Noteworthy Observations from Northeastern Baja California

Total Page:16

File Type:pdf, Size:1020Kb

Noteworthy Observations from Northeastern Baja California NOTEWORTHY OBSERVATIONS FROM NORTHEASTERN BAJA CALIFORNIA MICHAEL A. PATTEN, P.O. Box 8561, Riverside,California 92515-8561 KURT RADAMAKER, 945 S. Idaho #132, La Habra, California90631 THOMAS E. WURSTER, 278 Santa Anita Ct., Sierra Madre, California 91024- 2648 Despiteincreased observer awareness of the SaltonSea and the United Statesportion of the lower ColoradoRiver, coverage of adjacentareas in extremenortheastern Baja Californiaremains low and our knowledgeof the avifaunaof that region remainsslight. The MexicaliValley containsa substantialamount of agriculturalhabitat resembling that found just north of the internationalborder in the Imperial Valley. Becauseof the habitat similarity,the statusof manyspecies in northeasternBaja Californiashould be very similarto that known for the Salton Sea or the lower Colorado River.Here we reporton a numberof species,in hopesthat we mayhelp fill somegaps in knowledgeof the Baja Californiaavifauna. SPECIES ACCOUNTS White-facedIbis (Plegadis chihi). Wilbur (1987) listedthis species as "apparentlya rare transient,only a few havingbeen reported in recent years. There are older recordsfrom the Rio Colorado." On various occasionsbetween April 1987 and January 1992, we observedhundreds (e.g., 300-400 on 29 December 1991) feedingin the agriculturalareas near Mexicali.This speciesis commonyear round (althoughnumbers are smallerin spring and summer)in the Imperial Valley and aroundthe southend of the SaltonSea (Garrettand Dunn 1981, Pattenpers. obs.). It is also an uncommontransient and rare winter visitoralong the lower Colorado River(Rosenberg et al. 1991). The White-facedIbis nested irregularly in the Imperial Valleyuntil 1978 (Ryder 1967, Garrett and Dunn 1981) and was recentlyfound nestingthere again at Finney Lake, where "at least 100 pairs" bred in 1991 (Am. Birds45:1160) and 370 pairs bred in 1992 (WilliamR. Radke, fide G. McCaskie). Thus, the White-facedIbis may be increasingin this area, and nestingshould be watchedfor in the MexicaliValley. GreaterWhite-fronted Goose (Anser a lbifrons).Wilbur (1987) calledthis species a "rarewinter visitor," with "smallnumbers likely to showup at any wetlandlocation." Twenty observedby Wursteron 14 January 1990 alongthe Rio Coloradojust south of Algodoneswere likely early springtransients, as the speciesbegins to move throughthe SaltonSea and adjacentareas at thistime. Up to 400 havebeen found alongthe Rio Coloradoin January(Saunders and Saunders1981), furtherindicating a regularmovement through this area. The Saunders'sighting, however, took place in 1964, when the specieswas more common in the West. The recent maximum in the ImperialValley is 41 near Westmorlandon 26 January1992 (Pattenpers. obs.). Hooded Merganser(Lophodytes cucullatus). We observedtwo adult males and threefemales or immaturesfeeding and swimming in the marshadjacent to Campo Mosquedoon 29 December1991; a singlefemale was seen here on 11 January 1992. The white hoods surroundedby a black stripe on the adult males were noticeableat a greatdistance, as werethe warm orange-brownhoods of the others. The three previousrecords for Baja Californiaare of a female collectedby John Xantus at San Jos&del Cabo in February 1860 (U.S. National Museum 31940), one Western Birds 24:89-93, 1993 89 OBSERVATIONS FROM BAJA CALIFORNIA or more seenby Lyman Beldingat La Paz on an unknowndate (Belding1883), and two observedby Rich Stallcupat the mouth of Rio San Telmo on 24 January 1982 (Wilbur1987). HoodedMergansers are scarceanywhere in Mexico(Sada 1989) but are rare and nearlyannual winter visitorsto the SaltonSea and the ImperialValley (Pattenunpubl. data), so futurerecords should be expectedin the MexicaliValley. Black-shoulderedKite (Elanus