Integrative Biomedical Sciences Hospital Acquired Infections with Multiresistant Microorganisms: UN Interagency Coordination

Total Page:16

File Type:pdf, Size:1020Kb

Integrative Biomedical Sciences Hospital Acquired Infections with Multiresistant Microorganisms: UN Interagency Coordination ISSN: 2469-4096 Research Article Integrative Biomedical Sciences Hospital Acquired Infections With Multiresistant Microorganisms: UN Interagency Coordination Group on Antimicrobial Resistance Demands Immediate, Ambitious and Innovative Action S.Guggenbichler 1*, Fey T2 and Guggenbichler JP3 1Division für Gefäßchirurgie und endovaskuläre Chirurgie der Universitätsklinik für Herzchirurgie, Gefäßchirurgie und endovaskuläre Chirurgie, LKH, Müllner Hauptstraße 48, A-5020 Salzburg 2Department of Material Science and Engineering, Institute of Glass and Ceramics, Martensstr. 5, 91058 Erlangen, Germany 3Department or Pediatrics, University of Erlangen, Germany, AmiSTec GMbH und Co KG, Kössen, Austria Rec date: Nov 25, 2019 Acc date: Feb 27, 2020 Pub date: Mar 6, 2020 *Correspondance: Peter Guggenbichler J, Erlangen, Department or Pediatrics, AmiSTecGMbH und Co KG, Kössen, Austria, E-mail: [email protected] Summary The present review is mostly focused on decontamination of solid air interfaces in health-care units, such as hospital furniture, door-handles, computer keyboards, textiles etc., although solid liquid surfaces are also of great concern in hospitals such as faucets, showers, pipes and drains, where biofilms occur frequently. New methods, in addition to or as an alternative to appropriate use of disinfectants and antibiotics are required to reduce microbial associated infections and to reverse the dramatic increase in antimicrobial resistance. The requirements for such surfaces mandatory for prevention of hospital acquired infections and the emergence of multi-resistant microorganisms however are high. Many different chemical strategies and technologies for coatings intended to eradicate microorganisms from surfaces are described in the literature. None of these technologies meets the expectations for prevention of hospital acquired infections by formation of self-sanitizing surfaces except the in situ generated biocides on the basis of transition metal oxides embedded into surfaces. Surfaces decorated with metal oxide Lewis acids such as MoO3, WO3 and Zinc Molybdate show a broad-band and strong antimicrobial activity resulting in a reduction of the number of colony forming units by 6 – 7 log 10 within 1-3 hours. Their mechanism of action is based on the in-situ generation of + H3O ions through the reaction with moisture from the air, inspired by the body’s own defense mechanism imitating + e.g. the acid coating of the skin. The resulting acidified surfaces have a pH of 4.5 and the H3O ions are able to diffuse through the cell membrane of microorganisms where they can distort the pH-equilibrium and transport systems of the cell. In addition by these mechanism also free radicals e.g. oxygen radicals and hydroxyl radicals are formed which result in a synergistic mode of action including a positive zeta potential. This is reflected by an extraordinary fast eradication of microorganisms i.e. a reduction of 5 log 10 within 10 minutes. Present Recommendations more importantly, claiming at least 800,000 lives per year in Europe — that’s 2200 lives each day. To combat Health care-associated infections, which are widely the alarming 5% of all hospital admissions that result in seen as preventable and often caused by unsatisfactory readmission due to conditions acquired in health care hospital conditions or human error, are costing health facilities, all staff and contractors should be well educated care facilities more than $30 billion annually and are, on how to minimize the spread of fatal infections [1-3]. Integ Biomed Sci, 6(1): 84-104 (2020) 84 One problem remains the definition of “resistance” and antibiotic susceptibility, fungi, legionella, Aspergillus spp., how to measure resistance to a biocide [4]. This has yet virus documented by the RODAC plate method. to be addressed globally, although the measurement • Fast eradication of microorganisms i.e., minimum of resistance is becoming more relevant, with regulators 5 log 10 reduction within 1 hour: “self-sanitizing” both in Europe and in the United States demanding surfaces must actively eradicate microorganisms that manufacturers provide evidence that their biocidal on a surface within a reasonably short period of products will not impact on bacterial resistance. Alongside time. This should occur within less than 3 hours. in vitro evidence of potential antimicrobial cross-resistance • Reduction of adherence, blockage of proliferation following biocide exposure, our understanding of the and biofilm formation is an additional important mechanisms of bacterial resistance and, more recently, feature – however as a single feature it is in no way our understanding of the effect of biocides to induce sufficient. mechanism(s) of resistance in bacteria has improved. • Activity against a high inoculum size of 109 CFU on an area of 3 cm². In order to block the spread of multi-resistant • No induction of resistance. This is of crucial microorganisms in the hospital, cutting off the importance transmission route is a particularly important strategy • Nontoxic, skin and soft tissue compatibility, no along with actively treating the infective source based on allergenicity, sbD (safe by design) the sensitivity of the particular strain, which is determined • Long lasting/permanent antimicrobial activity by characterising the