De Morgan's Logic

Total Page:16

File Type:pdf, Size:1020Kb

De Morgan's Logic DE MORGAN'S LOGIC Michael E. Hobart and Joan L. Richards 1 INTRODUCTION: THE SYMBOLIC TURN IN LOGIC Looking back on a more than a decade of work in logic, Augustus De Morgan (1806-1871) remembered that from the beginning "in my own mind I was facing Kant's assertion that logic neither has improved since the time of Aristotle, nor of its own nature can improve, except in perspicuity, accuracy of expressions and the like" .1 For Immanuel Kant, writing at the very end of the eighteenth century, the longevity of Aristotle's logic showed that the Greek had essentially gotten it right; for De Morgan it was evidence of stagnation. From his position in the progressive nineteenth century, De Morgan set out in the 1840s to move the study of logic forward by building on the foundation Aristotle had laid. In so doing, De Morgan brought a very specific view of progress to his logical enterprise. "Every science that has thriven has thriven upon its own symbols: logic, the only science which is admitted to have made no improvements in century after century, is the only one which has grown no new symbols. ''2 De Morgan's logical program, then, entailed creating a set of symbols that would show him the way to move logic beyond its Aristotelian base into an ever-expanding future. For many, De Morgan's determination to create an operational set of logical symbols has marked him as a pioneer of the symbolic logic of the late nineteenth and early twentieth centuries, and he is routinely credited with the laws that bear his name and with the logic of relations. Beyond this appreciation, the rest of his more than twenty years of logical effort is generally seen to have little im- portance in the development of logic; most modern readers shrug it off as odd, clumsy, or old fashioned. Thus dismissing the bulk of De Morgan's logic because of its unfamiliarity is myopic at best, however, for it erases the complex dynamic of change that supported the development of modern symbolic logic. And un- derstanding tile roots of twenty-first century symbolic logic requires entering the nineteenth-century world in which they developed. 1Augustus De Morgan, "On the Syllogism, No. III, and on Logic in general", Transactions of the Cambridge Philosophical Society, p. 173, 1858 lOS, p. 74]. (Hereafter, [$3]; see fn. #21 for a complete listing of De Morgan's major logical works and the abbreviations we use in citations.) De Morgan's reference is to Kant's statement: "Logic, by the way, has not gained much in content since Aristotle's times and indeed it cannot, due to its nature. But it may well gain in exactness, definiteness and distinctness." Immanuel Kant, Logic. Translated, with an Introduction by Robert S. Hartman and Wolfgang Schwarz, New York: Dover Publications, Inc., p. 23, 1974. 2[$3, p. 184] [OS, p. 88] (ital. De Morgan's). Handbook of the History of Logic. Volume 4: British Logic in the Nineteenth Century. Dov M. Gabbay and John Woods (Editors) @ 2008 Elsevier BV. All rights reserved. 284 Michael E. Hobart and Joan L. Richards De Morgan was an erudite scholar and prolific writer, with wide-ranging and catholic concerns; his particular combination of intellectual and moral gravity with high-brow and omnipresent wit runs through not only his many published books, but also the more than 700 articles he wrote for the popular Penny Cyclopedia, and the well over a thousand reviews he published in the Athenaeum. He ad- dressed subjects ranging from algebra to gymnastics, from chemical change in the Eucharist to astro-theology, but mathematics, logic, and their histories remained his dominant interests throughout his career. The logic of Augustus De Morgan was primarily rooted in his identity as a Cambridge-educated Englishman of the mid-nineteenth century. Initially, that identity was much more tied up with mathematics than with logic. De Morgan began the serious study of mathematics as a student at Cambridge, where math- ematics was the center of a liberal education designed to educate the Anglican clergy. 3 The pairing of mathematics and theology that supported De Morgan's Cambridge education stemmed from a position developed in John Locke's Essay Concerning Human Understanding. In this magisterial work, Locke had exempted mathematics and theology from the uncertainties of empirical knowledge by plac- ing them in a separate category of demonstrative knowledge. The mathematical focus of De Morgan's Cambridge education is a testament to the enduring power of Locke's coupling of mathematics and theology as exemplars of certain knowledge. In Locke's construction, the certainty of mathematical knowledge was attested to by the extra-ordinarily tight fit between symbols and their positive, spatial meanings. The power of this connection is manifest in geometry, where diagrams play a crucial role in illustrating and clarifying proofs. Yet, by the end of the seventeenth century, a great deal of mathematics did not fit the geometrical model of certainty. In the one hundred and