caeruleus).Wurster observed two near Mexicalion 28 February1987 and singlebirds near Algodoneson 14 January 1989 and 14 January1990. We observedsix individualsbetween Ciudad Morelos and Victoriaon 29 December1991, includingwhat appeared to be two matedpairs (suitable nesting trees existaround many of the rancheriasin the MexicaliValley). There is also a somewhatdoubtful report of two along the Rio Hardy in 1905 (Stoneand Rhoads 1905). This specieswas not listedby Wilbur (1987) as occurringaway from the Pacificcoast in Baja California,although it is rare but regularat the SaltonSea and in the ImperialValley and probablynested at Brawleyin 1975 (Am. Birds 29:1030). The few noted on each of our visitssuggest a smallpopulation near Mexicali. Bald Eagle (Haliaeetus leucocephalus).Wilbur (1987) noted only two recent recordsaway from MagdalenaBay, soan immatureobserved along the Rio Hardyby Wurster on 14 January 1989 is of interest.S. N. Rhoads,an unreliableobserver, reported seeing singlebirds twice along the upper Rio Hardy in February 1905 (Stone and Rhoads 1905). One or two are found at the Salton Sea each winter (Patten unpubl. data), suggestingthe speciesmay occur regularlyin very small numbersin the MexicaliValley. Swainson'sHawk (Buteo swainsoni).Wurster observed two at the LagunaSalada on 4 April 1987. Wilbur(1987) listedonly two recentrecords for Baja California, althoughsmall numbersprobably move throughthe MexicaliValley each spring,as theydo throughthe ImperialValley, where records extend from 4 March(1989, nine near El Centro;Am. Birds43:536) to 11 June (1983, one near PlasterCity; Am. Birds37:1027). The LagunaSalada sighting fits well withinthis time frame. FerruginousHawk (Buteo regalis).Wilbur (1987) consideredthis speciesa winter visitorto the northwesternportion of the peninsula,but neither he nor Grinnell (1928) mentionedany recordsfor northeasternBaja California.On 29 December 1991, we observedfour in agriculturalfields near the townof NuevoLe6n. Sincethis hawk is a rare to uncommonwinter visitorin the vicinityof the SaltonSea (Garrett and Dunn 1981), it almostcertainly winters regularly in the MexicaliValley. Ring-necked Pheasant (Phasianus colchicus). Wurster observed one near Algodoneson 14 January1989, we sawtwo malesand three femalesfeeding in a stubblefield 20 krn southeastof Mexicalion 29 December 1991, and Radamaker observeda male about 15 km southeastof Mexicalion 22 August1992. In addition, Howell and Pyle (1988) reportedobserving five or six pheasantson 4 December 1983 a "few miles south of Mexicali on Route 5." This speciesis rare in the Imperial Valley (Garrett and Dunn 1981), and Wilbur (1987) stated that it had not been recorded acrossthe border in the northeastern portionof Baja California.Wilbur's statement is inaccurate,however, since Leopold (1959) indicatedthat pheasantstock from China was introducedinto the Mexicali Valleybeginning in 1912. By 1922, the Ring-neckedPheasant was established in the Mexicali Valley (Hart et al. 1956). Leopold (1959) estimateda densityof 50 pheasantsper squaremile (about 19/krn 2) between the Imperialand Mexicali valleys, althoughhe indicatedthat there were more birds in the MexicaliValley where the "habitat is better." The MexicaliValley was openedto pheasanthunting in 1929, with a bag limit of two birdsand an estimatedaggregate kill there of 1000 birdsper year by 1948/49 and 1949/50 (Hart et al. 1956). CurrentMexican hunting regulations specify a bag 9O OBSERVATIONS FROM BAJA CALIFORNIA limit of three birdsand a seasonallimit of sixbirds (E. Mellinkpers. comm.),implying that the speciesis quite common in the valley. Lesser Yellowlegs(Tringa flavipes). Wilbur (1987) stated that this species is "apparenfiyan irregularfall transientand winter visitor" with "onlyfive records." On 29 December 1991, we observedat least ten in a floodedfield roughly 25 km southeastof