitchell, Richard Pepin, Gregg Day, Jim Bowen, Dr. Alexander Vaysburd, Dr. Benoit Bissonnette, Maxim Morency, Brandon Poos, Westin Joy, David (Warren) Starbuck, Dr. Matthew Klein, and John (Bret) Robertson. Dr. William F. Kepler obtained much of the funding to prepare this updated guide. Nancy Arthur worked extensively on reviewing and editing the guide specifications sections and was a great help making sure they said what I meant to say. Teri Manross deserves recognition for the numerous hours she put into reviewing, editing and formatting this Guide. The assistance of these and numerous others is gratefully acknowledged. Contents PART I: RECLAMATION'S METHODOLOGY FOR CONCRETE MAINTENANCE AND REPAIR Page A.
    [Show full text]
  • 1P-251 1 Using Metakaolin to Improve the Compressive Strength and The
    INVACO2: International Seminar, INNOVATION & VALORIZATION IN CIVIL ENGINEERING & CONSTRUCTION MATERIALS N° : 1P-251 F. Pacheco Torgal, University of Minho, Guimarães, Portugal Using metakaolin to improve the compressive strength and the durability of fly ash based concrete F. Pacheco Torgal*, Arman Shasavandi, Said Jalali University of Minho, Research Unit C-TAC, Sustainable Construction Group, Guimarães, Portugal Abstract Partial replacement of Portland cement by pozzolanic and cimentitious by-products or mineral additions that allow for carbon dioxide emission reductions is a major issue in the current climate change context. However, the use of low pozzolanic activity by-products like fly ash can cause a decrease relatively early in compressive strength. In this paper, the effect of metakaolin and fly ash on strength and concrete durability was investigated. The durability was assessed by different means of water absorption, oxygen permeability and concrete resistivity. Results show that partial replacement of cement by 30% fly ash leads to a decrease relevantly early in compressive strength, when compared to a reference mix of 100% Portland cement. Results also show that using 15% fly ash and 15% metakaolin replacement is responsible for minor strength loss but leads to outstanding durability improvement. Keywords: Concrete, cement, fly ash, metakaolin, strength, durability --------------------------------------- * [email protected] 1. INTRODUCTION Although Portland cement demand are decreasing in industrial nations, it is increasing dramatically in developing countries [1,2]. Cement demand projections shows that by the year 2050 it will reach 6000 million tons. Portland cement production leads to major CO 2 emissions, results from calcination of limestone (CaCO 3) and from combustion of fossil fuels, including the fuels required to generate the electricity power plant, accounting for almost 0.7 tons of CO 2 per ton.
    [Show full text]
  • Reinforcing Steel Cover When Reinforcing Steel Is Too Close to the Surface, It Begins Rusting and Expanding, Causing the Surrounding Concrete to Break Away
    BRANZ FACTS MID-RISE BUILDINGS #4 Exposed issues – reinforcing steel cover When reinforcing steel is too close to the surface, it begins rusting and expanding, causing the surrounding concrete to break away. STEEL REINFORCING BARS are used in concrete and concrete masonry to provide resistance to tensile loads and for concrete slabs and panels to help limit the risk of shrinkage cracking as the material cures. The steel relies on being sufficiently deep (called cover) within the concrete to protect it from moisture and corrosion. Where it is too close to the surface or the concrete is poor quality, it will begin rusting. As steel rusts, it expands, and this can result in concrete spalling – where pieces of concrete are broken away by the expanding steel. As the concrete breaks away or cracks, more moisture can get in and the deterioration will accelerate. The corrosion will also reduce the tensile strength of the steel as the steel deteriorates. How much cover? How much cover depends on: NZS 4229:2013 Concrete masonry buildings Tables 1 and 2 outline the requirements ● what the steel is embedded in – concrete not requiring specific engineering design: from NZS 3101.1&2:2006 Concrete structures or the grouted cells of concrete masonry ● For concrete masonry: standard. ● concrete or grout strength • 45 mm in exposure zone B For concrete masonry structures built to ● what the surface of the concrete is • 50 mm in exposure zone C NZS 4229:2013, the cover requirements from exposed to – soil or air • 60 mm in exposure zone D. the external face of uncoated masonry are: ● the corrosion or environmental zone ● For concrete: ● for exposure zone B – 45 mm with 17.5 ● the type of steel used – mild steel, • 75 mm for concrete placed directly on MPa grout galvanised, stainless steel or against the ground (can be reduced ● for exposure zone C – 50 mm with 20 ● intended life of the structure to 50 mm where there is a DPM MPa grout ● cement type.
    [Show full text]
  • Use of GGBS Concrete Mixes for Aggressive Infrastructural Applications
    UCD School of Architecture, Landscape and Civil Engineering Use of GGBS Concrete Mixes for Aggressive Infrastructural Applications ENTERPRISE IRELAND ECOCEM IRELAND INNOVATION PARTNERSHIP PROGRAMME PROJECT CODE IP/2008/0540 Executive summary The case for research into the deterioration associated with water and wastewater infrastructure has been clearly made. For example in the US alone, the Congressional Budget Office has estimated that annual investments of up to $20 billion and $21 billion is required to provide adequate infrastructure for drinking water and wastewater respectively. It is also estimated that the annual operation and maintenance costs associated with drinking water and wastewater infrastructure to be in excess of $31 billion and $25 billion respectively. In Ireland, the Government have previously announced that under the Water Services Investment Plan, €5.8 billion will be spent on this sector. As such, this represents a potentially lucrative market that exists both in Ireland and internationally. Research was conducted into the performance of concrete samples manufactured using a range of binder combinations which were subjected to aggressive environments selected to represent the most extreme of conditions they will encounter in service. These included attack from sulfates and from biogenic sulfuric acid. The test results found that: • In sodium sulfate expansion tests, traditional CEM I cements performed significantly poorer than all other binder combinations. Samples manufactured using the newer CEM II/A-L binders displayed increased resistance to sulfate attack but still failed to meet standard performance criteria. • The samples with the highest resistance to sulfate attack were those that contained 50% or 70% GGSB as a cement replacement level, which displayed very low expansion levels.
