Materials and Methods Cell Culture and Transfection. the Human

Total Page:16

File Type:pdf, Size:1020Kb

Materials and Methods Cell Culture and Transfection. the Human Materials and methods Cell culture and transfection. The human osteosarcoma cell line U2OS, human cervical cancer cell line HeLa, mouse embryo fibroblast cell line NIH3T3, and human embryonic kidney HEK293T cell line were obtained from ATCC. The cells were cultured in DMEM (ThermoFisher Scientific) supplemented with 10% FBS and NEAA according to the provided protocol. For serum starvation, cells were cultured with DMEM without serum for several time points. For amino acids starvation, cells were cultured with medium without amino acids for 48h. For high salt treatment, cells were cultured with 190mM NaCl for 48h. For 1,6-hexanediol treatment, cells were treated with 10% 1,6-hexanediol for 2min at room temperature. Plasmids were transfected into cells using polyethyleneimine (PEI) according to the operation instructions. Plasmid construction. ORFs were amplified by PCR from cDNA (derived from AML12 cells cells). The PCR products were digested with BamHI (AscI) and MluI and cloned into the retroviral vector Lv-EF1a-GFP-MCS-IRES-puro. For RNAi experiments, shRNA plasmids were constructed by cloning the target sequences to the pLKO.1-puro vector: GAAATTCCAGACAATGTT AGA (shKDM7A-1), GTATAACTTCCACATTACAGT (shKDM7A-2) and ACTCGACAC TATAGTATCTCA (shControl). FRAP. The FRAP assay was performed in a live-cell chamber with confocal laser scanning microscopy. The bleaching duration was about 4 s in an area of one nuclear body. Images were captured at 1.3-s interval for 40 time points. The data were processed with LAS AF Lite. Live-cell imaging. Live-cell imaging experiments were performed on a GE DeltaVision inverted microscope. Images of U2OS cells were captured every 10 min for a total of 10 h. The data were processed with the Volocity software. Western blotting. Cells lysates were separated by SDS-PAGE and then transferred onto polyvinylidene fluoride (PVDF) membranes (Millipore). After washing and blocking, the membranes were incubated with primary antibodies as follows: anti-β-actin (66009-1-Ig, Proteintech), anti-GAPDH (9600, AGOMA), anti-H3 (AF0009, Beyotime), anti-MCM7 (sc-9966, Santa Cruz) and anti-KDM7A (raised against amino acids 417-735 in rabbit, ABclonal). The blots were detected with HRP-coupled secondary antibodies. Immunofluorescence. Immunofluorescence was performed as described elsewhere (Zhang et al., 2015). Besides those used for western blotting, other primary antibodies were: anti-SC35 (ab11826, Abcam), anti-PML (A1184, ABclonal; 05-718, Merck Millipore), anti-PSPC1 (SC-374387, Santa Cruz), anti-COIL (SC-55594, Santa Cruz), anti-Sam68 (sc-1238, Santa Cruz), anti-BMI1 (sc-390443, Santa Cruz) anti-C23 (10556-1-AP, Proteintech), anti-H3 (ab1791, Abcam) and MCM7 (sc-9966, Santa Cruz). The slides were assessed with a confocal laser scanning microscopy (Leica, SP5 and SP8). Cell cycle assay. The samples were prepared with the cell cycle and apoptosis analysis kit (Beyotime), and then analyzed using a FACSCalibur flow cytometer (BD). TEM with HRP-DAB. The NIH3T3 cells and mouse testis (Department of Laboratory Animal Science provided guidance on the study protocol) were fixed with 4% formaldehyde and incubated with the KDM7A antibody. The primary antibody was detected using an HRP secondary antibody. Then, DAB (P0203, Beyotime) was used for the HRP staining, which is EM-visible. After that, the samples were prepared for conventional TEM. The sections were stained and imaged at the EM facility of ION (Institute of Neuroscience, Shanghai, China). Immunoprecipitation and mass spectrometry. The U2OS cells were transfected with GFP-only or GFP-KDM7A plasmids for 24 h and then harvested. The nuclear extracts were prepared from 20 million cells and were incubated with 20 L GFP-TRAP_M (gtm-20, Chromotek) in 50 mM Tris HCl (pH 7.5), 125 mM NaCl, 0.2% NP-40, 5% glycerol, 1.5 mM MgCl2, and protease inhibitors. The LC-MS/MS experiments and data analysis