Mexicali.Since the LesserYellowlegs is an uncommontransient and rare winter visitor to the Imperial Valley and Salton Sea (Garrett and Dunn 1981), it almostcertainly occurs in the MexicaliValley on a regularbasis. Whimbrel (Nurneniusphaeopus). We observedone on 29 December 1991 in a floodedfield roughly25 km southeastof Mexicali.The short bill (comparedto a Long-billedCurlew, Nurnenius americanus), the grayertone of the plumage,and the distinctblackish head stripes identified the Whimbrel.The birdwas smaller than a curlew but larger than the nearby Willets (Catoptrophorus sernipalrnatus).This observationis noteworthybecause there are only four winter recordsfor the Salton Sea area: one at the southend of the sea on 29 January1989 (Am. Birds43:366), three at the south end on 18 December 1990 (Am. Birds 45:999), one at the north end of the sea on 12 January1991 (Radamakerpers. obs.),and up to two at the southend from 17 December 1991 to 23 February1992 (Am. Birds46:315). Baird'sSandpiper (Ca lidris bairdii).Wilbur (1987) consideredthis species "appar- enfiy a rare transient,[with] five recordsto date," and it is a rare to uncommon migrantthrough the SaltonSea (Garrettand Dunn 1981, Patten pers. obs.).Wurster observedfour in the Mexicaliarea on 9 September1987. LaughingGull (Larusatticilia). This gull is considereda regularwinter visitor, in smallnumbers, on both coastsof Baja Californiasouth of latitude27 ø N (Wilbur 1987). Two observedby Wursteralong the Rio Hardy on 28 February1991 and an adult observedby Radamakerat Campo Mosquedoon 11 January 1992 are probablythe northernmost(both locations are at roughly32.5 ø N) for the speciesin BajaCalifornia during this season, although there are overten winterrecords for the SaltonSea (Patten unpubl. data). This species was recently discovered breeding in the Coloradodelta (Palaciosand Mellink 1992) and has been found in winter at Puerto Pefiasco, Sonora (Am. Birds 45:1009), so future winter records
Recommended publications
  • Colorado River Delta in Mexico
    Ongoing Restoration Efforts in the Colorado River Delta in Mexico Dr. Francisco Zamora-Arroyo Outline ¾ Conservation Priorities Areas ¾ Restoration Efforts: 9Colorado River 9Hardy River 9Other wetlands ¾ Conclusions CONSERVATION PRIORITIES IN THE - COLORADO RIVER D ELTA MEXICO AND TilE UNITED STATES these and many more organizations and funders are working in several ongoing efforts and initiatives to restore the Delta TCF CONAGUA Secretaria de Turismo David and Lucile Packard Foundation NWF SAGARPA UABC Club de Leones Cucapa Water Education Foundation DHS Rotary Club Results: Map of the Possible A network of 15 Conservation Priority Areas, totaling 850,000 acres that, with proper management, will ensure the long-term persistence of the Delta biodiversity Ongoing restoration efforts in Mexico Restoration = Riparian + Off-channel + Estuarine CATJFORNTA BAJA CALIFORNIA Restoration areas are those needing action to re-establish ecological Protection areas are thosA currAntly in good condition, as they provide critical habitat for spAciAs of Estimated water 2 - 4 m3/s needs 30 - 40 m3/s – 3 meses, 4 años < 2 ppm 3 1.2 - 2 m3/s 4 m /s < 3.5 ppm < 3 ppm 40 - 70 m3/s, 4 meses < 4 ppm Colorado River Corridor Overall goal: Develop a 80,000-acre functional ecological area Restoration Demonstration Project Sitios Demostrativos Poblados Ferrocarril D Sitios Carreteras Laguna Grande • Planted 2,400 native trees in 23 acres in 2006-07: – 1,300 mesquite – 1,100 CW and willow trees Fotos laguna grande Fotos Laguna grnade ESTA ZONA ES PARA QUE .t:t.. QIS Fr\UTE' CUIDALA NO INGRESES E!N VEHICULOS MOTOI\llJ.no, NO TIRES SA.SURA EVITA LA TALA DE AR.BOLES No PROVOQUES INCI:'NDIOS Developed a community vision for restoration Reached over 1,500 local community members and 60 government officials, 20 percent of which participated in restoration actions.