fifty years before Locke published his work, algebra had moved from virtual non-existence to the center of mathematical de- velopment. At the heart of this transformation lay the creation of numerous and recognizably modern conventions of notation -- e.g. such functional symbols as +, --, x, +, =, <, >, V/, oe, ~,dy plus the use of superscripts (2,3...n .... x,y,z...) for powers and of letters for knowns (a, b, c,...) and unknowns (x, y, z,...).4 Algebra's power lay precisely in the way its symbolical exuberances broke through the constraints of meaning that held geometry fast. Throughout the English eighteenth century the problem of algebraic certainty was usually glossed over, but late in the century some of England's political and 3For the nineteenth-century development of the Cambridge mathematical education, see: An- drew Warwick, Masters of Theory: Cambridge and the Rise of Mathematical Physics, Chicago: University of Chicago Press, 2003. There has been considerable interest in the interaction of mathematics and theology within that education, much of it focused on William Whewell. The articles gathered in Menachem Fisch and Simon Schaffer, William Whewell: A Composite Pot- trait, Oxford: Clarendon Press, 1991, are useful as an initial entr~ into that material. 4For the history of mathematical notation, the magisterial work of Florian Cajori (A History of Mathematical Notations. Two vols. Vol. I: Notations in Elementary Mathematics; vol. II: Notations Mainly in Higher Mathematics, New York: Dover Publications Inc., 1993 [c. 1928- 1929]) remains unsurpassed. De Morgan's Logic 285 religious radicals were determined to bring it to the fore. 5 In 1797, the radical Unitarian William Prend, published A Treatise on Algebra in which he insisted that all mathematical truth -- including algebraic truth -- lay in the close tie between symbol and subject matter. Algebra was just generalized arithmetic, and the subject matter of arithmetic had been known since antiquity to be the numbers with which we count the objects around us. There is no such thing as a negative object, Frend insisted, and with that he eliminated negative numbers from algebra. Prend's was an extreme position -- to follow his lead was essentially to destroy all algebraic developments since the sixteenth century -- but in the Lockean world of Cambridge mathematics his stubborn insistence that the validity of mathematical symbols depended on their interpretations was difficult to refute. Within five years of Prend's negative-denying treatise, the Cambridge tutor Robert Woodhouse tried to answer its extremism with a re-examination of the connection between mathematics and meaning. Woodhouse's writing was too "dif- ficult and perplexed ''6 for his book have a broad impact, but by the 1810s others moved to free English mathematics from the constraints of the meanings-based Lockean approach. In the 1810s the more effective communicators of the short- lived, but highly influential Cambridge Analytical Society (ca. 1812-1817), set out to introduce the symbology of French analysis into England. In 1816 John Herschel, Charles Babbage, and George Peacock translated Sylvestra Francois Lacroix's Elementary treatise on the differential and integral calculus for the ben- efit of their countrymen; by the end of the decade, Cambridge students were abandoning Isaac Newton's conceptually rich fluxional notation in favor of the operational power of Gottfried Leibniz's ~dy notation. This change in symbology carried with it a challenge to English meaning-based mathematics that was deep enough to focus the thinking of a generation of Englishmen. 7 5For a fuller treatment of these developments see Helena M. Pycior, Symbols, Impossible Numbers, and Geometric Entanglements: British Algebra through the Commentaries on New- ton's "Universal Arithmetic", Cambridge: Cambridge University Press, 1997. 6penny Cyclopaedia (1833-43), s.v. [Augustus De Morgan], "Robert Woodhouse". 7For the work of the Analytical Society see Philip C. Enros, "Cambridge University and the adoption of analytics in early Nineteenth-Century England", in H. Mehrtens, et al. (eds.), Social history of Nineteenth-Century mathematics, Boston: Birkhauser, pages 135-48, 1981; "The Ana- lytical Society 1812-1813," Historia Mathematica, 10: 24-47, 1983; Harvey W. Becher, "William Whewell and Cambridge mathematics", Historical Studies in the Physical Sciences, 11: 1-48, 1981; Menachem Fisch, "'The emergency which has arrived': The problematic history of 19th- century British algebra -- a programmatic outline", British Journal for the History of Science, 27: 247-276, 1994. For the influence of French developments in particular on De Morgan's early career, see Maria Panteki, "French 'logique' and British 'logic': on the origns of Augustus De Morgan's early logical inquiries, 1805-1835", Historia Mathematica, 30: 278-340, 2003. Classic studies in which nineteenth-century English algebraists are evaluated for their formal content include: Eric Temple Bell, The Development of Mathematics, New York: McGraw Hill, 1954; L.
