Synthesis, Characterization, and Application of Molybdenum Oxide Nanomaterials Michael S

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis, Characterization, and Application of Molybdenum Oxide Nanomaterials Michael S University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 11-9-2017 Synthesis, Characterization, and Application of Molybdenum Oxide Nanomaterials Michael S. McCrory University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Mechanical Engineering Commons Scholar Commons Citation McCrory, Michael S., "Synthesis, Characterization, and Application of Molybdenum Oxide Nanomaterials" (2017). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/7424 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Synthesis, Characterization, and Application of Molybdenum Oxide Nanomaterials by Michael S. McCrory A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Mechanical Engineering College of Engineering University of South Florida Co-Major Professor: Ashok Kumar, Ph.D. Co-Major Professor: Manoj K. Ram, Ph.D. Daniel Hess, Ph.D. Sylvia Thomas, Ph.D. Sagar Pandit, Ph.D. Date of Approval: November 2, 2017 Keywords: Battery, Decontamination, Photocatalyst, Adsorbent, Methylene Blue Copyright © 2017, Michael S. McCrory DEDICATION I’d like to dedicate this work to grandma, Janet, and my parents, Gail and James. Thank you for everything; the love, support, encouragement, etc. I’d also like to dedicate this work to my soon-to-be wife, Courtney. Words just cannot describe my feelings here, so I’ll simply say thank you for everything and I love you. ACKNOWLEDGMENTS I would like to thank Dr. Ashok Kumar for his support throughout my time at USF. I would also like to thank Dr. Manoj Ram for all of his support and guidance; he worked countless hours with me (and other students), and without him I surely would not be graduating. I’d like to thank all of the committee members, Dr. Daniel Hess, Dr. Sylvia Thomas, and Dr. Sagar Pandit for taking time out of their busy schedules to be on my defense committee. I owe a special thanks to Dr. Hess for all of his support over the past 4+ years. It was an absolute pleasure and honor to work for him. I’d also like to thank my defense chair, Dr. Arash Takshi, for not only taking time to be here, but leading me through the final presentation I will make as a student at USF. I’d like to thank Dr. Rajiv Dubey, department chair, and Dr. Rasim Guldiken, graduate advisor, for their continued advice and support throughout my time here at USF, including allowing me to TA for all of these years. I’d like to thank Dr. Jose Zayas-Castro, and the rest of the College of Engineering, for their support over the years. I’d also like to thank Robert Tutfs, Jay Bieber, Richard Everly and Yusuf Emirov for all of their support and guidance in learning the characterization equipment in NREC. Finally I’d like to thank all of my lab mates (current and former). We always had some great discussions, both educational and personal. You guys were great, and I wish you all the best in your future endeavors. TABLE OF CONTENTS LIST OF TABLES ......................................................................................................................... iii LIST OF FIGURES ....................................................................................................................... iv ABSTRACT .................................................................................................................................. vii CHAPTER 1: INTRODUCTION ....................................................................................................1 1.1 Problem Description and Motivation .............................................................................1 1.2 Organization of the Dissertation ....................................................................................2 CHAPTER 2: LITERATURE REVIEW .........................................................................................4 2.1 Introduction ....................................................................................................................4 2.2 Use of MoO2 in the Decontamination of Water.............................................................4 2.3 Use of MoO2 in Li-Ion Batteries ....................................................................................8 2.4 Conclusion ...................................................................................................................19 CHAPTER 3: SYNTHESIS AND CHARACTERIZATION OF MoO2 NANOPARTICLES AND THEIR ABILITY TO DECONTAMINATE WATER ..................................................21 3.1 Introduction ..................................................................................................................21 3.2 Experimental ................................................................................................................21 3.2.1 Synthesis .......................................................................................................21 3.2.1.1 Synthesis of Nanostructured Molybdenum Trioxide (AM-MoO3)...........................................................................22 3.2.1.2 Synthesis of Molybdenum Dioxide (MoO2) ..................................22 3.2.2 Characterization ............................................................................................23 3.2.3 Water Decontamination Setup ......................................................................23 3.3 Results and Discussion ................................................................................................24 3.3.1 Electron Microscopy .....................................................................................24 3.3.2 X-ray Diffraction (XRD) ..............................................................................27 3.3.3 Decontamination ...........................................................................................29 3.4 Conclusion ...................................................................................................................35 CHAPTER 4: MORPHOLOGY CONTROLLED SYNTHESIS OF MoO2 NANOSTRUCTURES AND THEIR ABILITY TO DECONTAMINATE WATER ............37 4.1 Introduction ..................................................................................................................37 4.2 Experimental ................................................................................................................37 