were performed as described elsewhere (Zhang et al., 2015). The experiments were conducted using three biological replicates, and the proteins appeared three times in the GFP-KDM7A group but not more than once in the GFP-only group were considered as candidates. For IP/MS assay in HeLa cells under 0% FBS, cells were harvested after cultured in 0% FBS for 48h, with IgG as control. The proteins appeared more than two times in KDM7A group but not more than once in control group were considered as candidates. Protein purification. The KDM7A and C-terminal of KDM7A cDNA was cloned into the pCAG-6xHis-GFP -KDM7A plasmid and then transfected into HEK293T cells. The proteins were purified with Ni Aogarose 6 FF (AOGMA) with the AKTA system (GE Healthcare Life Sciences). The proteins were then concentrated in an Amicon Ultracel-50K spin concentrator and was exchanged to storage buffer [50 mM Tris-HCl( pH 7.5), 200 mM NaCl, 1 mM DTT, 10% glycerol]. The concentrated proteins were stored in -80°C freezer after flash freezing in liquid nitrogen. Liquid droplet assay. For the droplet assay, proteins were dropped on the living cell chamber at concentrations of 0.25, 0.5, 1, 2, 3 μM in the reaction buffer [50 mM Tris-HCl (pH 7.5), 100 mM NaCl, 1 mM DTT], and then imaged with a confocal laser scanning microscopy (Leica, SP5). For DNA contained droplet assays, genomic DNA was extracted from NIH3T3 cells and was sheered by sonication to lengths within the range of 300-700 bp. DNA was added to the protein solution at different concentrations and then imaged with a confocal laser scanning microscope (Leica, SP5). Supplementary figure legends Fig. S1: KDM7A marks a type of nuclear bodies (K-bodies) in serum starved Hela cells. (A) The separated images of co-staining of KDM7A and SC35, PSPC1, PML, Coilin, BMI1 and Sam68 in Hela cells treated with 0% FBS for 48h, respectively, in Figure 1D. Scale bar, 10 µm. (B) Co-stain of KDM7A and Pol II in Hela cells treated with 0% FBS for 48h. Scale bar, 10 µm. Right, Relative fluorescence intensity of KDM7A and Pol II from a to b. (C) Representative images of KDM7A in Hela cells treated with amino acids starvation for 0h and 48h. Scale bar, 10 µm. (D) The sizes of KDM7A foci in Hela cells under normal and amino acids starvation condition. 16-18 cells were analyzed. ns p>0.05 by unpaired t-test. (E) Representative images of KDM7A in Hela cells treated with 190mM NaCl for 0h and 48h. Scale bar, 10 µm. (F) The sizes of KDM7A foci in Hela cells treated with 190mM NaCl for 0h and 48h. 16-20 cells were analyzed. ****p<0.0001 by unpaired t-test. Fig.S2: KDM7A condensates in U2OS cells transfected with nGFP-KDM7A. (A) Western blot of H3K9me2 and H3K27me2 in Control and nGFP-KDM7A transfected 293T cells. H3 as the loading control. (B) The localization of nGFP-KDM7A expressed in U2OS cells. Scale bar, 10 µm. (C) The validation of KDM7A antibody. Representative images of immunofluorescence with KDM7A antibody in U2OS cells transfected with nGFP-KDM7A. Right: Relative fluorescence intensity of nGFP-KDM7A and KDM7A antibody from a to b. Scale bar, 10 µm. (D) The separated images of U2OS cells transfected with nGFP-KDM7A and stained with SC35, PSPC1, PML, Coilin, BMI1 and Sam68 in Figure 1E. Scale bar, 10 µm. Fig. S3: K-bodies interact with proteins associated with important biological processes. (A) Silver staining of SDS-PAGE gel separating proteins immunoprecipitated with GFP-trap in U2OS cells. GFP-only as the negative control. (B) Clustering analysis of nGFP-KDM7A-associated proteins with normalized number of peptides detected by LC-MS. Three biological replicates were conducted for nGFP-KDM7A (K1-K3) and GFP-only (G1-G3), respectively. (C) Gene Ontology (GO) analysis of biological processes of KDM7A-associated proteins in U2OS cells. The enriched terms are ranked by -log10 (p values). (D) Venn diagram of overlap proteins of KDM7A-associated proteins in Hela cells under 0% FBS and U2OS cells transfected with nGFP-KDM7A. Fig. S4: KDM7A is partially required for the formation of MCM7 puncta. (A) The localization