Recommended publications
  • Duncan F. Gregory, William Walton and the Development of British Algebra: ‘Algebraical Geometry’, ‘Geometrical Algebra’, Abstraction
    UvA-DARE (Digital Academic Repository) "A terrible piece of bad metaphysics"? Towards a history of abstraction in nineteenth- and early twentieth-century probability theory, mathematics and logic Verburgt, L.M. Publication date 2015 Document Version Final published version Link to publication Citation for published version (APA): Verburgt, L. M. (2015). "A terrible piece of bad metaphysics"? Towards a history of abstraction in nineteenth- and early twentieth-century probability theory, mathematics and logic. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:29 Sep 2021 chapter 9 Duncan F. Gregory, William Walton and the development of British algebra: ‘algebraical geometry’, ‘geometrical algebra’, abstraction 1. The complex history of nineteenth-century British algebra: algebra, geometry and abstractness It is now well established that there were two major factors that contributed to the revitalization and reorientation of British mathematics in the early- and mid-nineteenth-century.1 Firstly, there was the external influence consisting of the dedication of the members of the anti-establishment Analytical Society to the ‘Principle of pure D-ism in opposition to the Dot-age of the University’.
    [Show full text]
  • “A Valuable Monument of Mathematical Genius”\Thanksmark T1: the Ladies' Diary (1704–1840)
    Historia Mathematica 36 (2009) 10–47 www.elsevier.com/locate/yhmat “A valuable monument of mathematical genius” ✩: The Ladies’ Diary (1704–1840) Joe Albree ∗, Scott H. Brown Auburn University, Montgomery, USA Available online 24 December 2008 Abstract Our purpose is to view the mathematical contribution of The Ladies’ Diary as a whole. We shall range from the state of mathe- matics in England at the beginning of the 18th century to the transformations of the mathematics that was published in The Diary over 134 years, including the leading role The Ladies’ Diary played in the early development of British mathematics periodicals, to finally an account of how progress in mathematics and its journals began to overtake The Diary in Victorian Britain. © 2008 Published by Elsevier Inc. Résumé Notre but est de voir la contribution mathématique du Journal de Lady en masse. Nous varierons de l’état de mathématiques en Angleterre au début du dix-huitième siècle aux transformations des mathématiques qui a été publié dans le Journal plus de 134 ans, en incluant le principal rôle le Journal de Lady joué dans le premier développement de périodiques de mathématiques britanniques, à finalement un compte de comment le progrès dans les mathématiques et ses journaux a commencé à dépasser le Journal dans l’Homme de l’époque victorienne la Grande-Bretagne. © 2008 Published by Elsevier Inc. Keywords: 18th century; 19th century; Other institutions and academies; Bibliographic studies 1. Introduction Arithmetical Questions are as entertaining and delightful as any other Subject whatever, they are no other than Enigmas, to be solved by Numbers; .