    [Show full text]
  • A Groundwater Model to Assess Water Resource Impacts at the Imperial East Solar Energy Zone
    This page intentionally left blank. CONTENTS Notation........................................................................................................................................... v Acknowledgments......................................................................................................................... vii 1 Introduction ................................................................................................................................ 1 1.1 The Bureau of Land Management’s Solar Energy Program ............................................... 2 1.2 The Imperial East Solar Energy Zone ................................................................................. 2 2 Hydrogeologic Setting ................................................................................................................ 5 2.1 Landscape and Aquifer Characteristics .............................................................................. 5 2.2 Water Budget ...................................................................................................................... 5 3 Model Development ................................................................................................................... 9 3.1 Modification of the Tompson et al. (2008) Model ............................................................. 9 3.2 Hydrogeologic Considerations .......................................................................................... 10 3.2.1 Specification of Hydraulic Conductivity .............................................................
    [Show full text]
  • Information Database and Local Outreach Program for the Restoration of the Hardy River Wetlands, Lower Colorado River Delta, Baja California and Sonora, Mexico
    Final Report to: North American Wetland Conservation Council Instituto Nacional de Ecología - SEMARNAP ITESM Campus Guaymas University of Arizona Environmental Defense Fund Pronatura Sonora Oregon State University Information Database and Local Outreach Program for the Restoration of the Hardy River Wetlands, Lower Colorado River Delta, Baja California and Sonora, Mexico Prepared by: Carlos Valdés-Casillas, Osvel Hinojosa-Huerta, Manuel Muñoz-Viveros, Francisco Zamora-Arroyo, Yamilett Carrillo-Guerrero, Selene Delgado-García, and María López-Camacho. Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM) - Campus Guaymas Centro de Conservación y Aprovechamiento de los Recursos Naturales (CECARENA) Unidad de Información Biogeográfica (UIB) Edward P. Glenn, Jaqueline García, James Riley, and Donald Baumgartner University of Arizona Environmental Research Laboratory Mark Briggs The Sonoran Institute Christopher T. Lee California State University-Dominguez Hills Department of Earth Sciences Elene Chavarría-Correa Pronatura Sonora Chelsea Congdom and Daniel Luecke Environmental Defense Fund August 1998 Acknowledgements The Information Database and Local Outreach Program for the Restoration of the Hardy River Wetlands in the Lower Colorado River Delta, Baja California and Sonora, Mexico was accomplished under the generous funding of the North America Wetlands Conservation Council, ITESM Campus Guaymas, University of Arizona, Pronatura Sonora, Environmental Defense Fund, and Oregon State University. Support and assistance provided by many individuals within federal and state agencies, local governments, and non-governmental organizations on both sides of the border were highly determinant in accomplishing this first approach of restoring these wetlands. The federal agencies that supported the project are: · Secretaría del Medio Ambiente, Recursos Naturales y Pesca, SEMARNAP. (Mexican Ministry of Environment, Natural Resources, and Fisheries).
