Proteomic Analysis of Interchromatin Granule Clusters Noriko Saitoh,*† Chris S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Localization of Condensin Subunit XCAP-E in Interphase Nucleus, Nucleoid and Nuclear
1 Localization of condensin subunit XCAP-E in interphase nucleus, nucleoid and nuclear matrix of XL2 cells. Elmira Timirbulatova, Igor Kireev, Vladimir Ju. Polyakov, and Rustem Uzbekov* Division of Electron Microscopy, A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia. *Author for correspondence: telephone. 007-095-939-55-28; FAX 007-095-939-31-81 e-mail: [email protected] Key words: XCAP-E; nucleolus; condensin; nuclear matrix; Xenopus. Abbreviations: DAPI , 4’, 6 diamidino-2-phenylindole; DNP, deoxyribonucleoprotein; DRB, 5,6-dichloro-1b-d-ribofuranosylbenzimidazole; SMC, structural maintenance of chromosomes; XCAP-E, Xenopus chromosome associated protein E. 2 Abstract The Xenopus XCAP-E protein is a component of condensin complex In the present work we investigate its localization in interphase XL2 cells and nucleoids. We shown, that XCAP-E is localizes in granular and in dense fibrillar component of nucleolus and also in small karyoplasmic structures (termed “SMC bodies”). Extraction by 2M NaCl does not influence XCAP-E distribution in nucleolus and “SMC bodies”. DNAse I treatment of interphase cells permeabilized by Triton X-100 or nucleoids resulted in partial decrease of labeling intensity in the nucleus, whereas RNAse A treatment resulted in practically complete loss of labeling of nucleolus and “SMC bodies” labeling. In mitotic cells, however, 2M NaCl extraction results in an intense staining of the chromosome region although the labeling was visible along the whole length of sister chromatids, with a stronger staining in centromore region. The data are discussed in view of a hypothesis about participation of XCAP-E in processing of ribosomal RNA. -
P80-Coilin: a Component of Coiled Bodies and Interchromatin Granule- Associated Zones
Journal of Cell Science 108, 1143-1153 (1995) 1143 Printed in Great Britain © The Company of Biologists Limited 1995 p80-coilin: a component of coiled bodies and interchromatin granule- associated zones Francine Puvion-Dutilleul1,*, Sylvie Besse1, Edward K. L. Chan2, Eng M. Tan2 and Edmond Puvion1 1Laboratoire de Biologie et Ultrastructure du Noyau de l’UPR 9044 CNRS, BP 8, F-94801 Villejuif Cedex, France 2The Scripps Research Institute, W. M. Keck Autoimmune Disease Center, 10666 N. Torrey Pines Road, La Jolla, California 92037, USA *Author for correspondence SUMMARY We investigated at the electron microscope level the fate of the clusters of interchromatin granules and their associated the three intranuclear structures known to accumulate zones, which were all easily recognizable within the snRNPs, and which correspond to the punctuate immuno- residual nuclear ribonucleoprotein network, was unmodi- fluorescent staining pattern (the coiled bodies, the clusters fied. The data indicate, therefore, that the loosening of interchromatin granules and the interchromatin procedure as well as the high salt extraction procedure granule-associated zones) after exposure to either a low salt preserve the snRNA content of all three spliceosome medium which induces a loosening and partial spreading component-accumulation sites and reveal that interchro- of nucleoprotein fibers or a high ionic strength salt medium matin granule-associated zones are elements of the nuclear and subsequent DNase I digestion, in order to obtain DNA- matrix. The p80-coilin content of coiled bodies was also depleted nuclear matrices. The loosened clusters of inter- preserved whatever the salt treatment used. An intriguing chromatin granules and the coiled bodies could no longer new finding is the detection of abundant p80-coilin within be distinguished from surrounding nucleoprotein fibers the interchromatin granule-associated zones, both before solely by their structure, but constituents of the clusters of and after either low or high salt treatment of cells. -
NPM/B23: the Effector of CDK2 in the Control of Centrosome Duplication and Mrna Processing