strain for drug resistance. As we • water-, acid-, alkaline-, alcohol insoluble, UV Light cannot rely on adequate eradication of microorganisms stabile by disinfectants any highest emphasis is now put on • Activity in spite of soiling, cleanable with detergents adequate hand hygiene measures [5]. This however would • Uncomplicated technical processability, heat require 50 - 80 times hand washing and disinfection. Over stabile up to 400°C, non-corrosive recent years, researchers have noted a steady rise in the • Physical stability, activity irrespective of sweat, number of serious infections caused by ethanol tolerant grease, blood, pus strains which appear to result in large part from adaptive • Authorisation by the European commission on and evolutionary changes in cell membrane composition biocidal products. no nanoparticles [6]. The development of alcohol-tolerant strains has the • Favourable cost/benefit analysis potential to undermine the effectiveness of alcohol- based disinfectant standard precautions. A number of technologies have been proposed: Active drug eluting agents (e.g. ions or nanoparticles Considering the above information we have to reassess of silver, copper, zinc, or antibiotics, chloride, iodine, preventive measures for hospital acquired infections disinfectants). Active eluting agents must be incorporated and to curb the dramatic increasing rate of emerging into the metabolism of microorganisms and are eluted resistant microorganisms. It is obvious that we need a from the polymer of the surface: This shows crucial new, innovative approach to combat this problem which disadvantages: is jeopardising our clinical medicine. The activity is limited to a short period of time. For Technologies for “self-sanitizing surfaces” silver this means duration of activity of 3 weeks [7]. The formation of self-sanitizing surfaces - the correct Copper endowment of a surface has been investigated term for surface which eradicates microorganisms from and preliminary results show a substantial reduction in a surface without disinfectants - seems to be a promising the number of HAI which establishes the proof of concept. technology providing a broad spectrum of activity, long However adverse events have been observed [8]. Besides lasting to permanent antimicrobial activity without copper has a induction of resistance. • Poor antimicrobial activity. This activity is somewhat The requirements for self-sanitizing surfaces improved by alloys e.g. combination with zinc or are high tin but still does not meet the requirements. • Copper is cytotoxic in use for implantable Broad antimicrobial activity, against Gram-positive, biomaterials. Gram-negative microorganisms, irrespective of their • The surfaces are rapidly oxidizing and require ISSN: 2469-4096 Short Communication Integrative Biomedical Sciences Integ Biomed Sci, 6(1): 84-104Nursing Students’ Perceptions of Biomedical (2020) Education with Augmented Reality Ma CW* School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, PR China 85 *Correspondence: Dr. Chun-Wai Ma, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, PR China, E-mail: [email protected] Received date: April 30, 2019; Accepted date: June 10, 2019; Published date: June 17, 2019 Introduction The University of Hong Kong. A typical educational AR application “Brain AR App” (Harmony Studios Ltd., UK) Innovative techniques provide a teaching strategy to was used to assist teaching and learning during five improve education in biomedical sciences for nursing lectures whose topics are relevant to the content of students [1]. With augmented reality (AR) technology, the AR application. The teacher explained biomedical elements in the physical environment can be enriched concepts by manipulating the digital content projected or supplemented by computer-generated sensory inputs onto the screen to facilitate interactions with nursing such as text, images, 3-dimensional (3D) graphics, and students. The teacher also provided guidance on audio. AR has been paradigmatically applied worldwide installing and using the AR software
Recommended publications
  • Moo3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells
    Materials 2012, 5, 2521-2536; doi:10.3390/ma5122521 OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Article MoO3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells Sylvain Chambon 1, Lionel Derue 1, Michel Lahaye 2, Bertrand Pavageau 3, Lionel Hirsch 1 and Guillaume Wantz 1,* 1 University Bordeaux, CNRS, IMS, UMR 5218, 33400 Talence, France; E-Mails: [email protected] (S.C.); [email protected] (L.D.); [email protected] (L.H.) 2 University Bordeaux, CNRS, ICMCB, UPR 9048, 33600 Pessac, France; E-Mail: [email protected] 3 University Bordeaux, CNRS, RHODIA, LOF, UMR 5258, 33600 Pessac, France; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-5-40-00-66-30; Fax: +33-5-40-00-66-31. Received: 1 November 2012; in revised form: 16 November 2012 / Accepted: 19 November 2012 / Published: 27 November 2012 Abstract: Several parameters of the fabrication process of inverted polymer bulk heterojunction solar cells based on titanium oxide as an electron selective layer and molybdenum oxide as a hole selective layer were tested in order to achieve efficient organic photovoltaic solar cells. Thermal annealing treatment is a common process to achieve optimum morphology, but it proved to be damageable for the performance of this kind of inverted solar cells. We demonstrate using Auger analysis combined with argon etching that diffusion of species occurs from the MoO3/Ag top layers into the active layer upon thermal annealing.
