Plato's Cube and the Natural Geometry of Fragmentation
Plato’s cube and the natural geometry of fragmentation Gábor Domokosa,b, Douglas J. Jerolmackc,d,1, Ferenc Kune, and János Töröka,f aMTA-BME Morphodynamics Research Group, Budapest University of Technology and Economics, Budapest, Hungary; bDepartment of Mechanics, Materials and Structure, Budapest University of Technology and Economics, Budapest, Hungary; cDepartment of Earth and Environmental Science, University of Pennsylvania, Philadelphia, USA; dMechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, USA; eDepartment of Theoretical Physics, University of Debrecen, Debrecen, Hungary; fDepartment of Theoretical Physics, Budapest University of Technology and Economics, Budapest, Hungary This manuscript was compiled on April 7, 2020 Plato envisioned Earth’s building blocks as cubes, a shape rarely at “T” junctions (26); and “T” junctions rearrange into ”Y” found in nature. The solar system is littered, however, with distorted junctions (25, 28) to either maximize energy release as cracks polyhedra — shards of rock and ice produced by ubiquitous frag- penetrate the bulk (29–31), or during reopening-healing cycles mentation. We apply the theory of convex mosaics to show that from wetting/drying (32) (Fig.3). Whether in rock, ice or soil, the average geometry of natural 2D fragments, from mud cracks to the fracture mosaics cut into stressed landscapes (Fig.3) form Earth’s tectonic plates, has two attractors: “Platonic” quadrangles pathways for focused fluid flow, dissolution and erosion that and “Voronoi” hexagons. In 3D the Platonic attractor is dominant: further disintegrate these materials (33, 34) and reorganize remarkably, the average shape of natural rock fragments is cuboid. landscape patterns (35, 36). Moreover, fracture patterns in When viewed through the lens of convex mosaics, natural fragments rock determine the initial grain size of sediment supplied to are indeed geometric shadows of Plato’s forms.
[Show full text]