UNIVERSITY OF CINCINNATI Date: October 7th, 2004 I, ________________Yukari Tokuyama___________________________, hereby submit this work as part of the requirements for the degree of: Doctor of Philosophy in: Cell and Molecular Biology It is entitled: NPM/B23: The Effector of CDK2 in the Control of Centrosome Duplication and mRNA Processing This work and its defense approved by: Chair: Kenji Fukasawa, Ph.D. Robert W. Brackenbury, Ph.D. Wallace S. Ip, Ph.D. Erik S. Knudsen, Ph.D. Yolanda Sanchez, Ph.D. NPM/B23: THE EFFECTOR OF CDK2 IN THE CONTROL OF CENTROSOME DUPLICATION AND mRNA PROCESSING A dissertation submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTORATE OF PHILOSOPHY (Ph.D.) In the Department of Cell Biology, Neurobiology, and Anatomy of the College of Medicine 2004 by Yukari Tokuyama B.S. Texas A&M University, 1998 Committee Chair: Kenji Fukasawa, Ph.D. Robert W. Brackenbury, Ph.D. Wallace S. Ip, Ph.D. Erik S. Knudsen, Ph.D. Yolanda Sanchez, Ph.D. Abstract Nucleophosmin (NPM/B23) is a phosphoprotein predominantly localized in the nucleolus, and is believed to function in ribosome assembly, cytonuclear shuttling, and molecular chaperoning. Here we report novel functions of NPM/B23 in initiation of centrosome duplication and mRNA processing. The centrosome, a major microtubule organizing center of cells, directs the formation of bipolar mitotic spindles, which is essential for proper chromosome segregation to daughter cells. Cancer cells frequently contain abnormal numbers of centrosomes suggesting that centrosome amplification is the major contributing factor for chromosome instability. -
The Nucleus Introduced
Downloaded from http://cshperspectives.cshlp.org/ on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press The Nucleus Introduced Thoru Pederson Program in Cell and Developmental Dynamics, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 Correspondence: [email protected] Now is an opportune moment to address the confluence of cell biological form and function that is the nucleus. Its arrival is especially timely because the recognition that the nucleus is extremely dynamic has now been solidly established as a paradigm shift over the past two decades, and also because we now see on the horizon numerous ways in which organization itself, including gene location and possibly self-organizing bodies, underlies nuclear functions. “We have entered the cell, the Mansion of our microscopy, Antony van Leeuwenhoeck, did birth, and started the inventory of our acquired so with amphibian and avian erythrocytes in wealth.” 1710 and that in 1781 Felice Fontana did so as —Albert Claude well in eel skin cells. More definitive accounts followed by Franz Bauer, who in 1802 sketched hen I first read that morsel from Albert orchid cells and pointed out the nucleus (Bauer WClaude’s 1974 Nobel Prize lecture it 1830–1838), as well as by Jan Purkyneˇ, who seemed Solomonic wisdom, as it indeed was. described it as the vesicula germanitiva in Though he was referring to cell biology chicken oocytes (Purkyneˇ 1825), and Robert en toto, the study of the nucleus was then at a Brown who observed it in a variety of plant cells tipping point and new advances were just at (Brown 1829–1832), earning additional fame hand. -
Gemin4 Is an Essential Gene in Mice, and Its Overexpression in Human Cells Causes Relocalization of the SMN Complex to the Nucleoplasm Ingo D
© 2018. Published by The Company of Biologists Ltd | Biology Open (2018) 7, bio032409. doi:10.1242/bio.032409 RESEARCH ARTICLE Gemin4 is an essential gene in mice, and its overexpression in human cells causes relocalization of the SMN complex to the nucleoplasm Ingo D. Meier1,*,§, Michael P. Walker1,2,‡,§ and A. Gregory Matera¶ ABSTRACT nuclear ribonucleoproteins (snRNPs). Each of these snRNPs Gemin4 is a member of the Survival Motor Neuron (SMN) protein contains a common set of seven RNA binding factors, called Sm complex, which is responsible for the assembly and maturation of Sm- proteins, that forms a heptameric ring around the snRNA, known as class small nuclear ribonucleoproteins (snRNPs). In metazoa, Sm the Sm core. Biogenesis of the Sm core is carried out by another snRNPs are assembled in the cytoplasm and subsequently imported macromolecular assemblage called the Survival Motor Neuron into the nucleus. We previously showed that the SMN complex is (SMN) complex, consisting of at least nine proteins (Gemins 2-8, required for snRNP import in vitro, although it remains unclear which unrip and SMN) (reviewed in Battle et al., 2006a; Matera et al., specific components direct this process. Here, we report that Gemin4 2007; Matera and Wang, 2014). overexpression drives SMN and the other Gemin proteins from the Following RNA polymerase II-mediated transcription in the cytoplasm into the nucleus. Moreover, it disrupts the subnuclear nucleus, pre-snRNAs are exported to the cytoplasm for assembly localization of the Cajal body marker protein, coilin, in a dose- into stable RNP particles (Jarmolowski et al., 1994; Ohno et al., dependent manner. -