    [Show full text]
  • French 'Logique' and British 'Logic" on the Origins of Augustus De Morgan's Early Logical Inquiries, 1805-1835
    FRENCH 'LOGIQUE' AND BRITISH 'LOGIC" ON THE ORIGINS OF AUGUSTUS DE MORGAN'S EARLY LOGICAL INQUIRIES, 1805-1835 Maria Panteki 1 INTRODUCTION 1.1 An outline of De Morgan's career in algebra and logic Of twenty years of experience as a teacher of mathematics, I may now affirm that the first half of the period established in my mind the con- viction that formal logic is a most important preliminary part of every sound system of exact science and that the second half has strength- ened that conviction. [De Morgan, 1847] 1 Augustus De Morgan (1806-1871) matriculated at Trinity College, Cambridge, in 1823, graduating a fourth wrangler 2 in 1827. Appointed Professor of Mathemat- ics at the newly founded London University in 1828, he spent his entire career there until 1866, apart from his resignation from 1831 to 1836 as a protest against administrative practices. 3 Deeply concerned with the instruction of elementary mathematics, he perceived in 1831 the utility of Aristotelian logic in the teach- ing of Euclidean geometry. De Morgan was equally attentive to mathematics and logic, contributing to the advancement of algebra, the extension of syllogistic logic and the founding of the logic of relations. In the ensuing outline we can see the 1From a manuscript preface to his Formal logic [De Morgan 1847], University of London Library, MS. 775/353. 2Cambridge students earned their degree by passing the University Senate House Examina- tions, known as the Tripos [see fn. 58]. The denomination of "wrangler" was derived from the process of wrangling, that is "the debating method used to test undergraduates before the ad- vent of written examinations" [Crilly 1999, 133].
    [Show full text]
  • Explanations
    © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. CHAPTER 1 Explanations 1.1 SALLIES Language is an instrument of Logic, but not an indispensable instrument. Boole 1847a, 118 We know that mathematicians care no more for logic than logicians for mathematics. The two eyes of exact science are mathematics and logic; the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two. De Morgan 1868a,71 That which is provable, ought not to be believed in science without proof. Dedekind 1888a, preface If I compare arithmetic with a tree that unfolds upwards in a multitude of techniques and theorems whilst the root drives into the depthswx . Frege 1893a, xiii Arithmetic must be discovered in just the same sense in which Columbus discovered the West Indies, and we no more create numbers than he created the Indians. Russell 1903a, 451 1.2 SCOPE AND LIMITS OF THE BOOK 1.2.1 An outline history. The story told here from §3 onwards is re- garded as well known. It begins with the emergence of set theory in the 1870s under the inspiration of Georg Cantor, and the contemporary development of mathematical logic by Gottlob Frege andŽ. especially Giuseppe Peano. A cumulation of these and some related movements was achieved in the 1900s with the philosophy of mathematics proposed by Alfred North Whitehead and Bertrand Russell.
    [Show full text]
  • AUGUSTUS DE MORGAN and the LOGIC of RELATIONS the New Synthese Historical Library Texts and Studies in the History of Philosophy
    AUGUSTUS DE MORGAN AND THE LOGIC OF RELATIONS The New Synthese Historical Library Texts and Studies in the History of Philosophy VOLUME 38 Series Editor: NORMAN KRETZMANN, Cornell University Associate Editors: DANIEL ELLIOT GARBER, University of Chicago SIMO KNUUTTILA, University of Helsinki RICHARD SORABJI, University of London Editorial Consultants: JAN A. AERTSEN, Free University, Amsterdam ROGER ARIEW, Virginia Polytechnic Institute E. JENNIFER ASHWORTH, University of Waterloo MICHAEL AYERS, Wadham College, Oxford GAIL FINE, Cornell University R. J. HANKINSON, University of Texas JAAKKO HINTIKKA, Boston University, Finnish Academy PAUL HOFFMAN, Massachusetts Institute of Technology DAVID KONSTAN, Brown University RICHARD H. KRAUT, University of Illinois, Chicago ALAIN DE LIBERA, Ecole Pratique des Hautes Etudes, Sorbonne DAVID FATE NORTON, McGill University LUCA OBERTELLO, Universita degli Studi di Genova ELEONORE STUMP, Virginia Polytechnic Institute ALLEN WOOD, Cornell University The titles published in this series are listed at the end of this volume. DANIEL D. MERRILL Department of Philosophy, Oberlin College, USA AUGUSTUS DE MORGAN AND THE LOGIC OF RELATIONS KLUWER ACADEMIC PUBLISHERS DORDRECHT I BOSTON I LONDON Library of Congress Cataloging. in·Publication Data Merrill, Daniel D. (Daniel Davy) Augustus De Morgan and the lOglC of relations / Daniel D. Merril. p. cm. -- <The New synthese historical library; 38) 1. De Morgan, Augustus, 1806-1871--Contributions in logic of relations. 2. Inference. 3. Syllogism. 4. Logic, Symbolic and mathematical--History--19th cenTury. I. Title. II. Series. BC185.M47 1990 160' .92--dc20 90-34935 ISBN·13: 978·94·010·7418·6 e-ISBN -13: 978-94-009-2047-7 DOl: 10.1007/978-94-009-2047-7 Published by Kluwer Academic Publishers, P.O.
