Haven Or Hazard: the Ecology and Future of the Salton Sea

Total Page:16

File Type:pdf, Size:1020Kb

Haven Or Hazard: the Ecology and Future of the Salton Sea Haven or Hazard: The Ecology and Future of the Salton Sea Michael J. Cohen Jason I. Morrison Edward P. Glenn A report of the PACIFIC INSTITUTE FOR STUDIES IN DEVELOPMENT, ENVIRONMENT, AND SECURITY February 1999 Prepared with the support of the U.S. Environmental Protection Agency, Region IX The Compton Foundation The Turner Foundation and the Oracle Corporate Giving Program Haven or Hazard: The Ecology and Future of the Salton Sea © Copyright 1999 by the Pacific Institute for Studies in Development, Environment, and Security All Rights Reserved Pacific Institute for Studies in Development, Environment, and Security 654 13th Street Preservation Park Oakland, California 94612 www.pacinst.org (510) 251-1600 (telephone) (510) 251-2203 (fax) Printed on 100-percent recycled paper About the Pacific Institute The Pacific Institute for Studies in Development, Environment, and Security is an inde- pendent, non-profit center created in 1987 to do research and policy analysis in the areas of environment, sustainable development, and international security. Underlying all of the Insti- tute’s work is the recognition that the pressing problems of environmental degradation, region- al and global poverty, and political tension and conflict are fundamentally interrelated, and that long-term solutions must consider these problems in an interdisciplinary manner. The Institute’s mission is to conduct and distribute meaningful and usable research and policy sug- gestions on the interactions among these issues. The organization seeks to produce quality, impartial research and to make sure it is accessible not only to public and private-sector deci- sion-makers, but also to community groups and the public at large. The ultimate objective of the Pacific Institute’s work is to contribute to equitable and sound development, the reversal of environmental degradation, and regional and international peace and security. About the Authors Michael Cohen is a Research Associate of the Pacific Institute. He holds a Master’s degree in Geography, with a concentration in Resources and Environmental Quality, from San Diego State University. His graduate studies focused on the impacts of institutions on the environ- ment, especially water use in the West. He received a B.A. in Government from Cornell Uni- versity, and served as a Peace Corps Volunteer in Guatemala, prior to working as a Legislative Assistant on Capitol Hill. His current research focuses on the sustainable management of freshwater resources and water planning in the southwestern U.S. and the Colorado River bor- der region. Jason Morrison is a Senior Associate of the Pacific Institute. He holds a Master’s Degree from Boston University’s Center for Energy and Environmental Studies and a B.A. in Philosophy from the University of California, San Diego. In 1994, Mr. Morrison was a fellow with the Amer- icans and World Affairs Fellowship Program in Berkeley, California. Mr. Morrison has published widely in scholarly and popular publications, and is the lead author of a United Nations-funded report entitled The Sustainable Use of Water in the Lower Colorado River Basin. In addition to working on issues relating to western water policy, he heads the Pacific Institute’s Economic Globalization and the Environment Program, where he is currently studying the public policy implications of the international environmental management standards − ISO 14000. Professor Edward P. Glenn is an environmental biologist in the Department of Soil, Water and Environmental Science at the University of Arizona. Since 1991, he has worked with Mexican and other United States scientists on studies of the ecology of the Colorado River delta and upper Gulf of California marine zone. The focus of their research has been to define the water needs of the remaining riparian and wetland habitats of the delta region and develop restora- tion strategies for the delta, using waste flows of water from the United States and Mexico. Their research has been published in Conservation Biology, Ecological Engineering, Aquatic Botany, Southwestern Naturalist and other scientific journals. Special thanks to Dale Pontius, who worked as a consultant on the project. Mr. Pontius is an attorney and consultant specializing in western water, natural resources, and endangered species law and policy. Most recently, he completed a report on the critical issues in the Colorado River iii Haven or Hazard: The Ecology and Future of the Salton Sea basin for the Western Water Policy Review Advisory Commission. From 1992 to 1995, he was Vice President for Conservation Programs and Southwest Director for American Rivers, a national con- servation organization. He served as Executive Assistant to Governor Bruce Babbitt of Arizona from 1978 to 1980, where he was involved in the development and enactment of the Arizona Groundwater Management Act. Mr. Pontius received his law degree from the University of Ari- zona and his B.A. and M.A. in Political Science from Indiana