    [Show full text]
  • Synthesis, Characterization, and Application of Molybdenum Oxide Nanomaterials Michael S
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 11-9-2017 Synthesis, Characterization, and Application of Molybdenum Oxide Nanomaterials Michael S. McCrory University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Mechanical Engineering Commons Scholar Commons Citation McCrory, Michael S., "Synthesis, Characterization, and Application of Molybdenum Oxide Nanomaterials" (2017). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/7424 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Synthesis, Characterization, and Application of Molybdenum Oxide Nanomaterials by Michael S. McCrory A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Mechanical Engineering College of Engineering University of South Florida Co-Major Professor: Ashok Kumar, Ph.D. Co-Major Professor: Manoj K. Ram, Ph.D. Daniel Hess, Ph.D. Sylvia Thomas, Ph.D. Sagar Pandit, Ph.D. Date of Approval: November 2, 2017 Keywords: Battery, Decontamination, Photocatalyst, Adsorbent, Methylene Blue Copyright © 2017, Michael S. McCrory DEDICATION I’d like to dedicate this work to grandma, Janet, and my parents, Gail and James. Thank you for everything; the love, support, encouragement, etc. I’d also like to dedicate this work to my soon-to-be wife, Courtney. Words just cannot describe my feelings here, so I’ll simply say thank you for everything and I love you.
    [Show full text]
  • Safety Data Sheet According to 1907/2006/EC, Article 31 Printing Date 17.07.2021 Revision: 14.07.2021
    Page 1/6 Safety data sheet according to 1907/2006/EC, Article 31 Printing date 17.07.2021 Revision: 14.07.2021 SECTION 1: Identification of the substance/mixture and of the company/undertaking · 1.1 Product identifier · Trade name: Cobalt oxide-molybdenum oxide on alumina (3.5% CoO, 14% MoO3) · Item number: 27-0480 · 1.2 Relevant identified uses of the substance or mixture and uses advised against No further relevant information available. · 1.3 Details of the supplier of the safety data sheet · Manufacturer/Supplier: Strem Chemicals, Inc. 7 Mulliken Way NEWBURYPORT, MA 01950 USA [email protected] · Further information obtainable from: Technical Department · 1.4 Emergency telephone number: EMERGENCY: CHEMTREC: + 1 (800) 424-9300 During normal opening times: +1 (978) 499-1600 SECTION 2: Hazards identification · 2.1 Classification of the substance or mixture · Classification according to Regulation (EC) No 1272/2008 The product is not classified according to the CLP regulation. · 2.2 Label elements · Labelling according to Regulation (EC) No 1272/2008 Void · Hazard pictograms Void · Signal word Void · Hazard statements Void · Precautionary statements P262 Do not get in eyes, on skin, or on clothing. P280 Wear protective gloves/protective clothing/eye protection/face protection. P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P304+P340 IF INHALED: Remove person to fresh air and keep comfortable for breathing. P403+P233 Store in a well-ventilated place. Keep container tightly closed. P501 Dispose of contents/container in accordance with local/regional/national/international regulations.