<Abstract Centered> an ABSTRACT of the THESIS OF
AN ABSTRACT OF THE DISSERTATION OF Michael Austin Garland for the degree of Doctor of Philosophy in Toxicology presented on June 14, 2019. Title: Transcriptomic Approaches for Discovering Regenerative and Developmental Regulatory Networks in Zebrafish Abstract approved: _____________________________________________________________________ Robert L. Tanguay Zebrafish are capable of fully regenerating organs and tissue such as their caudal fin, which is similar to a human regrowing an arm or a leg. In contrast, most mammals including humans have a greatly reduced capacity for wound healing. The ability of zebrafish to undergo this regenerative process, called epimorphic regeneration, hinges on the capacity to form a blastema at the wound site. The blastema quickly recapitulates the developmental processes involved in complex tissue formation to restore lost or damaged tissue. One key mechanism for inducing blastema formation is global repression of genes involved in tissue differentiation and maintenance. Induction of repressive factors, such as microRNAs (miRNAs), are involved in reprogramming cells during epimorphic regeneration. The upstream mechanism by which zebrafish undergo epimorphic regeneration remains elusive. Furthermore, while focus is shifting toward regulatory RNAs such as miRNAs, the full complement of their repressive activities is unknown. We took a transcriptomics approach to investigating epimorphic regeneration and fin development. Parallel sequencing of total RNA and small RNA samples was performed on regenerating fin tissue at 1 day post-amputation (dpa). Most miRNAs had increased expression, consistent with global repression of genes involved in cell specialization during de-differentiation. We identified predicted interactions between miRNAs and genes involved in transcriptional regulation, chromatin modification, and developmental signaling. miR-146a and miR-146b are anti- inflammatory miRNAs that were predicted to target eya4, which is involved in chromatin remodeling and innate immunity. -
Visualization of Cell Structure by Atomic Force Microscopy
MOJ Anatomy & Physiology Mini Review Open Access Visualization of cell structure by atomic force microscopy Abstract Volume 3 Issue 5 - 2017 Cell structure has been extensively studied by light and electron microscopy. However, María de Lourdes Segura-Valdez,1 Alma there are relatively few papers on the study of internal cell structure with the atomic force 2 1 microscope. In this mini review, efforts to visualize and analyze inner cell structure with Zamora-Cura, Luis F Jiménez-García 1Department of Cell Biology, Universidad Nacional Autónoma the atomic force microscope are here presented, using the technique for sample preparation de México (UNAM), México derived from the standard transmission electron microscopy. Semithin sections of epon 2National Institute of Genomic Medicine, México embedded samples mounted on glass slides are scanned with a microscope working on contact or intermittent modes. The surface of sections revealed internal cell structure. Animal Correspondence: Luis F Jiménez García, Laboratorio de and plant cells show structures as nuclei, nucleoli, chromatin, cell wall, mitochondria. These Nanobiología Celular Departamento de Biología Celular, works opens up the perspective to analyze these organelles and structures at a nanoscale Universidad Nacional Autónoma de México (UNAM), Circuito under liquid physiological conditions. Exterior, C.U., 04510, Cd. Mx., México, Tel (55)56224988, Fax (55)56224828, Email [email protected] Keywords: atomic force microscopy, cell structure, nanoscale Received: December 27, 2016 | Published: June 01, 2017 Introduction In plants, cell wall was a marker to recognize plant cell, and structure within. However, animal cell were more difficult to visualize. Using 1 Since its invention in 1986 atomic force microscopy (AFM) has tapping mode on Hep2 cells, images of cell nuclei were obtained and been used to study properties of surface of materials at the nanoscale. -