    [Show full text]
  • How Peircean Was the “'Fregean' Revolution” in Logic?
    HOW PEIRCEAN WAS THE “‘FREGEAN’ REVOLUTION” IN LOGIC? Irving H. Anellis Peirce Edition, Institute for American Thought Indiana University – Purdue University at Indianapolis Indianapolis, IN, USA [email protected] Abstract. The historiography of logic conceives of a Fregean revolution in which modern mathematical logic (also called symbolic logic) has replaced Aristotelian logic. The preeminent expositors of this conception are Jean van Heijenoort (1912–1986) and Don- ald Angus Gillies. The innovations and characteristics that comprise mathematical logic and distinguish it from Aristotelian logic, according to this conception, created ex nihlo by Gottlob Frege (1848–1925) in his Begriffsschrift of 1879, and with Bertrand Rus- sell (1872–1970) as its chief This position likewise understands the algebraic logic of Augustus De Morgan (1806–1871), George Boole (1815–1864), Charles Sanders Peirce (1838–1914), and Ernst Schröder (1841–1902) as belonging to the Aristotelian tradi- tion. The “Booleans” are understood, from this vantage point, to merely have rewritten Aristotelian syllogistic in algebraic guise. The most detailed listing and elaboration of Frege’s innovations, and the characteristics that distinguish mathematical logic from Aristotelian logic, were set forth by van Heijenoort. I consider each of the elements of van Heijenoort’s list and note the extent to which Peirce had also developed each of these aspects of logic. I also consider the extent to which Peirce and Frege were aware of, and may have influenced, one another’s logical writings. AMS (MOS) 2010 subject classifications: Primary: 03-03, 03A05, 03C05, 03C10, 03G27, 01A55; secondary: 03B05, 03B10, 03E30, 08A20; Key words and phrases: Peirce, abstract algebraic logic; propositional logic; first-order logic; quantifier elimina- tion, equational classes, relational systems §0.
    [Show full text]
  • Mathematical Language and Mathematical Progress by Eberhard Knobloch
    Mathematical language and mathematical progress By Eberhard Knobloch In 1972 the space probe Pioneer 10 was launched, carrying a plaque which contains the first message of mankind to leave our solar system1: The space probe is represented by a circular segment and a rectangle designed on the same scale as that of the man and the woman. This is not true of the solar system: sun and planets are represented by small circles and points. We do not know whether there are other intelligent beings living on stars in the universe, or whether they will even understand the message. But the non-verbal, the symbolical language of geometry seemed to be more appropriate than any other language. The grammar of any ordinary language is so complicated that still every computer breaks down with regards to it. 1 Karl Märker, "Sind wir allein im Weltall? Kosmos und Leben", in: Astronomie im Deutschen Museum, Planeten - Sterne - Welteninseln, hrsg. von Gerhard Hartl, Karl Märker, Jürgen Teichmann, Gudrun Wolfschmidt (München: Deutsches Museum, 1993), p. 217. [We reproduce the image of the plaque from: http://en.wikipedia.org/wiki/Pioneer_plaque ; Karine Chemla] 1 The famous Nicholas Bourbaki wrote in 19482: "It is the external form which the mathematician gives to his thought, the vehicle which makes it accessible to others, in short, the language suited to mathematics; this is all, no further significance should be attached to it". Bourbaki added: "To lay down the rules of this language, to set up its vocabulary and to clarify its syntax, all that is indeed extremely useful." But it was only the least interesting aspect of the axiomatic method for him.