    [Show full text]
  • The Radiochemistry of Molybdenum COMMITTEE on NUCLEAR SCIENCE
    National Academy of Sciences National Research council s NUCLEAR SCIENCE SERIES The Radiochemistry of Molybdenum COMMITTEE ON NUCLEAR SCIENCE L. F. CURTISS, Chairman ROBLEY D. EVANS, ViceCkainna?I NationalBureau ofStandards MassachusettsInstituteofTechnology J.A. DeJUREN, Secretary WestinghouseElectricCorporation H. J. CURTIS G. G. MANOV BrookhavenNationalLaboratory Tracerlah,Inc. SAMUEL EPSTEIN W. WAYNE MEINKE CaliforniaInstituteofTechnology Universityof Michigan HERBERT GOLDSTEIN A. H. SNELL NuclearDevelopmentCorporationof Oak Ridge NationalLaboratory America E. A. UEHLING H. J. GOMBERG UniversityofWashington UniversityofMichigan D. M. VAN PATTER E. D. KLEMA BartolResearch Foundation NorthwesternUniversity ROBERT L. PLATZMAN Argonne NationalLaboratory LIA SON MEMBERS PAUL C. AEBERSOLD W. D. URRY Atomic EnerW Commission U. S.Air Force J.HOWARD McMILLEN WILLIAM E. WRIGHT NationalScienceFoundation OfficeofNavalResearch SUBCOMMITTEE ON RADIOCHEMISTRY W. WAYNE MEINICE, Chai?man EARL HYDE Universityof Mlchlgan UniversityofCalifornia(Berkeley) NATHAN BALLOU HAROLD KIRBY Navy RadiologicalDefenseLaboratory Mound Laboratory GREGORY R. CHOPPIN GEORGE LEDDICOTTE FloridaStateUniver~ity Oak Ridge NationalLaboratory GEORGE A. COWAN ELLIS P. STEINBERG Los Alsmos ScientificLshoratory Argonne NationalLaboratory ARTHUR W. FAIRHALL PETER C. STEVENSON UniversityofWashington UniversityofCalifornia(Llvermore) HARMON FINSTON LEO YAFFE Brookhaven,NationalLaboratory McGillUniversity .. The Radiochernistry d Molybdenum By E. hf.SCADDEN and N. E. BALLOU U. S.
    [Show full text]
  • Preparation and Characterization of Molybdenum Trioxide from Spent Hydrodesulfurization Catalyst
    Korean J. Chem. Eng., 28(7), 1546-1549 (2011) DOI: 10.1007/s11814-011-0005-9 INVITED REVIEW PAPER Preparation and characterization of molybdenum trioxide from spent hydrodesulfurization catalyst Barsha Dash†, Indra Narayan Bhattacharya, Bhaskara Venkata Ramanamurthy, and Raja Kishore Paramguru Institute of Minerals and Materials Technology, Bhubaneswar-751013, Orissa, India (Received 30 March 2010 • accepted 8 January 2011) Abstract−An approach to produce molybdenum trioxide from spent hydrodesulfurization (HDS) catalyst, obtained from a petroleum refinery, is presented here. The spent catalyst was devolatilized at 600 oC so as to make it free from oils, organics and other volatile species. It was then roasted with sodium carbonate at a temperature of 850 oC for 30 min. The leaching efficiency for 20% soda roasted sample at 10% pulp density was 99.8%. From the solution molybdenum was precipitated out as ammonium molybdate at pH 1.0 with HCl and ammonium chloride. This ammonium molybdate o was calcined at 750 C to get MoO3. The product was characterized by XRD. Its purity was determined titrimetri- cally and by ICP-AES. Key words: Spent Catalyst, Soda Roasting, Leaching, Molybdenum, Molybdenum Trioxide INTRODUCTION Table 1. Chemical composition of roasted catalyst Element Mo V Fe Cu Ni Co Zn Molybdenum is a metal of group six. It readily forms hard, stable Percentage 14.4 0.635 0.28 0.1 4 Nil 0.03 carbides, and for this reason it is often used in high-strength steel alloys. Silvery in appearance, molybdenum helps in keeping our environment green by desulfurizing carbon-based fossil fuels. Indus- EXPERIMENTAL trially, molybdenum compounds are used in high-pressure and tem- perature resistant greases as pigments and catalysts.