4.2.1 Synthesis of Molybdenum Dioxide (MoO2) .................................................38 4.2.2 Characterization ............................................................................................38 i 4.2.3 Water Decontamination Setup ......................................................................38 4.3 Results and Discussion ................................................................................................39 4.3.1 Electron Microscopy .....................................................................................39 4.3.2 X-ray Diffraction (XRD) ..............................................................................44 4.3.3 Decontamination ...........................................................................................46 4.4 Conclusion ...................................................................................................................49 CHAPTER 5: HYDROTHERMAL SYNTHESIS OF MoO2 NANOPARTICLES DIRECTLY ONTO A COPPER SUBSTRATE AND THEIR ABILITY TO DECONTAMINATE WATER ................................................................................................50 5.1 Introduction ..................................................................................................................50 5.2 Experimental ................................................................................................................51 5.2.1 Synthesis of Molybdenum Dioxide (MoO2) onto a Copper Substrate .........51 5.2.2 Characterization ............................................................................................51 5.2.3 Water Decontamination Setup ......................................................................52 5.3 Results and Discussion ................................................................................................52 5.3.1 Scanning Electron Microscopy .....................................................................53 5.3.2 X-ray Diffraction (XRD) ..............................................................................54 5.3.3 Decontamination ...........................................................................................55 5.4 Conclusion ...................................................................................................................56 CHAPTER 6: CONCLUSION ......................................................................................................57 6.1 Future Work .................................................................................................................58 REFERENCES ..............................................................................................................................60 APPENDIX A: COPYRIGHT PERMISSIONS FOR MATERIAL USED IN CHAPTER 5 .......................................................................................................................76 APPENDIX
Recommended publications
  • 3. Micronutrients There Are 7 Essential Plant Nutrient Elements Defined As
    3. Micronutrients There are 7 essential plant nutrient elements defined as micronutrients [boron (B), zinc (Zn), manganese (Mn), iron (Fe), copper (Cu), molybdenum (Mo), chlorine (Cl)]. They constitute in total less than 1% of the dry weight of most plants. The following discussion focuses primarily on the soil characteristics for the micronutrients. a. Boron (B) Boron is included in the Standard Soil Test. The level of soil boron is “insufficient” or “low” when extractable boron is less than 0.1 pound per acre. Soil boron is found in both organic and inorganic forms that are made available to plants as either or both soil organic matter is decomposed and/or boron-containing minerals dissolve. There may be between 20 to 200 pounds boron in the surface layer of South Carolina soils, but only a small portion is available to 3- plants. Boron, as the borate (BO3 ) anion, is mobile in the soil and can be easily leached from the surface soil. Calcium, potassium, and nitrogen concentrations in both the soil and plant can affect boron availability and plant function, the calcium:boron (Ca:B) ratio relationship being the most important. Therefore, soils high in calcium will require more boron than soils low in calcium. The chance for boron toxicity is greater on low calcium-content soils. The need to include boron in the fertilizer recommendation is determined by: • crop requirement • soil boron test level For any given crop when boron is recommended, a high rate of boron may be required on: • clay-type soils • soils that are high in water pH and/or calcium content • high organic matter content soils • soils where boron is broadcast versus boron being either banded or foliar applied Boron is routinely included in the fertilizer recommendation for the crops cotton, peanut, alfalfa, apple, root crops, cabbage, broccoli, and cauliflower, and when reseeding clover or where clover seeds are to be harvested.
    [Show full text]
  • Moo3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells
    Materials 2012, 5, 2521-2536; doi:10.3390/ma5122521 OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Article MoO3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells Sylvain Chambon 1, Lionel Derue 1, Michel Lahaye 2, Bertrand Pavageau 3, Lionel Hirsch 1 and Guillaume Wantz 1,* 1 University Bordeaux, CNRS, IMS, UMR 5218, 33400 Talence, France; E-Mails: [email protected] (S.C.); [email protected] (L.D.); [email protected] (L.H.) 2 University Bordeaux, CNRS, ICMCB, UPR 9048, 33600 Pessac, France; E-Mail: [email protected] 3 University Bordeaux, CNRS, RHODIA, LOF, UMR 5258, 33600 Pessac, France; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-5-40-00-66-30; Fax: +33-5-40-00-66-31. Received: 1 November 2012; in revised form: 16 November 2012 / Accepted: 19 November 2012 / Published: 27 November 2012 Abstract: Several parameters of the fabrication process of inverted polymer bulk heterojunction solar cells based on titanium oxide as an electron selective layer and molybdenum oxide as a hole selective layer were tested in order to achieve efficient organic photovoltaic solar cells. Thermal annealing treatment is a common process to achieve optimum morphology, but it proved to be damageable for the performance of this kind of inverted solar cells. We demonstrate using Auger analysis combined with argon etching that diffusion of species occurs from the MoO3/Ag top layers into the active layer upon thermal annealing.