University. Acknowledgments This report of the Pacific Institute for Studies in Development, Environment, and Security is the result of a yearlong effort on the part of many people. Funding for this report was provided by the U.S. Environmental Protection Agency, Region IX, the Compton and Turner Founda- tions, and the Oracle Corporate Giving Program. We gratefully acknowledge their support. Valuable comments on an earlier draft were provided through formal reviews by Daniel Ander- son, Fred Cagle, Eric Connally, David Czamanske, William deBuys, Milton Friend, Tom Kirk, Tsui Meidou, Karen O’Haire, and Jim Setmire. Any errors are our own. Also, special thanks to Milt Friend, Jim Setmire, and Ken Sturm for the use of their photographs. We also would like to thank the following people for their wide range of advice, criticisms, guid- ance, and help: James Abbott, Tina Anderholt, Jose Angel, Sherry Barrett, Mary Belardo, Patricia Brenner, Summer Bundy, Wil Burns, Caitha Calvello, Les Canterbury, Beth Chalecki, Bart Christensen, Brian Cohen, Joan Dainer, Colleen Dwyer, Kevin Fitzsimmons, Daniel Frink, Melinda Gaddis, Peter Gleick, Mary Henry, David Hogan, Stuart Hurlbert, Chris Igbinedion, George Kourous, Patti Kroen, Wendy Laird-Benner, Libby Lucas, Cheryl Mason, Eugenia McNaughton, Doug Mende, Sandra Menke, Lorelei Muenster, Nadine Mupas, Bud Robbins, David Shaari, William Steele, Ken Sturm, Merlin Tostrud, Don Treasure, Carlos Valdes, Linda Vida-Sunnen, Peter Vin- cent, and Arlene Wong. Graphic design: Pope Graphic Arts Center, Berkeley, California Printer and bindery: Alonzo Printing Co., Inc., Hayward, CA, using recycled paper and soy based inks. Cover image: The Salton Basin, showing the Coachella, Imperial, and Mexicali valleys. The city of Mexicali is visible as a gray-blue area in the lower central portion of the image, with a distinct upper boundary marking the U.S.-Mexico border. In this false color composite image, green vegetation appears red. The North American Landscape Characterization (NALC) image was obtained from the Earth Resources Observa- tion Systems (EROS) Data Center Distributed Active Archive Center (EDC DAAC), located in Sioux Falls, South Dakota. This Landsat 4 Multispectral Scanner (MSS) Satellite image was acquired on June 30, 1992 (Path 39 Row 37). The NALC MSS data were resampled to 60-meter pixels in a UTM projection. EDC DAAC' s Home Page provides detailed technical and ordering information about each data set distributed. The URL address is: http://edcwww.cr.usgs.gov/landdaac Special thanks to Aljean Klaassen for helping to obtain this image. iv Executive Overview Haven or Hazard: The Ecology and Future of the Salton Sea Executive Overview he Salton Sea, the largest inland body of water in the state of California, lies 35 miles north of the U.S.-Mexico border in one of the most arid regions in North America. With Ta surface elevation approximately 227 feet below that of the ocean, the Salton Sea is a study in contrasts: it is an agricultural drainage repository that provides vital habitat for more than 380 species of birds, a lake twenty-five percent saltier than the ocean yet teeming with fish, a productive ecosystem marred by frequent fish and bird die-offs. These contrasts reflect the variety of agricultural, ecological, and recreational values provided by the Salton Sea and are emblematic of the challenges faced by those attempting to preserve and enhance them. The objective of this study is to assess and offer guidance on the complex challenges con- fronting the Salton Sea and the current efforts to restore it. From a public interest perspective, we evaluate the federal/state strategy for restoring the Salton Sea and propose an alternative, long-term framework for preserving and enhancing the regional ecosystem. The Salton Sea can only be understood in the context of its physical attributes and the human activities in its watershed. The development of large-scale irrigation projects in the Imperial and Coachella valleys has changed the face of the Salton basin, transforming a desert into a productive agricultural region. Today, approximately 1.35 million acre-feet 1(maf) of water enters the Sea annually, more than 75 percent of which is U.S. agricultural drainage. The quantity of this agricultural drainage sustains the Sea, yet the quality of drainage is responsible for many of the Sea’s problems. The Salton Sea is a terminal lake - the only outflow for its waters is through evaporation. As water evaporates, salts, selenium, and other contaminants are concentrated in the Sea and its sediments. Since 1992, hundreds of thousands of birds have died at the Salton Sea. In the first four months of 1998 alone, 17,000 birds at the Sea, representing 70 species, died from a variety of diseases. Deteriorating ecological conditions have generated concern about the continued via- bility of the Sea as a stopover for migratory birds on the Pacific Flyway. Massive fish die-offs, linked to eutrophic conditions at the Sea, are also a frequent occurrence. The Salton Sea is also becoming increasingly saline, jeopardizing the future existence of fish in the Sea.