    [Show full text]
  • FLAME RETARDANTS in PRINTED CIRCUIT BOARDS Chapter 3
    FLAME RETARDANTS IN PRINTED CIRCUIT BOARDS Chapter 3 FINAL REPORT August 2015 EPA Publication 744-R-15-001 3 Chemical Flame Retardants for FR-4 Laminates This chapter summarizes the general characteristics of flame retardants and associated mechanisms of flame retardancy. The flame-retardant chemicals currently used in printed circuit boards (PCBs) are also briefly introduced, with more detailed information about their potential exposure pathways, toxicity, and life-cycle considerations presented in later chapters. 3.1 General Characteristics of Flame-Retardant Chemicals Fire occurs in three stages: (a) thermal decomposition, where the solid, or condensed phase, breaks down into gaseous decomposition products as a result of heat, (b) combustion chain reactions in the gas phase, where thermal decomposition products react with an oxidant (usually air) and generate more combustion products, which can then propagate the fire and release heat, and (c) transfer of the heat generated from the combustion process back to the condensed phase to continue the thermal decomposition process (Hirschler, 1992; Beyler and Hirschler, 2002). In general, flame retardants decrease the likelihood of a fire occurring and/or decrease the undesirable consequences of a fire (Lyons, 1970; Cullis and Hirschler, 1981). The simplest way, in theory, of preventing polymer combustion is to design the polymer so that it is thermally very stable. Thermally stable polymers are less likely to thermally degrade, which prevents combustion from initiating. However, thermally stable polymers are not typically used due to cost and/or other performance issues such as mechanical and electrical properties incompatible with end-use needs for the finished part/item.
    [Show full text]
  • Large-Batch Reduction of Molybdenum Trioxide
    ORNL/TM-2014/630 Large-Batch Reduction of Molybdenum Trioxide R. A. Lowden J. O. Kiggans, Jr. S. D. Nunn F. Montgomery P. Menchhofer C. D. Bryan Approved for public release. Distribution is unlimited. July 2015 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect. Website http://www.osti.gov/scitech/ Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail [email protected] Website http://www.ntis.gov/help/ordermethods.aspx Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange representatives, and International Nuclear Information System representatives from the following source: Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831 Telephone 865-576-8401 Fax 865-576-5728 E-mail [email protected] Website http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.
    [Show full text]
  • Studies on Electrochemical Magnesium Intercalation in Molybdenum Trioxide
    Master's Thesis 석사 학위논문 Studies on electrochemical magnesium intercalation in molybdenum trioxide Hun-Ho Kwak (곽 헌 호 郭 軒 豪 ) Department of Energy Systems Engineering 에너지시스템 전공 DGIST 2014 Master's Thesis 석사 학위논문 Studies on electrochemical magnesium intercalation in molybdenum trioxide Hun-Ho Kwak (곽 헌 호 郭 軒 豪 ) Department of Energy Systems Engineering 에너지시스템 전공 DGIST 2014 Studies on electrochemical magnesium intercalation in molybdenum trioxide Advisor : Professor Seung-Tae Hong Co-advisor : Doctor Jae-Hyun Kim By Hun-Ho Kwak Department of Energy Systems Engineering DGIST A thesis submitted to the faculty of DGIST in partial fulfillment of the requirements for the degree of Master of Science in the Department of Energy Systems Engineering. The study was conducted in accord- ance with Code of Research Ethics1 12. 05. 2013 Approved by Professor Seung-Tae Hong ( Signature ) (Advisor) Doctor Jae-Hyun Kim ( Signature ) (Co-Advisor) 1 Declaration of Ethical Conduct in Research: I, as a graduate student of DGIST, hereby declare that I have not committed any acts that may damage the credibility of my research. These include, but are not limited to: falsification, thesis written by someone else, distortion of research findings or plagiarism. I affirm that my thesis contains honest conclusions based on my own careful research under the guidance of my thesis advisor. Studies on electrochemical magnesium intercalation in molybdenum trioxide Hun-Ho Kwak Accepted in partial fulfillment of the requirements for the degree of Master of Science. 12. 05. 2013 Head of Committee (인) Prof. 홍 승 태 Committee Member (인) Prof.