    [Show full text]
  • George Boole. Selected Manuscripts on Logic and Its Philosophy (Science Networks
    George Boole. Selected Manuscripts on Logic and its Philosophy (Science Networks. Historical Studies, vol. 20). Ivor Grattan-Guinness/G´erard Bor- net, eds. Birkh¨auser Verlag: Basel/Boston/Berlin, 1997, e 37.30, ISBN 0- 8176-5456-9, lxiv + 236 pp. Reviewed by Volker Peckhaus Universit¨at Paderborn Kulturwissenschaftliche Fakult¨at Warburger Str. 100, D – 33098 Paderborn E-mail: [email protected] George Boole, the founder of the algebra of logic, did not stop working on logic after having published his seminal An Investigation of the Laws of Thought (1854 ). Among his aims was to write a philosophical comple- ment to his writings in the algebra of logic, but he died before he was able to finish it. All this was known already to his contemporaries and although leading authorities like Augustus De Morgan, Bertrand Russell, Philip E. B. Jourdain and Louis Couturat were involved in attempts to publish Boole’s posthumous logical papers, only bits and pieces from his logical manuscripts have been published up to now. This insufficient situation comes now to an end with this scholarly edition by Ivor Grattan-Guinness and G´erard Bornet. The editors have compiled a selection of about 40 % of Boole’s unpublished manuscripts on logic “from a scattered and chronologically unclear textual universe” (p. xxv). The bad condition of the manuscripts is due to Boole’s working style. He usually started each time from scratch producing not really substantial texts but notes and further work-plans. This is explained by Boole himself when he reported his plans to Augustus De Morgan in March 1859 (quoted p.
    [Show full text]
  • An Introduction to Symbolic Logic
    An Introduction to Symbolic Logic Guram Bezhanishvili and Wesley Fussner∗ 1 Introduction This project is dedicated to the study of the basics of propositional and pred- icate logic. We will study it based on Russell and Whitehead's epoch making treatise Principia Mathematica [9]. Published in three volumes between 1910 and 1913, Principia was a culmination of work that had been done in the preceding century on the foundations of mathematics. Since the middle of the nineteenth century, such thinkers as George Boole (1815{1864), Augustus De Morgan (1806{1871), Charles Sanders Peirce (1839{1914), Ernst Schr¨oder (1841-1902), Gottlob Frege (1848{1925), and Giuseppe Peano (1858{1932) had been developing axiomatic bases for logic and the foundations of math- ematics. This research program found its culmination in Principia, which had a tremendous influence on the development of logic and the foundations of mathematics in the twentieth century. Logic is a branch of science that studies correct forms of reasoning. It plays a fundamental role in such disciplines as philosophy, mathematics, and computer science. Like philosophy and mathematics, logic has ancient roots. The earliest treatises on the nature of correct reasoning were written over 2000 years ago. Some of the most prominent philosophers of ancient Greece wrote of the nature of deduction more than 2300 years ago, and thinkers in ancient China wrote of logical paradoxes around the same time. However, though its roots may be in the distant past, logic continues to be a vibrant field of study to this day. Modern logic originated in the work of the great Greek philosopher Aris- totle (384{322 bce), the most famous student of Plato (c.427{c.347 bce) and ∗Department of Mathematical Sciences; New Mexico State University; Las Cruces, NM 88003, USA; [email protected]; [email protected].