of KDM7A and HNRNPU in U2OS cells transfected with nGFP-KDM7A. Scale bar, 10 µm. Right, relative fluorescence intensity of KDM7A and HNRNPU from a to b. (B) Co-staining of KDM7A and MCM7 in shControl, shKDM7A-1 and shKDM7A-2 Hela cells treated with 0% FBS for 48h. Scale bar, 10 µm. (C) The relative size of MCM7 foci in shControl, shKDM7A-1 and shKDM7A-2 Hela cells treated with 0% FBS for 48h. 15-16 cells were analyzed. ****p<0.0001 by unpaired t-test. (D) Western blot of KDM7A and MCM7 in shControl Hela cells under 10% FBS and shControl, shKDM7A-1, shKDM7A-2 Hela cells under 0% FBS, respectively. GAPDH as the loading control. Fig. S5: KDM7A condensates are surrounded by chromatin. (A) Representative results of immunofluorescence analysis with H3 antibody in KDM7A transfected (up) and control (down) cell. Scale bar, 10 µm. Right, relative fluorescence intensity of H3 and KDM7A crossed by the arrow on the left. Fig. S6: K-bodies are formed by LLPS. (A) Schematic representation and representative images of the appearance process of K-bodies in the inducible U2OS cell line. Scale bar, 10 µm. (B) Representative images of U2OS cells transfected with FL or C-terminal nGFP-KDM7A, respectively. Scale bar, 10 µm. (C) Quantification of the number (left) and size (right) of granules formed by FL or C-terminal nGFP-KDM7A. A total of 11 cells about 200 nuclear bodies were counted for each group. *p<0.05, ****p<0.0001 by unpaired t-test. (D) The N-terminal of KDM7A aggregates into the nucleoli as detected by C23 immunofluorescence. Scale bar, 10 µm.
Recommended publications
  • Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
    Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent
    [Show full text]
  • Localization of Condensin Subunit XCAP-E in Interphase Nucleus, Nucleoid and Nuclear
    1 Localization of condensin subunit XCAP-E in interphase nucleus, nucleoid and nuclear matrix of XL2 cells. Elmira Timirbulatova, Igor Kireev, Vladimir Ju. Polyakov, and Rustem Uzbekov* Division of Electron Microscopy, A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia. *Author for correspondence: telephone. 007-095-939-55-28; FAX 007-095-939-31-81 e-mail: [email protected] Key words: XCAP-E; nucleolus; condensin; nuclear matrix; Xenopus. Abbreviations: DAPI , 4’, 6 diamidino-2-phenylindole; DNP, deoxyribonucleoprotein; DRB, 5,6-dichloro-1b-d-ribofuranosylbenzimidazole; SMC, structural maintenance of chromosomes; XCAP-E, Xenopus chromosome associated protein E. 2 Abstract The Xenopus XCAP-E protein is a component of condensin complex In the present work we investigate its localization in interphase XL2 cells and nucleoids. We shown, that XCAP-E is localizes in granular and in dense fibrillar component of nucleolus and also in small karyoplasmic structures (termed “SMC bodies”). Extraction by 2M NaCl does not influence XCAP-E distribution in nucleolus and “SMC bodies”. DNAse I treatment of interphase cells permeabilized by Triton X-100 or nucleoids resulted in partial decrease of labeling intensity in the nucleus, whereas RNAse A treatment resulted in practically complete loss of labeling of nucleolus and “SMC bodies” labeling. In mitotic cells, however, 2M NaCl extraction results in an intense staining of the chromosome region although the labeling was visible along the whole length of sister chromatids, with a stronger staining in centromore region. The data are discussed in view of a hypothesis about participation of XCAP-E in processing of ribosomal RNA.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Gemin4 Is an Essential Gene in Mice, and Its Overexpression in Human Cells Causes Relocalization of the SMN Complex to the Nucleoplasm Ingo D
