The Pterygopalatine Fossa: Morphometric CT Study with Clinical Implications

Total Page:16

File Type:pdf, Size:1020Kb

The Pterygopalatine Fossa: Morphometric CT Study with Clinical Implications Surgical and Radiologic Anatomy (2019) 41:161–168 https://doi.org/10.1007/s00276-018-2136-8 ORIGINAL ARTICLE The pterygopalatine fossa: morphometric CT study with clinical implications Aleksandra Vuksanovic‑Bozaric1 · Batric Vukcevic1 · Marija Abramovic1 · Nemanja Vukcevic1 · Natasa Popovic1 · Miroslav Radunovic1 Received: 29 June 2018 / Accepted: 16 November 2018 / Published online: 23 November 2018 © Springer-Verlag France SAS, part of Springer Nature 2018 Abstract Purpose The pterygopalatine fossa is a deep viscerocranial space containing the maxillary artery and nerve, the pterygopala- tine ganglion, and the nerve of the pterygoid canal (vidian nerve). The endoscopic approach to this area relies on adequate preoperative imaging, such as computed tomography (CT). The aim was to determine the morphometric characteristics of the pterygopalatine fossa and its communications, including several previously unpublished measurements. Methods 100 CT scans (56 male and 44 female patients) were analyzed. The axial, coronal, and sagittal slices, together with the three-dimensional reconstructions, were used in the study. Results The central diameter and the length of the foramen rotundum, the vertical diameter and the length of the pterygoid (vidian) canal, and the diameter of the sphenopalatine foramen were significantly larger in men. The central diameters of the foramen rotundum and the vidian canal were significantly smaller than their anterior and posterior transverse diameters. The vidian canal length of 12.1 mm indicates the presence of the type 3 VC with a sensitivity of 83% and a specificity of 85%. Conclusion Several new descriptions of the pterygopalatine fossa are presented here (such as the angle between the spheno- palatine foramen and the vidian canal, a new aspect in the understanding of the FR, and the distance between the posterior wall of the maxillary sinus to the vidian canal and the foramen rotundum), which might prove useful in the comprehension of the anatomy of the pterygopalatine fossa. Keywords Computed tomography · Morphometry · Pterygopalatine fossa · Pterygoid canal Introduction pterygoid—vidian canal (VC) [27, 32, 33]. Acar et al. sug- gested a new VC classification based on its localization: type The pterygopalatine fossa (PPF) is a deep space of the vis- 1 (the VC is located inside the roof of the PPF), type 2 (the cerocranium, located in front of the pterygoid process of VC partially protrudes into the sphenoid sinus), and type the sphenoid bone, lateral to the perpendicular plate of the 3 (the VC totally protrudes into the sphenoid sinus, with a palatine bone, and posterior to the maxilla. Laterally, the stalk connecting it to the PPF roof) [1]. The palatovaginal PPF communicates with the infratemporal fossa through canal represents a communication between the PPF and the the pterygomaxillary fissure (PMF) [12]. The nasal cavity nasopharynx [26], and the palatine foramina (the greater and the PPF communicate through the sphenopalatine fora- and the lesser) represents a communication between the PPF men (SPF), located between the orbital and the sphenoidal and the oral cavity [10]. The greater palatine foramen leads process of the palatine bone. The inferior orbital fissure into the greater palatine canal (GPC), an inferior extension connects the PPF to the orbit. Posteriorly, the PPF commu- of the PPF [34]. nicates with the middle cranial fossa through the foramen Chen et al. [6] proposed a topographical division of the rotundum (FR), and with the foramen lacerum through the PPF into five parts: the GPC (from the hard palate to the PPF), the infrapterygopalatine segment of the PPF (from * Batric Vukcevic the PMF to the pterygopalatine ganglion), the pterygopala- [email protected] tine—ganglionic segment (in the level of the ganglion), and the suprapterygopalatine segment (from the pterygopalatine 1 Faculty of Medicine, University of Montenegro, ganglion to the superior border of the FR, containing the 20000 Podgorica, Montenegro Vol.:(0123456789)1 3 162 Surgical and Radiologic Anatomy (2019) 41:161–168 SPF, the FR, the VC, and the palatovaginal canal) and the conditions were excluded from the study to evaluate roof of the PPF. normal anatomy. In addition, cases with pneumatized The clinical significance of the PPF lies in its numerous pterygoid processes or pneumatized posterior wall of the communications with the surrounding spaces, as well as the maxillary sinus (MS) were not analyzed. SOMATOM Sen- structures located in it: the maxillary artery and nerve, the sation 64 multi-slice scanner (Siemens Healthcare, Erlan- pterygopalatine ganglion, and the nerve of the pterygoid gen, Germany) was used to scan all the patients, with the canal (vidian nerve) [15, 29, 31]. The normal anatomy of following scanning protocol: exposure 120 kV, mAs 380, the PPF may be changed due to various expansive or inflam- rotation