    [Show full text]
  • NOVEL ENVIRONMENTAL and EXPLOSIVES DETECTION APPLICATIONS for MOLYBDENUM OXIDES by KEVIN NAKIA BARBER Bachelor of Science in Ch
    NOVEL ENVIRONMENTAL AND EXPLOSIVES DETECTION APPLICATIONS FOR MOLYBDENUM OXIDES By KEVIN NAKIA BARBER Bachelor of Science in Chemical Engineering University of Oklahoma Norman, Oklahoma 1999 Master of Science in Chemical Engineering Oklahoma State University Stillwater, Oklahoma 2005 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY July, 2009 NOVEL ENVIRONMENTAL AND EXPLOSIVES DETECTION APPLICATIONS FOR MOLYBDENUM OXIDES Dissertation Approved: Dr. Allen W. Apblett Dissertation Adviser Dr. Nicholas Materer Dr. Jeffery White Dr. Legrande Slaughter Dr. John Veenstra Dr. A. Gordon Emslie Dean of the Graduate College ii ACKNOWLEDGMENTS If I were to thank everyone individually who helped make this work possible in both large and small ways this acknowledgements section would be larger than the dissertation itself. I especially thank Dr. Allen Apblett for all of his instruction, his patience, his advice, and especially his friendship over these last four years. He is a man I have learned a great deal from, have a great deal of respect for, and would do well to emulate. I also thank Dr. Nicholas Materer for all his help with these projects I have worked on, for his help with the XPS data, for his advice and (always constructive) criticism, and for his friendship. I thank my committee members: Dr. Legrande Slaughter who was my first instructor in this department when I took his Graduate Inorganic Chemistry course for my technical elective in engineering; Dr. Jeffery White who taught me heterogeneous catalysis; Dr. John Veenstra, with whom I also worked in my engineering studies.
    [Show full text]
  • Safety Data Sheet According to 1907/2006/EC, Article 31 Printing Date 17.07.2021 Revision: 14.07.2021
    Page 1/6 Safety data sheet according to 1907/2006/EC, Article 31 Printing date 17.07.2021 Revision: 14.07.2021 SECTION 1: Identification of the substance/mixture and of the company/undertaking · 1.1 Product identifier · Trade name: Cobalt oxide-molybdenum oxide on alumina (3.5% CoO, 14% MoO3) · Item number: 27-0480 · 1.2 Relevant identified uses of the substance or mixture and uses advised against No further relevant information available. · 1.3 Details of the supplier of the safety data sheet · Manufacturer/Supplier: Strem Chemicals, Inc. 7 Mulliken Way NEWBURYPORT, MA 01950 USA [email protected] · Further information obtainable from: Technical Department · 1.4 Emergency telephone number: EMERGENCY: CHEMTREC: + 1 (800) 424-9300 During normal opening times: +1 (978) 499-1600 SECTION 2: Hazards identification · 2.1 Classification of the substance or mixture · Classification according to Regulation (EC) No 1272/2008 The product is not classified according to the CLP regulation. · 2.2 Label elements · Labelling according to Regulation (EC) No 1272/2008 Void · Hazard pictograms Void · Signal word Void · Hazard statements Void · Precautionary statements P262 Do not get in eyes, on skin, or on clothing. P280 Wear protective gloves/protective clothing/eye protection/face protection. P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P304+P340 IF INHALED: Remove person to fresh air and keep comfortable for breathing. P403+P233 Store in a well-ventilated place. Keep container tightly closed. P501 Dispose of contents/container in accordance with local/regional/national/international regulations.