    © 2018. Published by The Company of Biologists Ltd | Biology Open (2018) 7, bio032409. doi:10.1242/bio.032409 RESEARCH ARTICLE Gemin4 is an essential gene in mice, and its overexpression in human cells causes relocalization of the SMN complex to the nucleoplasm Ingo D. Meier1,*,§, Michael P. Walker1,2,‡,§ and A. Gregory Matera¶ ABSTRACT nuclear ribonucleoproteins (snRNPs). Each of these snRNPs Gemin4 is a member of the Survival Motor Neuron (SMN) protein contains a common set of seven RNA binding factors, called Sm complex, which is responsible for the assembly and maturation of Sm- proteins, that forms a heptameric ring around the snRNA, known as class small nuclear ribonucleoproteins (snRNPs). In metazoa, Sm the Sm core. Biogenesis of the Sm core is carried out by another snRNPs are assembled in the cytoplasm and subsequently imported macromolecular assemblage called the Survival Motor Neuron into the nucleus. We previously showed that the SMN complex is (SMN) complex, consisting of at least nine proteins (Gemins 2-8, required for snRNP import in vitro, although it remains unclear which unrip and SMN) (reviewed in Battle et al., 2006a; Matera et al., specific components direct this process. Here, we report that Gemin4 2007; Matera and Wang, 2014). overexpression drives SMN and the other Gemin proteins from the Following RNA polymerase II-mediated transcription in the cytoplasm into the nucleus. Moreover, it disrupts the subnuclear nucleus, pre-snRNAs are exported to the cytoplasm for assembly localization of the Cajal body marker protein, coilin, in a dose- into stable RNP particles (Jarmolowski et al., 1994; Ohno et al., dependent manner.
    [Show full text]
  • Supplementary Table 2
    Supplementary Table 2. Differentially Expressed Genes following Sham treatment relative to Untreated Controls Fold Change Accession Name Symbol 3 h 12 h NM_013121 CD28 antigen Cd28 12.82 BG665360 FMS-like tyrosine kinase 1 Flt1 9.63 NM_012701 Adrenergic receptor, beta 1 Adrb1 8.24 0.46 U20796 Nuclear receptor subfamily 1, group D, member 2 Nr1d2 7.22 NM_017116 Calpain 2 Capn2 6.41 BE097282 Guanine nucleotide binding protein, alpha 12 Gna12 6.21 NM_053328 Basic helix-loop-helix domain containing, class B2 Bhlhb2 5.79 NM_053831 Guanylate cyclase 2f Gucy2f 5.71 AW251703 Tumor necrosis factor receptor superfamily, member 12a Tnfrsf12a 5.57 NM_021691 Twist homolog 2 (Drosophila) Twist2 5.42 NM_133550 Fc receptor, IgE, low affinity II, alpha polypeptide Fcer2a 4.93 NM_031120 Signal sequence receptor, gamma Ssr3 4.84 NM_053544 Secreted frizzled-related protein 4 Sfrp4 4.73 NM_053910 Pleckstrin homology, Sec7 and coiled/coil domains 1 Pscd1 4.69 BE113233 Suppressor of cytokine signaling 2 Socs2 4.68 NM_053949 Potassium voltage-gated channel, subfamily H (eag- Kcnh2 4.60 related), member 2 NM_017305 Glutamate cysteine ligase, modifier subunit Gclm 4.59 NM_017309 Protein phospatase 3, regulatory subunit B, alpha Ppp3r1 4.54 isoform,type 1 NM_012765 5-hydroxytryptamine (serotonin) receptor 2C Htr2c 4.46 NM_017218 V-erb-b2 erythroblastic leukemia viral oncogene homolog Erbb3 4.42 3 (avian) AW918369 Zinc finger protein 191 Zfp191 4.38 NM_031034 Guanine nucleotide binding protein, alpha 12 Gna12 4.38 NM_017020 Interleukin 6 receptor Il6r 4.37 AJ002942
    [Show full text]
  • <Abstract Centered> an ABSTRACT of the THESIS OF
    AN ABSTRACT OF THE DISSERTATION OF Michael Austin Garland for the degree of Doctor of Philosophy in Toxicology presented on June 14, 2019. Title: Transcriptomic Approaches for Discovering Regenerative and Developmental Regulatory Networks in Zebrafish Abstract approved: _____________________________________________________________________ Robert L. Tanguay Zebrafish are capable of fully regenerating organs and tissue such as their caudal fin, which is similar to a human regrowing an arm or a leg. In contrast, most mammals including humans have a greatly reduced capacity for wound healing. The ability of zebrafish to undergo this regenerative process, called epimorphic regeneration, hinges on the capacity to form a blastema at the wound site. The blastema quickly recapitulates the developmental processes involved in complex tissue formation to restore lost or damaged tissue. One key mechanism for inducing blastema formation is global repression of genes involved in tissue differentiation and maintenance. Induction of repressive factors, such as microRNAs (miRNAs), are involved in