time 1 s, pitch 0.85, slice thickness 1 mm, and matory lesions. The bony structures of the PPF and the interval 1 mm. The images were analyzed as native scans, infratemporal fossa are used as landmarks in the diagnosis as well as multiplanar and volume rendering technique and treatment of different pathological processes affecting reconstructions in sharp algorithm, using syngo fastView the soft tissues of the face [30]. Therefore, the preoperative software on a dedicated workstation. Two observers (M.A. approach in the surgical management of viscerocranial dis- and B.V.) measured all the structures independently. Every ease includes modern imaging techniques such as computed measurement was taken three times, with the mean value tomography (CT), to provide adequate comprehension of the used for the further analysis. The intraclass correlation patient’s facial skeleton. ranged from 0.8 to 0.9 for all the measurements. The aim of the study was to determine the morphometric The axial slices (Fig. 1) were used to analyze the suprap- characteristics of the PPF and its communications, with sev- terygopalatine segment of the PPF according to Chen et al. eral measurements that were not published previously. The [6]. The slices displaying the maximum diameter and the results of the study may influence the surgery of the PPF, total length of the FR, the VC, and the SPF were used to take especially the endoscopic approach. the following measurements: 1. the transverse diameter of the FR and the VC at three Materials and methods levels: their anterior opening, central segment, and the posterior opening (Fig. 1a: 1, 2, and 3; Fig. 1b: 6, 7, and A retrospective study on 100 patients’ (56 male and 44 8, for the FR and the VC, respectively) female; age range 33–62) CT scans was performed. Cases 2. the length of the FR (Fig. 1a: 4) and the VC (Fig. 1b: 9) of facial fractures or skeletal disruptions, previous max- 3. the transverse diameter of the SPF and the PMF (at the illofacial surgery, sinonasal tumors, or inflammatory level of the VC) (Fig. 1b: 10 and 11, respectively) Fig. 1 Axial slices of the right pterygopalatine fossa used in measur- anterior, central, and posterior segment, respectively. 9 The length of ing the vidian canal, the foramen rotundum, and the sphenopalatine the vidian canal. 10, 11 The transverse diameter of the sphenopala- foramen (the left pterygopalatine fossa). A anterior, P posterior, M tine foramen and the pterygomaxillary fissure, respectively. 12 The medial, L lateral, MS maxillary sinus, ITF infratemporal fossa, SS distance between the medial border of the anterior opening of the vid- sphenoid sinus, NC nasal cavity. a Level of the foramen rotundum; ian canal to the posterior boundary of the sphenopalatine foramen. 13 with 1, 2, and 3 representing its anterior, central, and posterior diam- The distance from the posterior wall of the maxillary sinus to the vid- eter, respectively. 4 The length of the foramen rotundum. 5 The dis- ian canal. 14 The angle between the axis of the sphenopalatine fora- tance from the posterior wall of the maxillary sinus to the foramen men to the vidian canal rotundum. b The level of the vidian canal. 6, 7, 8 The diameter of its 1 3 Surgical and Radiologic Anatomy (2019) 41:161–168 163 4. the direct distance between the medial boundary of the anterior opening of the VC to the posterior margin of the SPF (Fig. 1b: 12) 5. the direct distance between the posterior wall of the MS to the anterior opening of the FR (Fig. 1a: 5) and the VC (Fig. 1b: 13) 6. the angle between the SPF axis (a line perpendicular to the SPF) and the VC axis (Fig. 1b: 14). The coronal slice depicting the maximum diameter of the VC and the FR was used to measure the direct distance from the FR and the VC to the midline (located at the level of the sphenoidal rostrum) (Fig. 2a: 1 and 2, respectively), as well as direct distance between the FR and the VC. Furthermore, the coronal slices were used to evaluate the VC type accord- ing to Acar et al. [1] (Fig. 2a). The sagittal slice showing the complete “inverted pyramid” shape of the PPF was used to Fig. 3 The three-dimensional image used in the study (depicting the measure its vertical diameter [the distance from the roof of left pterygoid process), with 1 and 2 representing the vertical diam- the PPF to the superior opening of the GPC (Fig. 2b: 3)]. eter of the anterior openings of the vidian canal (VC) and the fora- The 3D reconstruction of the posterior wall of the PPF was men rotundum (FR), respectively; 3 as the direct distance between the S I M L used to confirm the direct distance between the VC and the aforementioned openings. superior, inferior, medial, lateral, SS sphenoid sinus FR (Fig. 3: 3), as well as to measure the vertical diameters of their anterior openings (Fig. 3: 1 and 2, respectively). There was no significant difference between the values of The standard statistical protocol for descriptive statistics the direct FR-VC distance measurement from the coronal was used, including the Shapiro–Wilk and the Kolmogo- slices and the 3D reconstructions.