    [Show full text]
  • The Radiochemistry of Molybdenum COMMITTEE on NUCLEAR SCIENCE
    National Academy of Sciences National Research council s NUCLEAR SCIENCE SERIES The Radiochemistry of Molybdenum COMMITTEE ON NUCLEAR SCIENCE L. F. CURTISS, Chairman ROBLEY D. EVANS, ViceCkainna?I NationalBureau ofStandards MassachusettsInstituteofTechnology J.A. DeJUREN, Secretary WestinghouseElectricCorporation H. J. CURTIS G. G. MANOV BrookhavenNationalLaboratory Tracerlah,Inc. SAMUEL EPSTEIN W. WAYNE MEINKE CaliforniaInstituteofTechnology Universityof Michigan HERBERT GOLDSTEIN A. H. SNELL NuclearDevelopmentCorporationof Oak Ridge NationalLaboratory America E. A. UEHLING H. J. GOMBERG UniversityofWashington UniversityofMichigan D. M. VAN PATTER E. D. KLEMA BartolResearch Foundation NorthwesternUniversity ROBERT L. PLATZMAN Argonne NationalLaboratory LIA SON MEMBERS PAUL C. AEBERSOLD W. D. URRY Atomic EnerW Commission U. S.Air Force J.HOWARD McMILLEN WILLIAM E. WRIGHT NationalScienceFoundation OfficeofNavalResearch SUBCOMMITTEE ON RADIOCHEMISTRY W. WAYNE MEINICE, Chai?man EARL HYDE Universityof Mlchlgan UniversityofCalifornia(Berkeley) NATHAN BALLOU HAROLD KIRBY Navy RadiologicalDefenseLaboratory Mound Laboratory GREGORY R. CHOPPIN GEORGE LEDDICOTTE FloridaStateUniver~ity Oak Ridge NationalLaboratory GEORGE A. COWAN ELLIS P. STEINBERG Los Alsmos ScientificLshoratory Argonne NationalLaboratory ARTHUR W. FAIRHALL PETER C. STEVENSON UniversityofWashington UniversityofCalifornia(Llvermore) HARMON FINSTON LEO YAFFE Brookhaven,NationalLaboratory McGillUniversity .. The Radiochernistry d Molybdenum By E. hf.SCADDEN and N. E. BALLOU U. S.
    [Show full text]
  • Preparation and Characterization of Molybdenum Trioxide from Spent Hydrodesulfurization Catalyst
    Korean J. Chem. Eng., 28(7), 1546-1549 (2011) DOI: 10.1007/s11814-011-0005-9 INVITED REVIEW PAPER Preparation and characterization of molybdenum trioxide from spent hydrodesulfurization catalyst Barsha Dash†, Indra Narayan Bhattacharya, Bhaskara Venkata Ramanamurthy, and Raja Kishore Paramguru Institute of Minerals and Materials Technology, Bhubaneswar-751013, Orissa, India (Received 30 March 2010 • accepted 8 January 2011) Abstract−An approach to produce molybdenum trioxide from spent hydrodesulfurization (HDS) catalyst, obtained from a petroleum refinery, is presented here. The spent catalyst was devolatilized at 600 oC so as to make it free from oils, organics and other volatile species. It was then roasted with sodium carbonate at a temperature of 850 oC for 30 min. The leaching efficiency for 20% soda roasted sample at 10% pulp density was 99.8%. From the solution molybdenum was precipitated out as ammonium molybdate at pH 1.0 with HCl and ammonium chloride. This ammonium molybdate o was calcined at 750 C to get MoO3. The product was characterized by XRD. Its purity was determined titrimetri- cally and by ICP-AES. Key words: Spent Catalyst, Soda Roasting, Leaching, Molybdenum, Molybdenum Trioxide INTRODUCTION Table 1. Chemical composition of roasted catalyst Element Mo V Fe Cu Ni Co Zn Molybdenum is a metal of group six. It readily forms hard, stable Percentage 14.4 0.635 0.28 0.1 4 Nil 0.03 carbides, and for this reason it is often used in high-strength steel alloys. Silvery in appearance, molybdenum helps in keeping our environment green by desulfurizing carbon-based fossil fuels. Indus- EXPERIMENTAL trially, molybdenum compounds are used in high-pressure and tem- perature resistant greases as pigments and catalysts.