    [Show full text]
  • 2016 Clifton Henry.Pdf
    The Foundations of Mathematics History, Concepts, and Applications in Higher Level Mathematics by Clifton Henry A CAPSTONE PROJECT submitted in partial fulfillment of the requirements for the acknowledgement Honors Distinction Mathematics School of Engineering, Mathematics, and Science TYLER JUNIOR COLLEGE Tyler, Texas 2016 When people hear the word mathematics, some think numbers and others think solving for x and y. In all truth, the field of mathematics is more than numbers and equations. Mathematics was founded based off the principle of counting in 50,000 B.C.E. Mathematical contributions and ideas increased from the Babylonian Empire in 2000 BC to the 18th century, where mathematicians and philosophers developed ideas in algebra, geometry and calculus. It can be argued that mathematical contributions in the 19th century shaped the field of mathematics and set in place the true foundations of mathematics. In the 19th century, mathematical logic was founded, followed by the development of set theory, and then came the concept of mathematical function. Logic, set theory, and function are some of the foundations of mathematics, and the three revolutionized the field of mathematics as a whole. Mathematical fields, such as topology, abstract algebra, and probability rely heavily on the three foundations. Instead of being seen as numbers and equations, mathematics is the field of logic and proof that is based off the mathematical foundations of logic, set theory, and function. It is important to know how the ideas were developed and put to use in order for mathematics to have its meaning and significance. After understanding how the foundations were developed, it is important to understand how they apply in advanced mathematical fields such as topology, abstract algebra, and probability.
    [Show full text]
  • Augustus De Morgan (1806–1871)
    AUGUSTUS DE MORGAN (1806–1871) AUGUSTUS DE MORGAN was born in the month of June at Madura in the presid- ency of Madras, India; and the year of his birth may be found by solving a conundrum ¢ ¡ proposed by himself, “I was ¡ years of age in the year .” The problem is indeterm- inate, but it is made strictly determinate by the century of its utterance and the limit to a man’s life. His father was Col. De Morgan, who held various appointments in the service of the East India Company. His mother was descended from James Dodson, who computed a table of anti-logarithms, that is, the numbers corresponding to exact logarithms. It was the time of the Sepoy rebellion in India, and Col. De Morgan re- moved his family to England when Augustus was seven months old. As his father and grandfather had both been born in India, De Morgan used to say that he was neither English, nor Scottish, nor Irish, but a Briton “unattached,” using the technical term ap- plied to an undergraduate of Oxford or Cambridge who is not a member of any one of the Colleges. When De Morgan was ten years old, his father died. Mrs. De Morgan resided at various places in the southwest of England, and her son received his elementary edu- cation at various schools of no great account. His mathematical talents were unnoticed till he had reached the age of fourteen. A friend of the family accidentally discovered him making an elaborate drawing of a figure in Euclid with ruler and compasses, and explained to him the aim of Euclid, and gave him an initiation into demonstration.
    [Show full text]
  • Gottfried Wilhelm Leibniz (1646 – 1716)
    Gottfried Wilhelm Leibniz (1646 – 1716) From Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Gottfried_Leibniz Leibniz occupies a prominent place in the history of mathematics and the history of philosophy. He developed the infinitesimal calculus independently of Isaac Newton, and Leibniz's mathematical notation has been widely used ever since it was published. He became one of the most prolific inventors in the field of mechanical calculators. While working on adding automatic multiplication and division to Pascal's calculator, he was the first to describe a pinwheel calculator in 1685 and invented the Leibniz wheel, used in the arithmometer, the first mass-produced mechanical calculator. He also refined the binary number system, which is at the foundation of virtually all digital computers. In philosophy, Leibniz is mostly noted for his optimism, e.g., his conclusion that our Universe is, in a restricted sense, the best possible one that God could have created. Leibniz, along with René Descartes and Baruch Spinoza, was one of the three great 17th century advocates of rationalism. The work of Leibniz anticipated modern logic and analytic philosophy, but his philosophy also looks back to the scholastic tradition, in which conclusions are produced by applying reason to first principles or prior definitions rather than to empirical evidence. Leibniz made major contributions to physics and technology, and anticipated notions that surfaced much later in biology, medicine, geology, probability theory, psychology, linguistics, and information science. He wrote works on politics, law, ethics, theology, history, philosophy, and philology. Leibniz's contributions to this vast array of subjects were scattered in various learned journals, in tens of thousands of letters, and in unpublished manuscripts.
    [Show full text]