Recommended publications
  • MR Imaging of the Orbital Apex
    J Korean Radiol Soc 2000;4 :26 9-0 6 1 6 MR Imaging of the Orbital Apex: An a to m y and Pat h o l o g y 1 Ho Kyu Lee, M.D., Chang Jin Kim, M.D.2, Hyosook Ahn, M.D.3, Ji Hoon Shin, M.D., Choong Gon Choi, M.D., Dae Chul Suh, M.D. The apex of the orbit is basically formed by the optic canal, the superior orbital fis- su r e , and their contents. Space-occupying lesions in this area can result in clinical d- eficits caused by compression of the optic nerve or extraocular muscles. Even vas c u l a r changes in the cavernous sinus can produce a direct mass effect and affect the orbit ap e x. When pathologic changes in this region is suspected, contrast-enhanced MR imaging with fat saturation is very useful. According to the anatomic regions from which the lesions arise, they can be classi- fied as belonging to one of five groups; lesions of the optic nerve-sheath complex, of the conal and intraconal spaces, of the extraconal space and bony orbit, of the cav- ernous sinus or diffuse. The characteristic MR findings of various orbital lesions will be described in this paper. Index words : Orbit, diseases Orbit, MR The apex of the orbit is a complex region which con- tains many nerves, vessels, soft tissues, and bony struc- Anatomy of the orbital apex tures such as the superior orbital fissure and the optic canal (1-3), and is likely to be involved in various dis- The orbital apex region consists of the optic nerve- eases (3).
    [Show full text]
  • The Anatomic Analysis of the Vidian Canal and the Surrounding
    Braz J Otorhinolaryngol. 2019;85(2):136---143 Brazilian Journal of OTORHINOLARYNGOLOGY www.bjorl.org ORIGINAL ARTICLE The anatomic analysis of the vidian canal and the surrounding structures concerning vidian neurectomy ଝ using computed tomography scans a,∗ a b Gülay Ac¸ar , Aynur Emine C¸ic¸ekcibas¸ı , ˙Ibrahim C¸ukurova , c a d Kemal Emre Özen , Muzaffer ¸ekerS , ˙Ibrahim Güler a Necmettin Erbakan University, Meram Faculty of Medicine, Department of Anatomy, Konya, Turkey b Health Sciences University, Izmir Tepecik Trainig and Research Hospital, Department of Otolaryngology-Head and Neck Surgery, Izmir, Turkey c Katip C¸elebi University, Faculty of Medicine, Department of Anatomy, Izmir, Turkey d Selcuk University, Faculty of Medicine, Department of Radiology, Konya, Turkey Received 15 September 2017; accepted 8 November 2017 Available online 26 December 2017 KEYWORDS Abstract Intrasphenoid Introduction: The type of endoscopic approach chosen for vidian neurectomy can be specified septum; by evaluating the vidian canal and the surrounding sphenoid sinus structures. Morphometric Objective: The variations and morphometry of the vidian canal were investigated, focusing on analysis; the functional correlations between them which are crucial anatomical landmarks for preoper- Pterygoid process ative planning. pneumatization; Methods: This study was performed using paranasal multidetector computed tomography Vidian canal; images that were obtained with a section thickening of 0.625 mm of 250 adults. Vidian neurectomy Results: The distributions of 500 vidian canal variants were categorized as follows; Type 1, within the sphenoid corpus (55.6%); Type 2, partially protruding into the sphenoid sinus (34.8%); Type 3, within the sphenoid sinus (9.6%). The pneumatization of the pterygoid process is mostly seen in vidian canal Type 2 (72.4%) and Type 3 (95.8%) (p < 0.001).