A Role for Protein Phosphatase PP1 in SMN Complex Formation And
A role for protein phosphatase PP1γ in SMN complex formation and subnuclear localization to Cajal bodies Benoît Renvoisé, Gwendoline Quérol, Eloi Rémi Verrier, Philippe Burlet, Suzie Lefebvre To cite this version: Benoît Renvoisé, Gwendoline Quérol, Eloi Rémi Verrier, Philippe Burlet, Suzie Lefebvre. A role for protein phosphatase PP1γ in SMN complex formation and subnuclear localization to Cajal bodies. Journal of Cell Science, Company of Biologists, 2012, 125 (12), pp.2862-2874. 10.1242/jcs.096255. hal-00776457 HAL Id: hal-00776457 https://hal.archives-ouvertes.fr/hal-00776457 Submitted on 20 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 2862 Research Article A role for protein phosphatase PP1c in SMN complex formation and subnuclear localization to Cajal bodies Benoıˆt Renvoise´ 1,*,`, Gwendoline Que´rol1,*, Eloi Re´mi Verrier1,§, Philippe Burlet2 and Suzie Lefebvre1," 1Laboratoire de Biologie Cellulaire des Membranes, Programme de Biologie Cellulaire, Institut Jacques-Monod, UMR 7592 CNRS, Universite´Paris Diderot, Sorbonne Paris Cite´, -
397 M. Pavelka, J. Roth, Functional Ultrastructure: Atlas of Tissue Biology and Pathology, Third Edition, DOI 10.1007/978-3-7091
Index A Blood , 380–394 Actin fi laments , 38, 176, 184, 186, 196, 258, 340, 350, 352 basophilic granulocytes , 386 brush border , 176 eosinophilic granulocytes , 384 brush cell , 186 erythrocytes , 380 nuclear actin , 26 erythropoiesis , 380 Adhering junctions , 196, 226, 258, 290, 294, 350 lymphocytes , 390 Adipose tissue , 330, 332 monocytes , 388 brown , 332 neutrophilic granulocytes , 382 white , 330 reticulocytes , 380 Aggresomes , 52, 180 thrombocytes , 392, 394 Alport’s syndrome , 214 Blood–brain barrier , 358 Alveoli , 288 Bone , 336, 338 Amphisomes , 148 mineralization , 336 Amyloid fi brils , 326, 328 osteoblasts , 336 Amyloidosis , 326 osteoclasts , 338 Anchoring junctions , 196 osteocyte , 336 Anderson disease , 64 osteoid , 336 Annulate lamellae , 42 resorption , 338 Apomucin , 40 Bone marrow , 380, 392 Apoptosis , 30, 48, 148, 268 cells of the erythroid lineage , 380 Arterial wall , 300 megakaryocytes , 392 Articular cartilague , 334 Bowman’s layer , 324 Astrocytes , 356, 358, 368 Brefeldin A , 94, 96, 98 Atomic force microscopy , 24, 328 effect on retrograde transport of internalized WGA , 98 Autophagic cell death , 30 Golgi apparatus disassembly , 94, 96 Autophagy , 148, 150, 152 tubulation of Golgi apparatus and endosomes , 96 autolysosomes , 148 Brush border , 176, 188, 258, 262 autophagosomes , 148 Brush cell , 186 crinophagy , 226 cytosolic protein aggregates , 152 ER-phagy , 152 C mitophagy , 152 CADASIL. See Cerebral Autosomal Dominant Arteriopathy pexophagy , 150 (CADASIL) selective autophagy of cellular organelles -
Table S3a Table
Table S3a C2 KEGG Geneset Genesets enriched and upregulated in responders (FDR <0.25) Genesets enriched and upregulated in non-responders (FDR <0.25) HSA04610_COMPLEMENT_AND_COAGULATION_CASCADES HSA00970_AMINOACYL_TRNA_BIOSYNTHESIS HSA04640_HEMATOPOIETIC_CELL_LINEAGE HSA05050_DENTATORUBROPALLIDOLUYSIAN_ATROPHY HSA04060_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION HSA04514_CELL_ADHESION_MOLECULES HSA04650_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY HSA04630_JAK_STAT_SIGNALING_PATHWAY HSA03320_PPAR_SIGNALING_PATHWAY HSA04080_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION HSA00980_METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450 HSA00071_FATTY_ACID_METABOLISM HSA04660_T_CELL_RECEPTOR_SIGNALING_PATHWAY HSA04612_ANTIGEN_PROCESSING_AND_PRESENTATION HSA04662_B_CELL_RECEPTOR_SIGNALING_PATHWAY HSA04920_ADIPOCYTOKINE_SIGNALING_PATHWAY HSA00120_BILE_ACID_BIOSYNTHESIS HSA04670_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION HSA00641_3_CHLOROACRYLIC_ACID_DEGRADATION HSA04020_CALCIUM_SIGNALING_PATHWAY HSA04940_TYPE_I_DIABETES_MELLITUS HSA04512_ECM_RECEPTOR_INTERACTION HSA00010_GLYCOLYSIS_AND_GLUCONEOGENESIS HSA02010_ABC_TRANSPORTERS_GENERAL HSA04664_FC_EPSILON_RI_SIGNALING_PATHWAY HSA04710_CIRCADIAN_RHYTHM HSA04510_FOCAL_ADHESION HSA04810_REGULATION_OF_ACTIN_CYTOSKELETON HSA00410_BETA_ALANINE_METABOLISM HSA01040_POLYUNSATURATED_FATTY_ACID_BIOSYNTHESIS HSA00532_CHONDROITIN_SULFATE_BIOSYNTHESIS HSA04620_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY HSA04010_MAPK_SIGNALING_PATHWAY HSA00561_GLYCEROLIPID_METABOLISM HSA00053_ASCORBATE_AND_ALDARATE_METABOLISM HSA00590_ARACHIDONIC_ACID_METABOLISM -