    [Show full text]
  • Binational Prevention and Emergency Response Plan Between Imperial
    BINATIONAL PREVENTION AND EMERGENCY RESPONSE PLAN BETWEEN IMPERIAL COUNTY, CALIFORNIA, AND THE CITY OF MEXICALI, BAJA CALIFORNIA May 24, 2005 IMPERIAL COUNTY – MEXICALI BINATIONAL PREVENTION AND EMERGENCY RESPONSE PLAN RECORD OF REVISIONS Date Section Page number Edited by TABLE OF CONTENTS SECTION PAGE ACKNOWLEDGMENTS ...............................................................................................................v FOREWORD ................................................................................................................................. ix MEMORANDUM OF UNDERSTANDING..................................................................................1 PARTICIPATING AGENCIES.......................................................................................................5 INTRODUCTION .........................................................................................................................11 1.0 MEXICALI/IMPERIAL COUNTY BORDER REGION.................................................13 1.1 General Aspects of the Region ................................................................................... 13 1.1.1 Historical and Cultural Background ...........................................................13 1.1.2 Geographic Location...................................................................................15 1.1.3 Climate........................................................................................................15 1.1.4 Population ...................................................................................................15
    [Show full text]
  • Community-Based Restoration of Desert Wetlands: the Case of the Colorado River Delta1
    Community-Based Restoration of Desert Wetlands: The Case of the Colorado River Delta1 Osvel Hinojosa-Huerta,2 Mark Briggs,3 Yamilett Carrillo-Guerrero,2 Edward P. Glenn,4 Miriam Lara-Flores,5 and Martha Román-Rodríguez6 ________________________________________ Abstract Wetland areas have been drastically reduced through (Rosenberg et al. 1991, Davis and Ogden 1994, the Pacific Flyway and the Sonoran Desert, with severe DeGraff and Rappole 1995). Causes for these declines consequences for avian populations. In the Colorado are related to the dramatic rate at which wetlands have River delta, wetlands have been reduced by 80 percent been destroyed in North America (Dahl 1990, National due to water management practices in the Colorado Research Council 1995), diminishing the area and River basin. However, excess flows and agricultural quality of breeding grounds, wintering areas, and mi- drainage water has restored some areas, providing gratory stopover habitat (Weller 1999). In western habitat for several sensitive species such as the Yuma North America, the patterns are shocking: wetland loss Clapper Rail (Rallus longirostris yumanensis). This has in the California Central Valley is estimated at 95 sparked community interest to explore different scenar- percent (Zedler 1988), and loss along the U.S. Pacific ios for the restoration of bird habitat. Three community- coast has been 50 percent (Helmers 1992). based restoration projects are currently underway in the delta, focusing on the restoration of marshlands, This trend has been particularly critical in the Sonoran riparian stands, and mesquite bosque. The goal of these Desert, where the struggle for water between human projects is to reestablish the ecological functions of the uses and the environment has dried up most of the Colorado River delta, through an efficient use of riparian forests and wetlands (Brown 1985).
    [Show full text]
  • SAB 027 2004 P52-60 Waterbird Communities and Associated
    Studies in Avian Biology No. 27:52-60, 2004. WATERBIRD COMMUNITIES AND ASSOCIATED WETLANDS OF THE COLORADO RIVER DELTA, MEXICO 0SVEL HINOJOSA-HUERTA, STEPHEN DESTEFANO, Y AMILETT CARRILLO-GUERRERO, WILLIAM W. SHAW, AND CARLOS VALDES-CASILLAS Abstract. Despite extensive losses of wetlands caused by water diversions upstream, the Colorado River Delta in northwestern Mexico remains an important wetland system in the Sonoran Desert. The purpose of our study was to describe waterbird communities across a variety of wetland habitat types and zones that exist in the Delta. We measured species richness and abundance of waterbirds from September 1999 to August 2000. We observed a total of 11,918 individuals of 71 species at sites within seven wetland areas. The waterbird communitie differed with respect to guild composition and species abundances among the wetland zones. Wetlands along the eastern portion of the Delta (Cienega and Indio). which are upported by agricultural drains and managed under conservation initiatives, exhibited the highest species richness in our ummer and winter censuses, and highest abundance in summer. Shorebirds were the dominant guild in the summer period, while waterfowl were dominant during winter. Breeding marshbirds were also abundant, with the Yuma Clapper Rail (Rallus longirostris yumanensis) being most notable. Wetlands along the western Delta (Hardy and Cucapa) were al. o supported by agricultural drains, but were not managed specifically for wildlife. The Double-crested Cormorant (Phalacrocora:x auritus) and American Coot (Fulica americana) were dominant during winter, while long-legged wader (Ardeidae) were dominant in ummer. The com­ po ition of waterbird communities along the mainstem of the Colorado River was similar to that of wetlands along the western portion of the Delta.