    [Show full text]
  • Anatomy of Maxillary and Mandibular Local Anesthesia
    Anatomy of Mandibular and Maxillary Local Anesthesia Patricia L. Blanton, Ph.D., D.D.S. Professor Emeritus, Department of Anatomy, Baylor College of Dentistry – TAMUS and Private Practice in Periodontics Dallas, Texas Anatomy of Mandibular and Maxillary Local Anesthesia I. Introduction A. The anatomical basis of local anesthesia 1. Infiltration anesthesia 2. Block or trunk anesthesia II. Review of the Trigeminal Nerve (Cranial n. V) – the major sensory nerve of the head A. Ophthalmic Division 1. Course a. Superior orbital fissure – root of orbit – supraorbital foramen 2. Branches – sensory B. Maxillary Division 1. Course a. Foramen rotundum – pterygopalatine fossa – inferior orbital fissure – floor of orbit – infraorbital 2. Branches - sensory a. Zygomatic nerve b. Pterygopalatine nerves [nasal (nasopalatine), orbital, palatal (greater and lesser palatine), pharyngeal] c. Posterior superior alveolar nerves d. Infraorbital nerve (middle superior alveolar nerve, anterior superior nerve) C. Mandibular Division 1. Course a. Foramen ovale – infratemporal fossa – mandibular foramen, Canal -> mental foramen 2. Branches a. Sensory (1) Long buccal nerve (2) Lingual nerve (3) Inferior alveolar nerve -> mental nerve (4) Auriculotemporal nerve b. Motor (1) Pterygoid nerves (2) Temporal nerves (3) Masseteric nerves (4) Nerve to tensor tympani (5) Nerve to tensor veli palatine (6) Nerve to mylohyoid (7) Nerve to anterior belly of digastric c. Both motor and sensory (1) Mylohyoid nerve III. Usual Routes of innervation A. Maxilla 1. Teeth a. Molars – Posterior superior alveolar nerve b. Premolars – Middle superior alveolar nerve c. Incisors and cuspids – Anterior superior alveolar nerve 2. Gingiva a. Facial/buccal – Superior alveolar nerves b. Palatal – Anterior – Nasopalatine nerve; Posterior – Greater palatine nerves B.
    [Show full text]
  • Morfofunctional Structure of the Skull
    N.L. Svintsytska V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 Ministry of Public Health of Ukraine Public Institution «Central Methodological Office for Higher Medical Education of MPH of Ukraine» Higher State Educational Establishment of Ukraine «Ukranian Medical Stomatological Academy» N.L. Svintsytska, V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 2 LBC 28.706 UDC 611.714/716 S 24 «Recommended by the Ministry of Health of Ukraine as textbook for English- speaking students of higher educational institutions of the MPH of Ukraine» (minutes of the meeting of the Commission for the organization of training and methodical literature for the persons enrolled in higher medical (pharmaceutical) educational establishments of postgraduate education MPH of Ukraine, from 02.06.2016 №2). Letter of the MPH of Ukraine of 11.07.2016 № 08.01-30/17321 Composed by: N.L. Svintsytska, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor V.H. Hryn, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor This textbook is intended for undergraduate, postgraduate students and continuing education of health care professionals in a variety of clinical disciplines (medicine, pediatrics, dentistry) as it includes the basic concepts of human anatomy of the skull in adults and newborns. Rewiewed by: O.M. Slobodian, Head of the Department of Anatomy, Topographic Anatomy and Operative Surgery of Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Doctor of Medical Sciences, Professor M.V.