Recommended publications
  • Colorado River Delta in Mexico
    Ongoing Restoration Efforts in the Colorado River Delta in Mexico Dr. Francisco Zamora-Arroyo Outline ¾ Conservation Priorities Areas ¾ Restoration Efforts: 9Colorado River 9Hardy River 9Other wetlands ¾ Conclusions CONSERVATION PRIORITIES IN THE - COLORADO RIVER D ELTA MEXICO AND TilE UNITED STATES these and many more organizations and funders are working in several ongoing efforts and initiatives to restore the Delta TCF CONAGUA Secretaria de Turismo David and Lucile Packard Foundation NWF SAGARPA UABC Club de Leones Cucapa Water Education Foundation DHS Rotary Club Results: Map of the Possible A network of 15 Conservation Priority Areas, totaling 850,000 acres that, with proper management, will ensure the long-term persistence of the Delta biodiversity Ongoing restoration efforts in Mexico Restoration = Riparian + Off-channel + Estuarine CATJFORNTA BAJA CALIFORNIA Restoration areas are those needing action to re-establish ecological Protection areas are thosA currAntly in good condition, as they provide critical habitat for spAciAs of Estimated water 2 - 4 m3/s needs 30 - 40 m3/s – 3 meses, 4 años < 2 ppm 3 1.2 - 2 m3/s 4 m /s < 3.5 ppm < 3 ppm 40 - 70 m3/s, 4 meses < 4 ppm Colorado River Corridor Overall goal: Develop a 80,000-acre functional ecological area Restoration Demonstration Project Sitios Demostrativos Poblados Ferrocarril D Sitios Carreteras Laguna Grande • Planted 2,400 native trees in 23 acres in 2006-07: – 1,300 mesquite – 1,100 CW and willow trees Fotos laguna grande Fotos Laguna grnade ESTA ZONA ES PARA QUE .t:t.. QIS Fr\UTE' CUIDALA NO INGRESES E!N VEHICULOS MOTOI\llJ.no, NO TIRES SA.SURA EVITA LA TALA DE AR.BOLES No PROVOQUES INCI:'NDIOS Developed a community vision for restoration Reached over 1,500 local community members and 60 government officials, 20 percent of which participated in restoration actions.
    [Show full text]
  • A Groundwater Model to Assess Water Resource Impacts at the Imperial East Solar Energy Zone
    This page intentionally left blank. CONTENTS Notation........................................................................................................................................... v Acknowledgments......................................................................................................................... vii 1 Introduction ................................................................................................................................ 1 1.1 The Bureau of Land Management’s Solar Energy Program ............................................... 2 1.2 The Imperial East Solar Energy Zone ................................................................................. 2 2 Hydrogeologic Setting ................................................................................................................ 5 2.1 Landscape and Aquifer Characteristics .............................................................................. 5 2.2 Water Budget ...................................................................................................................... 5 3 Model Development ................................................................................................................... 9 3.1 Modification of the Tompson et al. (2008) Model ............................................................. 9 3.2 Hydrogeologic Considerations .......................................................................................... 10 3.2.1 Specification of Hydraulic Conductivity .............................................................