    [Show full text]
  • The Coo-Moo3-Al2o3 Catalyst
    The CoO-MoO3-Al2O3 catalyst Citation for published version (APA): Lipsch, J. M. J. G. (1968). The CoO-MoO3-Al2O3 catalyst. Technische Hogeschool Eindhoven. https://doi.org/10.6100/IR25384 DOI: 10.6100/IR25384 Document status and date: Published: 01/01/1968 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Moo3-Molybdenum Oxide
    Revision date: 3/20/2017 Revision: 3 Supersedes date: 12/28/2015 SAFETY DATA SHEET Molybdenum Oxide (MoO3, powder and pieces) According to Appendix D, OSHA Hazard Communication Standard 29 CFR §1910.1200 1. Identification Product identifier Product name Molybdenum Oxide (MoO3, powder and pieces) Internal identification Replaces M-2200-187, M-2200-188 Synonyms; trade names molybdenum trioxide CAS number 1313-27-5 Recommended use of the chemical and restrictions on use Application Exterior surface coating. Uses advised against No specific uses advised against are identified. Details of the supplier of the safety data sheet Supplier Kurt J Lesker Company Manufacturer Kurt J Lesker Company 1925 Route 51 Jefferson Hills, PA 15025 +1 412-387-9200 Kurt J Lesker Company LTD United Kingdom 15-16 Burgess Road Hastings, East Sussex, TN35 4NR England Customer Service: +44 (0) 1424 458100 [email protected] Emergency telephone number Emergency telephone North America [USA, Canada, Mexico]: 1-866-519-4752 Mainland China: (+86) 4001 2001 74 Europe: {int'l call prefix}-1-760-476-3961 Asia Pacific: {int'l call prefix}-1-760-476-3960 Middle East & Africa: {int'l call prefix}-1-760-476-3959 2. Hazard(s) identification Classification of the substance or mixture Physical hazards Not Classified Health hazards Eye Irrit. 2B - H320 Carc. 2 - H351 STOT SE 3 - H335 Environmental hazards Not Classified Label elements 1/10 Revision date: 3/20/2017 Revision: 3 Supersedes date: 12/28/2015 Molybdenum Oxide (MoO3, powder and pieces) Pictogram Signal word Warning Hazard statements H320 Causes eye irritation. H335 May cause respiratory irritation.
    [Show full text]
  • Recovery of Molybdenum Using Alumina Microspheres and Precipitation with Selective Organic Reagents
    Recovery of Molybdenum using Alumina Microspheres and Precipitation with Selective Organic Reagents Fátima Maria Sequeira de Carvalho e Alcídio Abrão Departamento de Engenharia Química e Ambiental Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP) e-mail: [email protected] Presented at the 1998 International Meeting on Reduced Enrichment for Research and Test Reactors October 18 - 23, 1998 Recovery of Molybdenum using Alumina Microspheres and Precipitation with Selective Organic Reagents Fátima Maria Sequeira de Carvalho e Alcídio Abrão Departamento de Engenharia Química e Ambiental Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP) e-mail: [email protected] ABSTRACT In this paper is presented a study for the optimization of dissolution of the UAlx plates used for irradiation and production of radiomolybdenum. The alloy is dissolved in nitric acid with mercury as catalyst. The separation and concentration of the molybdenum was achieved using a chromatographic grade alumina microspheres column. The purified eluted molybdenum is finally precipitated using one of the selective reagents: alizarine blue, a,a’-bypiridine and 1,10- phenanthroline. Any one of the obtained precipitate can be fired to the molybdenum trioxide. The interference of the following elements was studied: Re(VII), U(VI), Cr(VI), W(VI), V(V), Te(IV), Ti(IV), Zr(IV), Th(IV), Fe(III), Au(III),Ru(III), Al(III), Bi(III), Sb(III), Ce(IV),Pr(III), Sc(III),Y(III), Sm(III), Ba(II), Sr(II), Ni(II), Co(II), Cs(I). The molybdenum precipitates were characterized by gravimetric, CHN, TG, DTG, IR and X-ray diffraction analyses.
    [Show full text]
  • Effect of Oxygen Content on the Liquid Metal Corrosion of Molybdenum Dale Leroy Smith Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1966 Effect of oxygen content on the liquid metal corrosion of molybdenum Dale LeRoy Smith Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Metallurgy Commons Recommended Citation Smith, Dale LeRoy, "Effect of oxygen content on the liquid metal corrosion of molybdenum " (1966). Retrospective Theses and Dissertations. 2920. https://lib.dr.iastate.edu/rtd/2920 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been znicrofihned exactly as received 66-10,443 SMITH, Dale LeRoy, 1938- EFFECT OF OXYGEN CONTENT ON THE LIQUID METAL CORROSION OF MOLYBDENUM. Iowa State University of Science and Technology Ph.D., 1966 Engineering, metallurgy University Microfilms, Inc., Ann Arbor, Michigan EFFECT OF OXYGEN CONTENT ON THE LIQUID METAL CORROSION OF MOLYBDENUM by Dale LeRoy Smith A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requi rements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Nuclear Engineering Approved: Signature was redacted for privacy. Signature was redacted for privacy. Head of Major Dep&^t^emt Signature
    [Show full text]