    [Show full text]
  • FLAME RETARDANTS in PRINTED CIRCUIT BOARDS Chapter 3
    FLAME RETARDANTS IN PRINTED CIRCUIT BOARDS Chapter 3 FINAL REPORT August 2015 EPA Publication 744-R-15-001 3 Chemical Flame Retardants for FR-4 Laminates This chapter summarizes the general characteristics of flame retardants and associated mechanisms of flame retardancy. The flame-retardant chemicals currently used in printed circuit boards (PCBs) are also briefly introduced, with more detailed information about their potential exposure pathways, toxicity, and life-cycle considerations presented in later chapters. 3.1 General Characteristics of Flame-Retardant Chemicals Fire occurs in three stages: (a) thermal decomposition, where the solid, or condensed phase, breaks down into gaseous decomposition products as a result of heat, (b) combustion chain reactions in the gas phase, where thermal decomposition products react with an oxidant (usually air) and generate more combustion products, which can then propagate the fire and release heat, and (c) transfer of the heat generated from the combustion process back to the condensed phase to continue the thermal decomposition process (Hirschler, 1992; Beyler and Hirschler, 2002). In general, flame retardants decrease the likelihood of a fire occurring and/or decrease the undesirable consequences of a fire (Lyons, 1970; Cullis and Hirschler, 1981). The simplest way, in theory, of preventing polymer combustion is to design the polymer so that it is thermally very stable. Thermally stable polymers are less likely to thermally degrade, which prevents combustion from initiating. However, thermally stable polymers are not typically used due to cost and/or other performance issues such as mechanical and electrical properties incompatible with end-use needs for the finished part/item.
    [Show full text]
  • Large-Batch Reduction of Molybdenum Trioxide
    ORNL/TM-2014/630 Large-Batch Reduction of Molybdenum Trioxide R. A. Lowden J. O. Kiggans, Jr. S. D. Nunn F. Montgomery P. Menchhofer C. D. Bryan Approved for public release. Distribution is unlimited. July 2015 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect. Website http://www.osti.gov/scitech/ Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail [email protected] Website http://www.ntis.gov/help/ordermethods.aspx Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange representatives, and International Nuclear Information System representatives from the following source: Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831 Telephone 865-576-8401 Fax 865-576-5728 E-mail [email protected] Website http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.
    [Show full text]
  • The Vapor Pressures of Molybdenum Oxides And
    THE VAPOR PRESSURES OF MOLYBDENUM OXIDES AND TUNGSTEN OXIDES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By PAUL EDWARD BLACKBURN, B. A. The Ohio State University 1954 Approved by* 1 ASMQMtfMlgMI The writer wishes to express his appreciation for the helpful guidance and criticism of Professor Herrick L. Johnston, under whose supervision this work was oarried out. He is also most appreciative to Dr, Michael Hoch for their many useful discussions and for his sugges­ tions . The author is very grateful to Mr. Janes Jones and Mr, L. £. Cox of the laboratory shop for their fine work on the apparatus used in this study. THE VAPOh PRESSURES OF MOLYBDENUM OXIDES AND TUNGSTEN OXIDES IflTBQPgCTIQM Although earlier investigations on the vapor pressures of molybdenum trioxide and tungsten tri- oxide have been reported in the literature (1,2) there is some doubt about the accuracy of the data. For this reason, and in order to extend the work to the other oxides, a study of the solid-vapor equili­ brium of the molybdenum-oxygen and tungsten-oxygen systems vas undertaken. The study was carried out by measuring the vapor pressures of the oxides using the Knudsen rate of effusion method. THEORY Sato of fiffmlga Hitfaad The Xnudaen (3) rate of effusion method consists of measuring the rate at which gas molecules escape through an orifice in the wall of a cell in which the gas la in equilibrium with a solid sr liquid. The equation for the pressure of a gas determined by the rate of effusion method is (4 ) p - » ^ * 5 “ , a ) where m is the rate of effusion in grams per square centimeter per second, R is the gas constant, T is the absolute temperature and M is the moleoular weight.