    [Show full text]
  • Craniodental Anatomy of a New Late Cretaceous Multituberculate Mammal from Udan Sayr, Mongolia
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 8-2014 Craniodental anatomy of a new late cretaceous multituberculate mammal from Udan Sayr, Mongolia. Amir Subhash Sheth University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Anatomy Commons, and the Medical Neurobiology Commons Recommended Citation Sheth, Amir Subhash, "Craniodental anatomy of a new late cretaceous multituberculate mammal from Udan Sayr, Mongolia." (2014). Electronic Theses and Dissertations. Paper 1317. https://doi.org/10.18297/etd/1317 This Master's Thesis is brought to you for free and open access by ThinkIR: The nivU ersity of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The nivU ersity of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. CRANIODENTAL ANATOMY OF A NEW LATE CRETACEOUS MULTITUBERCULATE MAMMAL FROM UDAN SAYR, MONGOLIA By Amir Subhash Sheth B.A., Centre College, 2010 A Thesis Submitted to the Faculty of the School of Medicine of the University of Louisville in Partial Fulfillment of the Requirements for the Degree of Master of Science Department of Anatomical Sciences and Neurobiology University of Louisville Louisville, Kentucky August 2014 CRANIODENTAL ANATOMY OF A NEW LATE CRETACEOUS MULTITUBERCULATE MAMMAL FROM UDAN SAYR, MONGOLIA By Amir Subhash Sheth B.A., Centre College, 2010 A Thesis Approved on July 18th, 2014 By the Following Thesis Committee: ________________________________ (Guillermo W.
    [Show full text]
  • 98796-Anatomy of the Orbit
    Anatomy of the orbit Prof. Pia C Sundgren MD, PhD Department of Diagnostic Radiology, Clinical Sciences, Lund University, Sweden Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lay-out • brief overview of the basic anatomy of the orbit and its structures • the orbit is a complicated structure due to its embryological composition • high number of entities, and diseases due to its composition of ectoderm, surface ectoderm and mesoderm Recommend you to read for more details Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 3 x 3 Imaging technique 3 layers: - neuroectoderm (retina, iris, optic nerve) - surface ectoderm (lens) • CT and / or MR - mesoderm (vascular structures, sclera, choroid) •IOM plane 3 spaces: - pre-septal •thin slices extraconal - post-septal • axial and coronal projections intraconal • CT: soft tissue and bone windows 3 motor nerves: - occulomotor (III) • MR: T1 pre and post, T2, STIR, fat suppression, DWI (?) - trochlear (IV) - abducens (VI) Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Superior orbital fissure • cranial nerves (CN) III, IV, and VI • lacrimal nerve • frontal nerve • nasociliary nerve • orbital branch of middle meningeal artery • recurrent branch of lacrimal artery • superior orbital vein • superior ophthalmic vein Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst.
    [Show full text]
  • 1A. Internal Auditory Meatus
    1a. Internal Auditory Meatus 1. The facial nerve leaves the posterior cranial fossa to enter the facial canal by way of the internal auditory meatus (black wire). The facial canal is within the petrous part of the temporal bone. 1b. Internal Auditory Meatus The facial nerve leaves the posterior cranial fossa to enter the facial canal by way of the internal auditory meatus (black wire). 2. Hiatus of the Canal and Groove for the Greater Superficial Petrosal Nerve The greater superficial petrosal nerve leaves the facial canal to enter the middle cranial fossa by way of the hiatus of the canal for the greater superficial petrosal nerve (black wire). 3. Pterygoid Canal at Anterior Lip of the Lacerate Foramen The greater superficial petrosal nerve is joined by the deep petrosal nerve to form the nerve of the pterygoid canal (black and red wire). This nerve leaves the middle cranial fossa to enter the pterygopalatine fossa by way of the pterygoid canal. The posterior opening of the pterygoid canal is at the anterior lip of the lacerate foramen. The greater superficial nerve and the deep petrosal nerve travel within the cavernous sinus. 4. Pterygopalatine Fossa Seen Through the Pterygomaxillary Fissure The anterior opening of the pterygoid canal is into the pterygopalatine fossa (black wire). The pterygopalatine fossa is located medial to the pterygomaxillary fissure and contains the pterygopalatine ganglion. 5. External Auditory Meatus The chorda tympani nerve leaves the facial canal and crosses the middle ear (black wire). It then leaves the middle ear to arrive in the infratemporal fossa by way of the petrotympanic fissure.