Nuclear Speckles
Nuclear Speckles David L. Spector1 and Angus I. Lamond2 1Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724 2Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, MSI/WTB/JBC Complex Dow Street, Dundee DD1 5EH, United Kingdom Correspondence: [email protected], [email protected] Nuclear speckles, also known as interchromatin granule clusters, are nuclear domains enriched in pre-mRNA splicing factors, located in the interchromatin regions of the nucleo- plasm of mammalian cells. When observed by immunofluorescence microscopy, they usually appear as 20–50 irregularly shaped structures that vary in size. Speckles are dynamic structures, and their constituents can exchange continuously with the nucleoplasm and other nuclear locations, including active transcription sites. Studies on the composition, structure, and dynamics of speckles have provided an important paradigm for understanding the functional organization of the nucleus and the dynamics of the gene expression machinery. he mammalian cell nucleus is a highly com- compartments (Phair et al. 2000)” (Figs. 1 and Tpartmentalized yet extremely dynamic org- 2). The first detailed description of the nuclear anelle (reviewed in Misteli 2001a; Spector domains that we presently refer to as nuclear 2006; Zhao et al. 2009). Many nuclear factors speckles was reported by Santiago Ramo´ny are localized in distinct structures, such as Cajal in 1910 (Ramo´n y Cajal 1910; reviewed speckles, paraspeckles, nucleoli, Cajal bodies, in Lafarga et al. 2009). Ramo´n y Cajal used polycomb bodies, and promyelocytic leukemia acid aniline stains to identify structures he bodies and show punctate staining patterns referred to as “grumos hialinas” (literally “tran- when analyzed by indirect immunofluorescence slucent clumps”). -
Identification of Coilin Mutants in a Screen for Enhanced Expression Of
| INVESTIGATION Identification of Coilin Mutants in a Screen for Enhanced Expression of an Alternatively Spliced GFP Reporter Gene in Arabidopsis thaliana Tatsuo Kanno,* Wen-Dar Lin,* Jason L. Fu,* Ming-Tsung Wu,* Ho-Wen Yang,† Shih-Shun Lin,† Antonius J. M. Matzke,*,1 and Marjori Matzke*,1 *Institute of Plant and Microbial Biology, Academia Sinica, 128, Taipei 115, Taiwan, and †Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan ABSTRACT Coilin is a marker protein for subnuclear organelles known as Cajal bodies, which are sites of various RNA metabolic processes including the biogenesis of spliceosomal small nuclear ribonucleoprotein particles. Through self-associations and interactions with other proteins and RNA, coilin provides a structural scaffold for Cajal body formation. However, despite a conspicuous presence in Cajal bodies, most coilin is dispersed in the nucleoplasm and expressed in cell types that lack these organelles. The molecular function of coilin, particularly of the substantial nucleoplasmic fraction, remains uncertain. We identified coilin loss-of-function mutations in a genetic screen for mutants showing either reduced or enhanced expression of an alternatively spliced GFP reporter gene in Arabidopsis thaliana. The coilin mutants feature enhanced GFP fluorescence and diminished Cajal bodies compared with wild-type plants. The amount of GFP protein is several-fold higher in the coilin mutants owing to elevated GFP transcript levels and more efficient splicing to produce a translatable GFP mRNA. Genome-wide RNA-sequencing data from two distinct coilin mutants revealed a small, shared subset of differentially expressed genes, many encoding stress-related proteins, and, unexpectedly, a trend toward increased splicing efficiency.