    [Show full text]
  • Studies on Electrochemical Magnesium Intercalation in Molybdenum Trioxide
    Master's Thesis 석사 학위논문 Studies on electrochemical magnesium intercalation in molybdenum trioxide Hun-Ho Kwak (곽 헌 호 郭 軒 豪 ) Department of Energy Systems Engineering 에너지시스템 전공 DGIST 2014 Master's Thesis 석사 학위논문 Studies on electrochemical magnesium intercalation in molybdenum trioxide Hun-Ho Kwak (곽 헌 호 郭 軒 豪 ) Department of Energy Systems Engineering 에너지시스템 전공 DGIST 2014 Studies on electrochemical magnesium intercalation in molybdenum trioxide Advisor : Professor Seung-Tae Hong Co-advisor : Doctor Jae-Hyun Kim By Hun-Ho Kwak Department of Energy Systems Engineering DGIST A thesis submitted to the faculty of DGIST in partial fulfillment of the requirements for the degree of Master of Science in the Department of Energy Systems Engineering. The study was conducted in accord- ance with Code of Research Ethics1 12. 05. 2013 Approved by Professor Seung-Tae Hong ( Signature ) (Advisor) Doctor Jae-Hyun Kim ( Signature ) (Co-Advisor) 1 Declaration of Ethical Conduct in Research: I, as a graduate student of DGIST, hereby declare that I have not committed any acts that may damage the credibility of my research. These include, but are not limited to: falsification, thesis written by someone else, distortion of research findings or plagiarism. I affirm that my thesis contains honest conclusions based on my own careful research under the guidance of my thesis advisor. Studies on electrochemical magnesium intercalation in molybdenum trioxide Hun-Ho Kwak Accepted in partial fulfillment of the requirements for the degree of Master of Science. 12. 05. 2013 Head of Committee (인) Prof. 홍 승 태 Committee Member (인) Prof.
    [Show full text]
  • Zoran Janjušević, Vladislav Matković, Mladen Bugarčić*, Miroslav Sokić
    Z. Janjušević et al. Molybdenum recovery as alloying agent from waste molybdenum solution Zoran Janjušević, Vladislav Matković, Mladen Bugarčić*, Scientific paper Miroslav Sokić, Branislav Marković, Vaso Manojlović, ISSN 0351-9465, E-ISSN 2466-2585 Aleksandra Patarić UDC:669.283’17 doi: 10.5937/ZasMat1801102J Institute for Technology of Nuclear and Other Mineral Raw Materials, Belgrade, Serbia Zastita Materijala 59 (1) 100 - 107 (2018) Molybdenum recovery as alloying agent from waste molybdenum solution ABSTRACT The present work reports the commercialization of a recycling process of spent acid from filament tungsten wire plant to recover molybdenum (VI)-oxide and further utilizing this product for alloying cast iron. First part of the process consists of ammonia gas neutralization of spent acid containing molybdenum, crystallization and filtration of ammonium molybdate, drying and roasting to produce a commercial grade molybdic-trioxide powder (molybdenum mass fraction 59.2 mas%). Second part of the process consists of grey cast alloying with MoO3 in inducing furnace. Final product was hardened iron alloy with high yield of molybdenum recovery (up to 86 %). Keywords: spent acid, ammonia neutralization, molybdenum-trioxide, alloying, cast iron. 1. INTRODUCTION Molybdenum compounds and his alloys could During the production of filament tungsten be used in a form of MoO3 and MoO2 as a catalyst wires for incandescent light bulbs a great amount in hydrocarbon reforming process [11,12], or as a of spent acid is obtained which contains by main electrocatalyst in fuel cell applications together with high concentration of sulphuric and nitric acid (500- Pt and Ru [13] or as silicides of molybdenum for 700 g/L of both acids) and also soluble high temperature structural purposes [14].
    [Show full text]
  • Interagency Committee on Chemical Management
    DECEMBER 14, 2018 INTERAGENCY COMMITTEE ON CHEMICAL MANAGEMENT EXECUTIVE ORDER NO. 13-17 REPORT TO THE GOVERNOR WALKE, PETER Table of Contents Executive Summary ...................................................................................................................... 2 I. Introduction .......................................................................................................................... 3 II. Recommended Statutory Amendments or Regulatory Changes to Existing Recordkeeping and Reporting Requirements that are Required to Facilitate Assessment of Risks to Human Health and the Environment Posed by Chemical Use in the State ............................................................................................................................ 5 III. Summary of Chemical Use in the State Based on Reported Chemical Inventories....... 8 IV. Summary of Identified Risks to Human Health and the Environment from Reported Chemical Inventories ........................................................................................................... 9 V. Summary of any change under Federal Statute or Rule affecting the Regulation of Chemicals in the State ....................................................................................................... 12 VI. Recommended Legislative or Regulatory Action to Reduce Risks to Human Health and the Environment from Regulated and Unregulated Chemicals of Emerging Concern ..............................................................................................................................
    [Show full text]