    [Show full text]
  • Silt in the Colorado River and Its Relation to Irrigation
    2 8 2 5 1.0 ~ 11~12 8 111/12.5 1.0 ~ 1111/ . 1111i . w lili Iii~ lili I Iii LIO I.i£. LIO W w w IOi loa ~ :: ~ ~ 1.1 "'''M'" ~ 1.1 ..WL.:. ... -- 111111.8 111111.8 111111.25 111111.4 111111.6 111111.25 I1II1 1.4 111111.6 MICROCOPY RESOLUTION TEST CHART MICROCOPY RESOLUTION TEST CHART NATION~L BUREAU or SlANDARO,·1963·A NATIONAL BUREAU OF SlANOAROS-1963-A ==~~==~~==~~~n~~-~======~ TECHNICAL BULLETI~ No. 67 -.. \!>~ =v February, 1928 UNITED STATES DEPARTMENT OF AGRICULTURE WASHINGTON, D. C. SILT IN THE COLORADO RIVER AND ITS RELATION TO IRRIGATION By SAMUEL Pon-rulJlt, Senior Irrigation Engineer, and HARRY P. BLANEY, Associate Irrigation Engineer, D£vision of Agricultural Engineering, Bureau of Public Roads CONTENTS .Pnl;o Page Tntroductlon ________ "" __ _______ ____ ______ _____ I 'rho silt problom of tho lower basln____________ 29 Summnry nnd goneral conclusions_____________ 2 sm Investigations in Imporlal Valley, _________ 28 Colorado Hlver .13l1sln_________________________ 5 'rrnnsE0rtatlon of silt_________________________ 42 Churnctcr of sllt_______________________________ 8 Silt-snmilling equlnlIlcnt._____________________ 11 Silt In trlhlltnry strcnms_______________________ l:l ~~~!~~Fx~~~~~s_:::=========:=======:=======Literature cited _______________________________ g~92 Silt In the lower Colorado Rlver _______________ 22 Other publications relating to the silt prohlem_ 94 INTRODUCTION While silt is the creator of much <>J the agricultural wealth of the lower Oolomdo I~iver Basin) it is also the greatest menace to irrign­ tion development. and water control. When irrigation water con­ tnining silt is appliod to fields, the main portion of the silt is deposited near the upper end. From time to time the farmer is compelled to move the depositod silt to lower portions of tho field in order to keep tho land surfnce below the lovol of the irrigation ditch.