    [Show full text]
  • Dissection and Exposure of the Whole Course of Deep Nerves in Human Head Specimens After Decalcification
    Hindawi Publishing Corporation International Journal of Otolaryngology Volume 2012, Article ID 418650, 7 pages doi:10.1155/2012/418650 Research Article Dissection and Exposure of the Whole Course of Deep Nerves in Human Head Specimens after Decalcification Longping Liu, Robin Arnold, and Marcus Robinson Discipline of Anatomy and Histology, University of Sydney, Anderson Stuart Building F13, Sydney, NSW 2006, Australia Correspondence should be addressed to Marcus Robinson, [email protected] Received 29 July 2011; Revised 10 November 2011; Accepted 12 December 2011 AcademicEditor:R.L.Doty Copyright © 2012 Longping Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The whole course of the chorda tympani nerve, nerve of pterygoid canal, and facial nerves and their relationships with surrounding structures are complex. After reviewing the literature, it was found that details of the whole course of these deep nerves are rarely reported and specimens displaying these nerves are rarely seen in the dissecting room, anatomical museum, or atlases. Dissections were performed on 16 decalcified human head specimens, exposing the chorda tympani and the nerve connection between the geniculate and pterygopalatine ganglia. Measurements of nerve lengths, branching distances, and ganglia size were taken. The chorda tympani is a very fine nerve (0.44 mm in diameter within the tympanic cavity) and approximately 54 mm in length. The mean length of the facial nerve from opening of internal acoustic meatus to stylomastoid foramen was 52.5 mm.
    [Show full text]
  • CT of Perineural Tumor Extension: Pterygopalatine Fossa
    731 CT of Perineural Tumor Extension: Pterygopalatine Fossa Hugh D. Curtin1.2 Tumors of the oral cavity and paranasal sinuses can spread along nerves to areas Richard Williams 1 apparently removed from the primary tumor. In tumors of the palate, sinuses, and face, Jonas Johnson3 this "perineural" spread usually involves the maxillary division of the trigeminal nerve. The pterygopalatine fossa is a pathway of the maxillary nerve and becomes a key landmark in the detection of neural metastasis by computed tomogaphy (CT). Oblitera­ tion of the fat in the fossa suggests pathology. Case material illustrating neural extension is presented and the CT findings are described. Perineural extension is possibly the most insidious form of tumor spread of head and neck malignancy. After invading a nerve, tumor follows the sheath to reach the deeper connections of the nerve, escaping the area of a planned resection. Thus, detection of this form of extension is important in treatment planning and estimation of prognosis. The pterygopalatine fossa (PPF) is a key crossroad in extension along cranial nerve V. The second branch of the trigeminal nerve passes from the gasserian ganglion through the foramen rotundum into the PPF. Here the nerve branches send communications to the palate, sinus, nasal cavity, and face. Tumor can follow any of these routes proximally into the PPF and eventually to the gasserian ganglion in the middle cranial fossa. The PPF contains enough fat to be an ideal subject for computed tomographic (CT) evaluation. Obliteration of this fat is an important indicator of pathology, including perineural tumor spread. Other signs of perineural extension include enlargement of foramina, increased enhancement in the region of Meckel cave (gasserian ganglion), and atrophy of the muscles innervated by the trigeminal nerve.