reprogramming cells during epimorphic regeneration. The upstream mechanism by which zebrafish undergo epimorphic regeneration remains elusive. Furthermore, while focus is shifting toward regulatory RNAs such as miRNAs, the full complement of their repressive activities is unknown. We took a transcriptomics approach to investigating epimorphic regeneration and fin development. Parallel sequencing of total RNA and small RNA samples was performed on regenerating fin tissue at 1 day post-amputation (dpa). Most miRNAs had increased expression, consistent with global repression of genes involved in cell specialization during de-differentiation. We identified predicted interactions between miRNAs and genes involved in transcriptional regulation, chromatin modification, and developmental signaling. miR-146a and miR-146b are anti- inflammatory miRNAs that were predicted to target eya4, which is involved in chromatin remodeling and innate immunity.
    [Show full text]
  • Biochemical and Proteomic Profiling of Maize Endosperm Texture and Protein Quality Kyla J
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses, Dissertations, and Student Research in Agronomy and Horticulture Department Agronomy and Horticulture 7-2015 Biochemical and Proteomic Profiling of Maize Endosperm Texture and Protein Quality Kyla J. Morton University of Nebraska-Lincoln Follow this and additional works at: http://digitalcommons.unl.edu/agronhortdiss Part of the Agricultural Science Commons, Agronomy and Crop Sciences Commons, Plant Biology Commons, and the Plant Breeding and Genetics Commons Morton, Kyla J., "Biochemical and Proteomic Profiling of Maize Endosperm Texture and Protein Quality" (2015). Theses, Dissertations, and Student Research in Agronomy and Horticulture. 88. http://digitalcommons.unl.edu/agronhortdiss/88 This Article is brought to you for free and open access by the Agronomy and Horticulture Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research in Agronomy and Horticulture by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. BIOCHEMICAL AND PROTEOMIC PROFILING OF MAIZE ENDOSPERM TEXTURE AND PROTEIN QUALITY by Kyla J. Morton A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Agronomy and Horticulture (Plant Breeding and Genetics) Under the Supervision of Professor David R. Holding Lincoln, Nebraska July, 2015 BIOCHEMICAL AND PROTEOMIC ANALYSIS OF MAIZE ENDOSPERM KERNEL TEXTURE AND PROTEIN QUALITY Kyla J. Morton, Ph.D. University of Nebraska, 2015 Advisor: David R. Holding The research described herein, focuses on the biochemical and proteomic analysis of the maize endosperm and what influences kernel texture.
    [Show full text]
  • Divergent Metabolism Between Trypanosoma Congolense
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.05.425368; this version posted January 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Divergent metabolism between Trypanosoma 2 congolense and Trypanosoma brucei results in 3 differential drug sensitivity 4 5 P. C. Steketee1*, E. A. Dickie2, J. Iremonger1, K. Crouch2, E. Paxton1, S. Jayaraman1, O. A. 6 Alfituri1, G. Awuah-Mensah3, R. Ritchie2, A. Schnaufer4, H. P. de Koning5, C. Gadelha3, B. 7 Wickstead3, M. P. Barrett2,6 and L. J. Morrison1 8 1The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, 9 Edinburgh, UK 10 2Wellcome Centre foar Integrative Parasitology, Institute of Infection, Immunity and 11 Inflammation, University of Glasgow, Glasgow, UK 12 3School of Life Sciences, University of Nottingham, Nottingham, UK 13 4Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK 14 5Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK 15 6Glasgow Polyomics, University of Glasgow, UK 16 *Corresponding author: [email protected] 17 18 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.05.425368; this version posted January 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Abstract 20 Animal African Trypanosomiasis (AAT) is a debilitating livestock disease prevalent across 21 sub-Saharan Africa, a main cause of which is the protozoan parasite Trypanosoma 22 congolense.