    [Show full text]
  • Reinforcing Footings Cover Do You Know the Minimum Bending Diameter for Reinforcing Steel and Its Cover
    MINIMUM DIMENSIONS AND COVER FOR CONCRETE FOOTINGS WITH REINFORCING STEEL BUILD RIGHT Reinforcing footings cover Do you know the minimum bending diameter for reinforcing steel and its cover BY TREVOR PRINGLE, requirements in concrete footings? This determines the minimum width you ANZIA, BRANZ PRINCIPAL need to make your concrete footings. WRITER SOME DIMENSIONS GIVEN in NZS 3604:2011 Bending diameters 5 × bar diameter ● the bar diameter Timber-framed buildings for reinforced concrete For foundation walls to concrete slabs, the ● the bar bend diameter. foundation footings may be insufficient. This horizontal bars are typically D12 and the is due to the bending diameters and minimum vertical starter bars are R10. Two D12s stacked concrete cover required for steel reinforcing in Minimum bending diameters for reinforcing For a foundation non-cantilevered wall using concrete footings. steel are given in Tables 8.1 and 8.2 of NZS two D12s horizontally with R10s vertically, the 3101.1&2:2006 Concrete structures standard. minimum width (see Figure 1) will be: Footing widths in NZS 3604:2011 According to Table 8.1, the bending diameter ● cover on each side: 2 × 75 mm = 150 mm NZS 3604:2011 section 7.5 sets out require- for 6–20 mm diameter deformed and plain ● vertical bar diameter: 2 × 10 mm = 20 mm ments for reinforced concrete foundation walls steel reinforcing bars must be at least five ● minimum bend diameter: 5 × 10 mm = and footings for concrete slabs on ground. times the bar diameter. Therefore, the 50 mm. Figures 7.13(B), 7.14(B and C) and 7.16 (B and C) reinforcing bar minimum bending diameter This gives a minimum foundation width of give minimum footing width dimensions.
    [Show full text]
  • Components of Concrete Desirable Properties of Concrete
    Components of Concrete Concrete is made up of two components, aggregates and paste. Aggregates are generally classified into two groups, fine and coarse, and occupy about 60 to 80 percent of the volume of concrete. The paste is composed of cement, water, and entrained air and ordinarily constitutes 20 to 40 percent of the total volume. In properly made concrete, the aggregate should consist of particles having adequate strength and weather resistance and should not contain materials having injurious effects. A well graded aggregate with low void content is desired for efficient use of paste. Each aggregate particle is completely coated with paste, and the space between the aggregate particles is completely filled with paste. The quality of the concrete is greatly dependent upon the quality of paste, which in turn, is dependent upon the ratio of water to cement content used, and the extent of curing. The cement and water combine chemically in a reaction, called hydration, which takes place very rapidly at first and then more and more slowly for a long period of time in favorable moisture conditions. More water is used in mixing concrete than is required for complete hydration of the cement. This is required to make the concrete plastic and more workable; however, as the paste is thinned with water, its quality is lowered, it has less strength, and it is less resistant to weather. For quality concrete, a proper proportion of water to cement is essential. Desirable Properties of Concrete Durability: Ability of hardened concrete to resist
    [Show full text]
  • Report No. REC-ERC-82-1. Fly Ash and Fly Ash Concrete
    May 1984 Engineering and Research Center U. S. Department of the Interior Bureau of Reclamation Bureau ot Reclamation TECHNICAL REPORT STANDARD TITLE PAGE Fly Ash and Fly Ash Concrete May 1984 6. PERFORMING ORGANIZATION CODE 7. AUTHOR(S)-. 8. PERFORMING ORGANIZATION Edwin R. Dunstan, Jr. REPORT NO. I REC-ERC-82-1 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. Bureau of Reclamation, Engineering and Research Center 11. CONTRACT OR GRANT NO. Denver, Colorado 80225 10781 V0195 13. TYPE OF REPORT AND PERIOD COVERED 2. SPONSORING AGENCY NAME AND ADDRESS Same 14. SPONSORING AGENCY CODE DlBR 15. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the Engineering and Research Center. Denver. Colorado. Editor: RNW 16. ABSTRACT Fly ash is a residue that results from the combustion of ground or powdered coal. Historically, fly ash has been referred to as a ponolan and is used to reduce the amount of portland cement in concrete. However, in many Western States fly ashes have cementitious properties as well as pozzolanic properties, and they are capable of producing good strengths without portland cement. This study discusses test results of several ashes according to ASTM: C 6 18. Standard Specification for Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete. Many changes are suggested. The replacement of 15 to 25 percent by mass of portland cement in concrete is examined. A few highly cementitious ashes were used to make concrete without portland cement. A new cement was developed that consists of over 90-percent fly ash and anhydrous CaS04.Test data for most concretes include: mix proportions, compressive strength, elasticity, drying shrinkage.
    [Show full text]