    [Show full text]
  • Information Database and Local Outreach Program for the Restoration of the Hardy River Wetlands, Lower Colorado River Delta, Baja California and Sonora, Mexico
    Final Report to: North American Wetland Conservation Council Instituto Nacional de Ecología - SEMARNAP ITESM Campus Guaymas University of Arizona Environmental Defense Fund Pronatura Sonora Oregon State University Information Database and Local Outreach Program for the Restoration of the Hardy River Wetlands, Lower Colorado River Delta, Baja California and Sonora, Mexico Prepared by: Carlos Valdés-Casillas, Osvel Hinojosa-Huerta, Manuel Muñoz-Viveros, Francisco Zamora-Arroyo, Yamilett Carrillo-Guerrero, Selene Delgado-García, and María López-Camacho. Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM) - Campus Guaymas Centro de Conservación y Aprovechamiento de los Recursos Naturales (CECARENA) Unidad de Información Biogeográfica (UIB) Edward P. Glenn, Jaqueline García, James Riley, and Donald Baumgartner University of Arizona Environmental Research Laboratory Mark Briggs The Sonoran Institute Christopher T. Lee California State University-Dominguez Hills Department of Earth Sciences Elene Chavarría-Correa Pronatura Sonora Chelsea Congdom and Daniel Luecke Environmental Defense Fund August 1998 Acknowledgements The Information Database and Local Outreach Program for the Restoration of the Hardy River Wetlands in the Lower Colorado River Delta, Baja California and Sonora, Mexico was accomplished under the generous funding of the North America Wetlands Conservation Council, ITESM Campus Guaymas, University of Arizona, Pronatura Sonora, Environmental Defense Fund, and Oregon State University. Support and assistance provided by many individuals within federal and state agencies, local governments, and non-governmental organizations on both sides of the border were highly determinant in accomplishing this first approach of restoring these wetlands. The federal agencies that supported the project are: · Secretaría del Medio Ambiente, Recursos Naturales y Pesca, SEMARNAP. (Mexican Ministry of Environment, Natural Resources, and Fisheries).
    [Show full text]
  • Binational Prevention and Emergency Response Plan Between Imperial
    BINATIONAL PREVENTION AND EMERGENCY RESPONSE PLAN BETWEEN IMPERIAL COUNTY, CALIFORNIA, AND THE CITY OF MEXICALI, BAJA CALIFORNIA May 24, 2005 IMPERIAL COUNTY – MEXICALI BINATIONAL PREVENTION AND EMERGENCY RESPONSE PLAN RECORD OF REVISIONS Date Section Page number Edited by TABLE OF CONTENTS SECTION PAGE ACKNOWLEDGMENTS ...............................................................................................................v FOREWORD ................................................................................................................................. ix MEMORANDUM OF UNDERSTANDING..................................................................................1 PARTICIPATING AGENCIES.......................................................................................................5 INTRODUCTION .........................................................................................................................11 1.0 MEXICALI/IMPERIAL COUNTY BORDER REGION.................................................13 1.1 General Aspects of the Region ................................................................................... 13 1.1.1 Historical and Cultural Background ...........................................................13 1.1.2 Geographic Location...................................................................................15 1.1.3 Climate........................................................................................................15 1.1.4 Population ...................................................................................................15
    [Show full text]
  • Community-Based Restoration of Desert Wetlands: the Case of the Colorado River Delta1
    Community-Based Restoration of Desert Wetlands: The Case of the Colorado River Delta1 Osvel Hinojosa-Huerta,2 Mark Briggs,3 Yamilett Carrillo-Guerrero,2 Edward P. Glenn,4 Miriam Lara-Flores,5 and Martha Román-Rodríguez6 ________________________________________ Abstract Wetland areas have been drastically reduced through (Rosenberg et al. 1991, Davis and Ogden 1994, the Pacific Flyway and the Sonoran Desert, with severe DeGraff and Rappole 1995). Causes for these declines consequences for avian populations. In the Colorado are related to the dramatic rate at which wetlands have River delta, wetlands have been reduced by 80 percent been destroyed in North America (Dahl 1990, National due to water management practices in the Colorado Research Council 1995), diminishing the area and River basin. However, excess flows and agricultural quality of breeding grounds, wintering areas, and mi- drainage water has restored some areas, providing gratory stopover habitat (Weller 1999). In western habitat for several sensitive species such as the Yuma North America, the patterns are shocking: wetland loss Clapper Rail (Rallus longirostris yumanensis). This has in the California Central Valley is estimated at 95 sparked community interest to explore different scenar- percent (Zedler 1988), and loss along the U.S. Pacific ios for the restoration of bird habitat. Three community- coast has been 50 percent (Helmers 1992). based restoration projects are currently underway in the delta, focusing on the restoration of marshlands, This trend has been particularly critical in the Sonoran riparian stands, and mesquite bosque. The goal of these Desert, where the struggle for water between human projects is to reestablish the ecological functions of the uses and the environment has dried up most of the Colorado River delta, through an efficient use of riparian forests and wetlands (Brown 1985).