    [Show full text]
  • Riparian Research and Management: Past, Present, Future: Volume 1
    United States Department of Agriculture Riparian Research and Management: Past, Present, Future: Volume 1 Forest Rocky Mountain General Technical Report Service Research Station RMRS-GTR-377 November 2018 Johnson, R. Roy; Carothers, Steven W.; Finch, Deborah M.; Kingsley, Kenneth J.; Stanley, John T., tech. eds. 2018. Riparian research and management: Past, present, future: Volume 1. Gen. Tech. Rep. RMRS-GTR-377. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 226 p. doi: https://doi.org/10.2737/RMRS-GTR-377 Abstract Fifty years ago, riparian habitats were not recognized for their extensive and critical contributions to wildlife and the ecosystem function of watersheds. This changed as riparian values were identified and documented, and the science of riparian ecology developed steadily. Papers in this volume range from the more mesic northwestern United States to the arid Southwest and Mexico. More than two dozen authors—most with decades of experience—review the origins of riparian science in the western United States, document what is currently known about riparian ecosystems, and project future needs. Topics are widespread and include: interactions with fire, climate change, and declining water; impacts from exotic species; unintended consequences of biological control; the role of small mammals; watershed response to beavers; watershed and riparian changes; changes below large dams; water birds of the Colorado River Delta; and terrestrial vertebrates of mesquite bosques. Appendices and references chronicle the field’s literature, authors, “riparian pioneers,” and conferences. Keywords: riparian, ecosystem, ecology, riparian processes, restoration, aquatic, arid, semi-arid, upland, freshwater, groundwater, hydrology Front cover: A backwater with beaver dam along the Gunnison River at Neversink, Curecanti National Recreation Area, Gunnison County, Colorado (photo by Kenneth J.
    [Show full text]
  • Status of Wetlands Supported by Agricultural Drainage Water in the Colorado River Delta, Mexico Edward P
    Status of Wetlands Supported by Agricultural Drainage Water in the Colorado River Delta, Mexico Edward P. Glenn, Jaqueline Garcia, and Rene Tanner Environmental Research Laboratory, 2601 East Airport Drive, Tucson, AZ 85706 Chelsea Congdon and Dan Luecke Environmental Defense Fund, 1405 Arapahoe Avenue, Boulder, CO 80302 The delta of the Colorado River historically covered 780,000 ha in Eddleman, 1989). The indigenous Cocopa people still use the riparian Mexico and the United States, encompassing most of what are now the zone of the delta for subsistence (Richardson and Carrier, 1992; Imperial, Mexicali, Yuma, and San Luis irrigation districts, as well as Williams, 1983), and the wetlands and reforested areas provide in- two below-sea-level depressions, the Salton Sea and Laguna Salada comes to ejido residents who gather fuelwood and serve as guides to (Sykes, 1937) (Fig. 1). Before the 20th century, the lower delta was a hunters, fishermen, and ecotourists (Payne et al., 1992). In recognition vast network of riparian and wetland ecosystems in the most arid part of their importance, portions of the delta wetlands were incorporated of the Sonoran Desert (Leopold, 1949; McDougal, 1904; Sykes, into La Biosfera del Alto Gulfo de California y el Delta del Rio 1937). Although most of the former wetlands and gallery forests have Colorado, an international biosphere reserve recognized by the United been converted to agricultural or urban use, there are still large wetland Nations international biosphere program and declared by President and riparian areas of conservation value in the lower delta in Mexico Salinas of Mexico in 1993 (Diario Oficial, 1993; Morales-Abril, (Glenn et al., 1992, 1996; Morrison et al., 1996; Payne et al., 1992) 1994).
    [Show full text]
  • Preliminary Report on Seismological and Geotechnical Engineering Aspects of the April 4 2010 Mw
    1.0 Introduction 1.1 Introduction The M7.2 mainshock of the Sierra El Mayor ­ Cucapah earthquake occurred at 3:40 pm local time on April 4, 2010, which was Easter Sunday. The mainshock was followed by a sequence of aftershocks that were felt during the reconnaissance effort and continue to the present. The mainshock had an estimated focal depth of 10 km (USGS, 2010) and struck in the El Mayor and Cucapah mountains to the southwest of Mexicali, Baja California, Mexico. The epicenter was located at 32.237°N, 115.083°W (USGS, 2010). The earthquake was felt throughout northern Baja California and southern California, and caused damage in a region from the Sea of Cortez in the south to the Salton Sea in the north. This earthquake is the largest to strike this area since 1892. The USGS seismic intensity was IX near the fault rupture, and VIII in Mexicali, which is the nearest densely­ populated area. The largest peak ground acceleration of 0.58g was recorded at McCabe School about 5 km southwest of El Centro, CA. The earthquake ruptured the surface for as much as 140 km from the northern tip of the Sea of Cortez northwestward to nearly the international border, with strike­slip, normal, and oblique displacements observed. The earthquake resulted in two fatalities and hundreds of injuries. Damage occurred to irrigation systems, water treatment facilities, buildings, bridges, earth dams, and roadways. Liquefaction and ground subsidence was widespread in the Mexicali Valley, and left wheat and hay fields submerged under water and destroyed many canals that irrigate fields in the predominantly agricultural region.