    [Show full text]
  • Incretin Receptors for Glucagon-Like Peptide 1 and Glucose
    ORIGINAL ARTICLE Incretin Receptors for Glucagon-Like Peptide 1 and Glucose-Dependent Insulinotropic Polypeptide Are Essential for the Sustained Metabolic Actions of Vildagliptin in Mice Grace Flock, Laurie L. Baggio, Christine Longuet, and Daniel J. Drucker OBJECTIVE—Dipeptidyl peptidase-4 (DPP4) inhibitors lower CONCLUSIONS—These findings illustrate that although GLP-1 blood glucose in diabetic subjects; however, the mechanism of and GIP receptors represent the dominant molecular mecha- action through which these agents improve glucose homeostasis nisms for transducing the glucoregulatory actions of DPP4 remains incompletely understood. Although glucagon-like pep- inhibitors, prolonged DPP4 inhibition modulates the expression tide (GLP)-1 and glucose-dependent insulinotropic polypeptide of genes important for lipid metabolism independent of incretin (GIP) represent important targets for DPP4 activity, whether receptor action in vivo. Diabetes 56:3006–3013, 2007 additional substrates are important for the glucose-lowering actions of DPP4 inhibitors remains uncertain. RESEARCH DESIGN AND METHODS—We examined the ncretins are peptide hormones secreted after meal efficacy of continuous vildagliptin administration in wild-type ingestion that potentiate glucose-stimulated insulin (WT) and dual incretin receptor knockout (DIRKO) mice after 8 secretion. The two predominant incretins are glu- weeks of a high-fat diet. Icose-dependent insulinotropic polypeptide (GIP) RESULTS—Vildagliptin had no significant effect on food intake, and glucagon-like peptide (GLP)-1. GIP and GLP-1 act via energy expenditure, body composition, body weight gain, or specific receptors on ␤-cells to increase insulin biosynthe- insulin sensitivity in WT or DIRKO mice. However, glycemic sis and secretion, thereby maintaining the ability of the excursion after oral glucose challenge was significantly reduced endocrine pancreas to regulate the disposal and storage of in WT but not in DIRKO mice after vildagliptin treatment.
    [Show full text]
  • Organization of the Mevalonate Kinase (MVK)
    European Journal of Human Genetics (2001) 9, 253 ± 259 ã 2001 Nature Publishing Group All rights reserved 1018-4813/01 $15.00 www.nature.com/ejhg ARTICLE Organization of the mevalonate kinase (MVK)geneand identification of novel mutations causing mevalonic aciduria and hyperimmunoglobulinaemia D and periodic fever syndrome Sander M Houten1, Janet Koster1, Gerrit-Jan Romeijn1, Joost Frenkel2, Maja Di Rocco3, Ubaldo Caruso3, Pierre Landrieu4, Richard I Kelley5, Wietse Kuis2, Bwee Tien Poll-The1,2, K Michael Gibson6, Ronald JA Wanders1 and Hans R Waterham*,1 1Departments of Pediatrics and Clinical Chemistry, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; 2Departments of General Pediatrics, Immunology and Metabolic Disorders, University Children's Hospital `Het Wilhelmina Kinderziekenhuis', Utrecht, The Netherlands; 3Department of Pediatrics, Instituto `G. Gaslini', Genova, Italy; 4Centre Hospitalier Universitaire Paris-Sud-BiceÃtre, Laboratoire de Biochemie et Service de NeuropeÂdiatrie, Le Kremlin-BiceÃtre, France; 5Kennedy Krieger Institute and John Hopkins University School of Medicine, Baltimore, MD, USA; 6Oregon Health Sciences University, Department of Molecular and Medical Genetics and Biochemical Genetics Laboratory, Portland, OR, USA Mevalonic aciduria (MA) and hyperimmunoglobulinaemia D and periodic fever syndrome (HIDS) are two autosomal recessive inherited disorders both caused by a deficient activity of the enzyme mevalonate kinase (MK) resulting from mutations in the encoding MVK gene. Thus far, disease-causing mutations only could be detected by analysis of MVK cDNA. We now describe the genomic organization of the human MVK gene. It is 22 kb long and contains 11 exons of 46 to 837 bp and 10 introns of 379 bp to 4.2 kb.