    [Show full text]
  • SAB 027 2004 P52-60 Waterbird Communities and Associated
    Studies in Avian Biology No. 27:52-60, 2004. WATERBIRD COMMUNITIES AND ASSOCIATED WETLANDS OF THE COLORADO RIVER DELTA, MEXICO 0SVEL HINOJOSA-HUERTA, STEPHEN DESTEFANO, Y AMILETT CARRILLO-GUERRERO, WILLIAM W. SHAW, AND CARLOS VALDES-CASILLAS Abstract. Despite extensive losses of wetlands caused by water diversions upstream, the Colorado River Delta in northwestern Mexico remains an important wetland system in the Sonoran Desert. The purpose of our study was to describe waterbird communities across a variety of wetland habitat types and zones that exist in the Delta. We measured species richness and abundance of waterbirds from September 1999 to August 2000. We observed a total of 11,918 individuals of 71 species at sites within seven wetland areas. The waterbird communitie differed with respect to guild composition and species abundances among the wetland zones. Wetlands along the eastern portion of the Delta (Cienega and Indio). which are upported by agricultural drains and managed under conservation initiatives, exhibited the highest species richness in our ummer and winter censuses, and highest abundance in summer. Shorebirds were the dominant guild in the summer period, while waterfowl were dominant during winter. Breeding marshbirds were also abundant, with the Yuma Clapper Rail (Rallus longirostris yumanensis) being most notable. Wetlands along the western Delta (Hardy and Cucapa) were al. o supported by agricultural drains, but were not managed specifically for wildlife. The Double-crested Cormorant (Phalacrocora:x auritus) and American Coot (Fulica americana) were dominant during winter, while long-legged wader (Ardeidae) were dominant in ummer. The com­ po ition of waterbird communities along the mainstem of the Colorado River was similar to that of wetlands along the western portion of the Delta.
    [Show full text]
  • Silt in the Colorado River and Its Relation to Irrigation
    2 8 2 5 1.0 ~ 11~12 8 111/12.5 1.0 ~ 1111/ . 1111i . w lili Iii~ lili I Iii LIO I.i£. LIO W w w IOi loa ~ :: ~ ~ 1.1 "'''M'" ~ 1.1 ..WL.:. ... -- 111111.8 111111.8 111111.25 111111.4 111111.6 111111.25 I1II1 1.4 111111.6 MICROCOPY RESOLUTION TEST CHART MICROCOPY RESOLUTION TEST CHART NATION~L BUREAU or SlANDARO,·1963·A NATIONAL BUREAU OF SlANOAROS-1963-A ==~~==~~==~~~n~~-~======~ TECHNICAL BULLETI~ No. 67 -.. \!>~ =v February, 1928 UNITED STATES DEPARTMENT OF AGRICULTURE WASHINGTON, D. C. SILT IN THE COLORADO RIVER AND ITS RELATION TO IRRIGATION By SAMUEL Pon-rulJlt, Senior Irrigation Engineer, and HARRY P. BLANEY, Associate Irrigation Engineer, D£vision of Agricultural Engineering, Bureau of Public Roads CONTENTS .Pnl;o Page Tntroductlon ________ "" __ _______ ____ ______ _____ I 'rho silt problom of tho lower basln____________ 29 Summnry nnd goneral conclusions_____________ 2 sm Investigations in Imporlal Valley, _________ 28 Colorado Hlver .13l1sln_________________________ 5 'rrnnsE0rtatlon of silt_________________________ 42 Churnctcr of sllt_______________________________ 8 Silt-snmilling equlnlIlcnt._____________________ 11 Silt In trlhlltnry strcnms_______________________ l:l ~~~!~~Fx~~~~~s_:::=========:=======:=======Literature cited _______________________________ g~92 Silt In the lower Colorado Rlver _______________ 22 Other publications relating to the silt prohlem_ 94 INTRODUCTION While silt is the creator of much <>J the agricultural wealth of the lower Oolomdo I~iver Basin) it is also the greatest menace to irrign­ tion development. and water control. When irrigation water con­ tnining silt is appliod to fields, the main portion of the silt is deposited near the upper end. From time to time the farmer is compelled to move the depositod silt to lower portions of tho field in order to keep tho land surfnce below the lovol of the irrigation ditch.