    [Show full text]
  • MBB: Head & Neck Anatomy
    MBB: Head & Neck Anatomy Skull Osteology • This is a comprehensive guide of all the skull features you must know by the practical exam. • Many of these structures will be presented multiple times during upcoming labs. • This PowerPoint Handout is the resource you will use during lab when you have access to skulls. Mind, Brain & Behavior 2021 Osteology of the Skull Slide Title Slide Number Slide Title Slide Number Ethmoid Slide 3 Paranasal Sinuses Slide 19 Vomer, Nasal Bone, and Inferior Turbinate (Concha) Slide4 Paranasal Sinus Imaging Slide 20 Lacrimal and Palatine Bones Slide 5 Paranasal Sinus Imaging (Sagittal Section) Slide 21 Zygomatic Bone Slide 6 Skull Sutures Slide 22 Frontal Bone Slide 7 Foramen RevieW Slide 23 Mandible Slide 8 Skull Subdivisions Slide 24 Maxilla Slide 9 Sphenoid Bone Slide 10 Skull Subdivisions: Viscerocranium Slide 25 Temporal Bone Slide 11 Skull Subdivisions: Neurocranium Slide 26 Temporal Bone (Continued) Slide 12 Cranial Base: Cranial Fossae Slide 27 Temporal Bone (Middle Ear Cavity and Facial Canal) Slide 13 Skull Development: Intramembranous vs Endochondral Slide 28 Occipital Bone Slide 14 Ossification Structures/Spaces Formed by More Than One Bone Slide 15 Intramembranous Ossification: Fontanelles Slide 29 Structures/Apertures Formed by More Than One Bone Slide 16 Intramembranous Ossification: Craniosynostosis Slide 30 Nasal Septum Slide 17 Endochondral Ossification Slide 31 Infratemporal Fossa & Pterygopalatine Fossa Slide 18 Achondroplasia and Skull Growth Slide 32 Ethmoid • Cribriform plate/foramina
    [Show full text]
  • Yagenich L.V., Kirillova I.I., Siritsa Ye.A. Latin and Main Principals Of
    Yagenich L.V., Kirillova I.I., Siritsa Ye.A. Latin and main principals of anatomical, pharmaceutical and clinical terminology (Student's book) Simferopol, 2017 Contents No. Topics Page 1. UNIT I. Latin language history. Phonetics. Alphabet. Vowels and consonants classification. Diphthongs. Digraphs. Letter combinations. 4-13 Syllable shortness and longitude. Stress rules. 2. UNIT II. Grammatical noun categories, declension characteristics, noun 14-25 dictionary forms, determination of the noun stems, nominative and genitive cases and their significance in terms formation. I-st noun declension. 3. UNIT III. Adjectives and its grammatical categories. Classes of adjectives. Adjective entries in dictionaries. Adjectives of the I-st group. Gender 26-36 endings, stem-determining. 4. UNIT IV. Adjectives of the 2-nd group. Morphological characteristics of two- and multi-word anatomical terms. Syntax of two- and multi-word 37-49 anatomical terms. Nouns of the 2nd declension 5. UNIT V. General characteristic of the nouns of the 3rd declension. Parisyllabic and imparisyllabic nouns. Types of stems of the nouns of the 50-58 3rd declension and their peculiarities. 3rd declension nouns in combination with agreed and non-agreed attributes 6. UNIT VI. Peculiarities of 3rd declension nouns of masculine, feminine and neuter genders. Muscle names referring to their functions. Exceptions to the 59-71 gender rule of 3rd declension nouns for all three genders 7. UNIT VII. 1st, 2nd and 3rd declension nouns in combination with II class adjectives. Present Participle and its declension. Anatomical terms 72-81 consisting of nouns and participles 8. UNIT VIII. Nouns of the 4th and 5th declensions and their combination with 82-89 adjectives 9.
    [Show full text]
  • Radiological Localization of Greater Palatine Foramen Using Multiple Anatomical Landmarks
    MOJ Anatomy & Physiology Research Article Open Access Radiological localization of greater palatine foramen using multiple anatomical landmarks Abstract Volume 2 Issue 7 - 2016 Identification of greater palatine foramen is of prime value for dentists and the oral and Viveka S,1 Mohan Kumar2 maxillofacial surgeons. The objective of present study was to radiologically localize greater 1Department of Anatomy, Azeezia Institute of Medical Sciences, palatine foramen with multiple anatomical landmarks. All Computer Tomography scans India of individuals who have undergone paranasal sinus evaluation were obtained from the 2Department of Radiology, Azeezia Institute of Medical Sciences, Department of Radiology, Azeezia Institute of Medical Sciences, from April 2015 to April India 2016. Distance of greater palatine foramen from various known anatomical landmarks was measured across the CT slices. Forty-four CT scans were studied, mean age was 32(±2.3) Correspondence: Viveka S, Assistant professor, Department years. All scans were from individuals of south Indian origin. GPF was located at 38.38mm of Anatomy, Azeezia Institute of Medical Sciences, Kollam, India, from incisive fossa, 17.6mm from posterior nasal spine, 18.38mm from intermaxillary Email [email protected] suture, 5.03mm from second molar and 5.28mm from third molar. Distances of GPF from incisive foramen and intermaxillary suture differed significantly on right and left sides. In Received: May 25, 2016 | Published: December 29, 2016 25(56.8%) cases GPF was located closer to third molar. In seven cases, it was closer to second molar and in 12 cases, GPF was located at the junction of second and third molar. Posterior location of GPF, posterior to third molar is not noted.
    [Show full text]