    [Show full text]
  • A Role for Protein Phosphatase PP1 in SMN Complex Formation And
    A role for protein phosphatase PP1γ in SMN complex formation and subnuclear localization to Cajal bodies Benoît Renvoisé, Gwendoline Quérol, Eloi Rémi Verrier, Philippe Burlet, Suzie Lefebvre To cite this version: Benoît Renvoisé, Gwendoline Quérol, Eloi Rémi Verrier, Philippe Burlet, Suzie Lefebvre. A role for protein phosphatase PP1γ in SMN complex formation and subnuclear localization to Cajal bodies. Journal of Cell Science, Company of Biologists, 2012, 125 (12), pp.2862-2874. 10.1242/jcs.096255. hal-00776457 HAL Id: hal-00776457 https://hal.archives-ouvertes.fr/hal-00776457 Submitted on 20 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 2862 Research Article A role for protein phosphatase PP1c in SMN complex formation and subnuclear localization to Cajal bodies Benoıˆt Renvoise´ 1,*,`, Gwendoline Que´rol1,*, Eloi Re´mi Verrier1,§, Philippe Burlet2 and Suzie Lefebvre1," 1Laboratoire de Biologie Cellulaire des Membranes, Programme de Biologie Cellulaire, Institut Jacques-Monod, UMR 7592 CNRS, Universite´Paris Diderot, Sorbonne Paris Cite´,
    [Show full text]
  • Table S3a Table
    Table S3a C2 KEGG Geneset Genesets enriched and upregulated in responders (FDR <0.25) Genesets enriched and upregulated in non-responders (FDR <0.25) HSA04610_COMPLEMENT_AND_COAGULATION_CASCADES HSA00970_AMINOACYL_TRNA_BIOSYNTHESIS HSA04640_HEMATOPOIETIC_CELL_LINEAGE HSA05050_DENTATORUBROPALLIDOLUYSIAN_ATROPHY HSA04060_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION HSA04514_CELL_ADHESION_MOLECULES HSA04650_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY HSA04630_JAK_STAT_SIGNALING_PATHWAY HSA03320_PPAR_SIGNALING_PATHWAY HSA04080_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION HSA00980_METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450 HSA00071_FATTY_ACID_METABOLISM HSA04660_T_CELL_RECEPTOR_SIGNALING_PATHWAY HSA04612_ANTIGEN_PROCESSING_AND_PRESENTATION HSA04662_B_CELL_RECEPTOR_SIGNALING_PATHWAY HSA04920_ADIPOCYTOKINE_SIGNALING_PATHWAY HSA00120_BILE_ACID_BIOSYNTHESIS HSA04670_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION HSA00641_3_CHLOROACRYLIC_ACID_DEGRADATION HSA04020_CALCIUM_SIGNALING_PATHWAY HSA04940_TYPE_I_DIABETES_MELLITUS HSA04512_ECM_RECEPTOR_INTERACTION HSA00010_GLYCOLYSIS_AND_GLUCONEOGENESIS HSA02010_ABC_TRANSPORTERS_GENERAL HSA04664_FC_EPSILON_RI_SIGNALING_PATHWAY HSA04710_CIRCADIAN_RHYTHM HSA04510_FOCAL_ADHESION HSA04810_REGULATION_OF_ACTIN_CYTOSKELETON HSA00410_BETA_ALANINE_METABOLISM HSA01040_POLYUNSATURATED_FATTY_ACID_BIOSYNTHESIS HSA00532_CHONDROITIN_SULFATE_BIOSYNTHESIS HSA04620_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY HSA04010_MAPK_SIGNALING_PATHWAY HSA00561_GLYCEROLIPID_METABOLISM HSA00053_ASCORBATE_AND_ALDARATE_METABOLISM HSA00590_ARACHIDONIC_ACID_METABOLISM
    [Show full text]