    [Show full text]
  • Noteworthy Observations from Northeastern Baja California
    NOTEWORTHY OBSERVATIONS FROM NORTHEASTERN BAJA CALIFORNIA MICHAEL A. PATTEN, P.O. Box 8561, Riverside,California 92515-8561 KURT RADAMAKER, 945 S. Idaho #132, La Habra, California90631 THOMAS E. WURSTER, 278 Santa Anita Ct., Sierra Madre, California 91024- 2648 Despiteincreased observer awareness of the SaltonSea and the United Statesportion of the lower ColoradoRiver, coverage of adjacentareas in extremenortheastern Baja Californiaremains low and our knowledgeof the avifaunaof that region remainsslight. The MexicaliValley containsa substantialamount of agriculturalhabitat resembling that found just north of the internationalborder in the Imperial Valley. Becauseof the habitat similarity,the statusof manyspecies in northeasternBaja Californiashould be very similarto that known for the Salton Sea or the lower Colorado River.Here we reporton a numberof species,in hopesthat we mayhelp fill somegaps in knowledgeof the Baja Californiaavifauna. SPECIES ACCOUNTS White-facedIbis (Plegadis chihi). Wilbur (1987) listedthis species as "apparentlya rare transient,only a few havingbeen reported in recent years. There are older recordsfrom the Rio Colorado." On various occasionsbetween April 1987 and January 1992, we observedhundreds (e.g., 300-400 on 29 December 1991) feedingin the agriculturalareas near Mexicali.This speciesis commonyear round (althoughnumbers are smallerin spring and summer)in the Imperial Valley and aroundthe southend of the SaltonSea (Garrettand Dunn 1981, Pattenpers. obs.). It is also an uncommontransient and rare winter visitoralong the lower Colorado River(Rosenberg et al. 1991). The White-facedIbis nested irregularly in the Imperial Valleyuntil 1978 (Ryder 1967, Garrett and Dunn 1981) and was recentlyfound nestingthere again at Finney Lake, where "at least 100 pairs" bred in 1991 (Am. Birds45:1160) and 370 pairs bred in 1992 (WilliamR.
    [Show full text]
  • Riparian Research and Management: Past, Present, Future: Volume 1
    United States Department of Agriculture Riparian Research and Management: Past, Present, Future: Volume 1 Forest Rocky Mountain General Technical Report Service Research Station RMRS-GTR-377 November 2018 Johnson, R. Roy; Carothers, Steven W.; Finch, Deborah M.; Kingsley, Kenneth J.; Stanley, John T., tech. eds. 2018. Riparian research and management: Past, present, future: Volume 1. Gen. Tech. Rep. RMRS-GTR-377. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 226 p. doi: https://doi.org/10.2737/RMRS-GTR-377 Abstract Fifty years ago, riparian habitats were not recognized for their extensive and critical contributions to wildlife and the ecosystem function of watersheds. This changed as riparian values were identified and documented, and the science of riparian ecology developed steadily. Papers in this volume range from the more mesic northwestern United States to the arid Southwest and Mexico. More than two dozen authors—most with decades of experience—review the origins of riparian science in the western United States, document what is currently known about riparian ecosystems, and project future needs. Topics are widespread and include: interactions with fire, climate change, and declining water; impacts from exotic species; unintended consequences of biological control; the role of small mammals; watershed response to beavers; watershed and riparian changes; changes below large dams; water birds of the Colorado River Delta; and terrestrial vertebrates of mesquite bosques. Appendices and references chronicle the field’s literature, authors, “riparian pioneers,” and conferences. Keywords: riparian, ecosystem, ecology, riparian processes, restoration, aquatic, arid, semi-arid, upland, freshwater, groundwater, hydrology Front cover: A backwater with beaver dam along the Gunnison River at Neversink, Curecanti National Recreation Area, Gunnison County, Colorado (photo by Kenneth J.