    [Show full text]
  • Groundwater Origin and Dynamics on the Eastern Flank of the Colorado River Delta, Mexico
    hydrology Article Groundwater Origin and Dynamics on the Eastern Flank of the Colorado River Delta, Mexico Hector A. Zamora 1,*, Christopher J. Eastoe 1,† , Jennifer C. McIntosh 2 and Karl W. Flessa 1 1 Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA; [email protected] (C.J.E.); kfl[email protected] (K.W.F.) 2 Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, USA; [email protected] * Correspondence: [email protected] † This author is retired. Abstract: Isotope data and major ion chemistry were used to identify aquifer recharge mechanisms and geochemical evolution of groundwaters along the US–Mexico border. Local recharge originates as precipitation and occurs during winter through preferential infiltration pathways along the base of the Gila Range. This groundwater is dominated by Na–Cl of meteoric origin and is highly concentrated due to the dissolution of soluble salts accumulated in the near-surface. The hydrochemical evolution of waters in the irrigated floodplain is controlled by Ca–Mg–Cl/Na–Cl-type Colorado River water. However, salinity is increased through evapotranspiration, precipitation of calcite, dissolution of accumulated soil salts, de-dolomitization, and exchange of aqueous Ca2+ for adsorbed Na+. The Na–Cl-dominated local recharge flows southwest from the Gila Range and mixes with the Ca–Mg– 3 Cl/Na–Cl-dominated floodplain waters beneath the Yuma and San Luis Mesas. Low H suggests that recharge within the Yuma and San Luis Mesas occurred at least before the 1950s, and 14C data 14 Citation: Zamora, H.A.; Eastoe, C.J.; are consistent with bulk residence times up to 11,500 uncorrected C years before present.
    [Show full text]
  • Haven Or Hazard: the Ecology and Future of the Salton Sea
    Haven or Hazard: The Ecology and Future of the Salton Sea Michael J. Cohen Jason I. Morrison Edward P. Glenn A report of the PACIFIC INSTITUTE FOR STUDIES IN DEVELOPMENT, ENVIRONMENT, AND SECURITY February 1999 Prepared with the support of the U.S. Environmental Protection Agency, Region IX The Compton Foundation The Turner Foundation and the Oracle Corporate Giving Program Haven or Hazard: The Ecology and Future of the Salton Sea © Copyright 1999 by the Pacific Institute for Studies in Development, Environment, and Security All Rights Reserved Pacific Institute for Studies in Development, Environment, and Security 654 13th Street Preservation Park Oakland, California 94612 www.pacinst.org (510) 251-1600 (telephone) (510) 251-2203 (fax) Printed on 100-percent recycled paper About the Pacific Institute The Pacific Institute for Studies in Development, Environment, and Security is an inde- pendent, non-profit center created in 1987 to do research and policy analysis in the areas of environment, sustainable development, and international security. Underlying all of the Insti- tute’s work is the recognition that the pressing problems of environmental degradation, region- al and global poverty, and political tension and conflict are fundamentally interrelated, and that long-term solutions must consider these problems in an interdisciplinary manner. The Institute’s mission is to conduct and distribute meaningful and usable research and policy sug- gestions on the interactions among these issues. The organization seeks to produce quality, impartial research and to make sure it is accessible not only to public and private-sector deci- sion-makers, but also to community groups and the public at large.
    [Show full text]