    [Show full text]
  • Status of Wetlands Supported by Agricultural Drainage Water in the Colorado River Delta, Mexico Edward P
    Status of Wetlands Supported by Agricultural Drainage Water in the Colorado River Delta, Mexico Edward P. Glenn, Jaqueline Garcia, and Rene Tanner Environmental Research Laboratory, 2601 East Airport Drive, Tucson, AZ 85706 Chelsea Congdon and Dan Luecke Environmental Defense Fund, 1405 Arapahoe Avenue, Boulder, CO 80302 The delta of the Colorado River historically covered 780,000 ha in Eddleman, 1989). The indigenous Cocopa people still use the riparian Mexico and the United States, encompassing most of what are now the zone of the delta for subsistence (Richardson and Carrier, 1992; Imperial, Mexicali, Yuma, and San Luis irrigation districts, as well as Williams, 1983), and the wetlands and reforested areas provide in- two below-sea-level depressions, the Salton Sea and Laguna Salada comes to ejido residents who gather fuelwood and serve as guides to (Sykes, 1937) (Fig. 1). Before the 20th century, the lower delta was a hunters, fishermen, and ecotourists (Payne et al., 1992). In recognition vast network of riparian and wetland ecosystems in the most arid part of their importance, portions of the delta wetlands were incorporated of the Sonoran Desert (Leopold, 1949; McDougal, 1904; Sykes, into La Biosfera del Alto Gulfo de California y el Delta del Rio 1937). Although most of the former wetlands and gallery forests have Colorado, an international biosphere reserve recognized by the United been converted to agricultural or urban use, there are still large wetland Nations international biosphere program and declared by President and riparian areas of conservation value in the lower delta in Mexico Salinas of Mexico in 1993 (Diario Oficial, 1993; Morales-Abril, (Glenn et al., 1992, 1996; Morrison et al., 1996; Payne et al., 1992) 1994).
    [Show full text]
  • Preliminary Report on Seismological and Geotechnical Engineering Aspects of the April 4 2010 Mw
    1.0 Introduction 1.1 Introduction The M7.2 mainshock of the Sierra El Mayor ­ Cucapah earthquake occurred at 3:40 pm local time on April 4, 2010, which was Easter Sunday. The mainshock was followed by a sequence of aftershocks that were felt during the reconnaissance effort and continue to the present. The mainshock had an estimated focal depth of 10 km (USGS, 2010) and struck in the El Mayor and Cucapah mountains to the southwest of Mexicali, Baja California, Mexico. The epicenter was located at 32.237°N, 115.083°W (USGS, 2010). The earthquake was felt throughout northern Baja California and southern California, and caused damage in a region from the Sea of Cortez in the south to the Salton Sea in the north. This earthquake is the largest to strike this area since 1892. The USGS seismic intensity was IX near the fault rupture, and VIII in Mexicali, which is the nearest densely­ populated area. The largest peak ground acceleration of 0.58g was recorded at McCabe School about 5 km southwest of El Centro, CA. The earthquake ruptured the surface for as much as 140 km from the northern tip of the Sea of Cortez northwestward to nearly the international border, with strike­slip, normal, and oblique displacements observed. The earthquake resulted in two fatalities and hundreds of injuries. Damage occurred to irrigation systems, water treatment facilities, buildings, bridges, earth dams, and roadways. Liquefaction and ground subsidence was widespread in the Mexicali Valley, and left wheat and hay fields submerged under water and destroyed many canals that irrigate fields in the predominantly agricultural region.
    [Show full text]
  • Groundwater Origin and Dynamics on the Eastern Flank of the Colorado River Delta, Mexico
    hydrology Article Groundwater Origin and Dynamics on the Eastern Flank of the Colorado River Delta, Mexico Hector A. Zamora 1,*, Christopher J. Eastoe 1,† , Jennifer C. McIntosh 2 and Karl W. Flessa 1 1 Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA; [email protected] (C.J.E.); kfl[email protected] (K.W.F.) 2 Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, USA; [email protected] * Correspondence: [email protected] † This author is retired. Abstract: Isotope data and major ion chemistry were used to identify aquifer recharge mechanisms and geochemical evolution of groundwaters along the US–Mexico border. Local recharge originates as precipitation and occurs during winter through preferential infiltration pathways along the base of the Gila Range. This groundwater is dominated by Na–Cl of meteoric origin and is highly concentrated due to the dissolution of soluble salts accumulated in the near-surface. The hydrochemical evolution of waters in the irrigated floodplain is controlled by Ca–Mg–Cl/Na–Cl-type Colorado River water. However, salinity is increased through evapotranspiration, precipitation of calcite, dissolution of accumulated soil salts, de-dolomitization, and exchange of aqueous Ca2+ for adsorbed Na+. The Na–Cl-dominated local recharge flows southwest from the Gila Range and mixes with the Ca–Mg– 3 Cl/Na–Cl-dominated floodplain waters beneath the Yuma and San Luis Mesas. Low H suggests that recharge within the Yuma and San Luis Mesas occurred at least before the 1950s, and 14C data 14 Citation: Zamora, H.A.; Eastoe, C.J.; are consistent with bulk residence times up to 11,500 uncorrected C years before present.
    [Show full text]