Preparation and Characterization of Molybdenum Trioxide from Spent Hydrodesulfurization Catalyst

Total Page:16

File Type:pdf, Size:1020Kb

Preparation and Characterization of Molybdenum Trioxide from Spent Hydrodesulfurization Catalyst Korean J. Chem. Eng., 28(7), 1546-1549 (2011) DOI: 10.1007/s11814-011-0005-9 INVITED REVIEW PAPER Preparation and characterization of molybdenum trioxide from spent hydrodesulfurization catalyst Barsha Dash†, Indra Narayan Bhattacharya, Bhaskara Venkata Ramanamurthy, and Raja Kishore Paramguru Institute of Minerals and Materials Technology, Bhubaneswar-751013, Orissa, India (Received 30 March 2010 • accepted 8 January 2011) Abstract−An approach to produce molybdenum trioxide from spent hydrodesulfurization (HDS) catalyst, obtained from a petroleum refinery, is presented here. The spent catalyst was devolatilized at 600 oC so as to make it free from oils, organics and other volatile species. It was then roasted with sodium carbonate at a temperature of 850 oC for 30 min. The leaching efficiency for 20% soda roasted sample at 10% pulp density was 99.8%. From the solution molybdenum was precipitated out as ammonium molybdate at pH 1.0 with HCl and ammonium chloride. This ammonium molybdate o was calcined at 750 C to get MoO3. The product was characterized by XRD. Its purity was determined titrimetri- cally and by ICP-AES. Key words: Spent Catalyst, Soda Roasting, Leaching, Molybdenum, Molybdenum Trioxide INTRODUCTION Table 1. Chemical composition of roasted catalyst Element Mo V Fe Cu Ni Co Zn Molybdenum is a metal of group six. It readily forms hard, stable Percentage 14.4 0.635 0.28 0.1 4 Nil 0.03 carbides, and for this reason it is often used in high-strength steel alloys. Silvery in appearance, molybdenum helps in keeping our environment green by desulfurizing carbon-based fossil fuels. Indus- EXPERIMENTAL trially, molybdenum compounds are used in high-pressure and tem- perature resistant greases as pigments and catalysts. As the demands 1. Materials for catalysts are increasing in modern industry, the utilization of The original hydrodesulfurization catalyst was crushed, sieved spent catalysts calls for research and developmental efforts. Many and roasted at 600 oC to remove oils and organics. The weight loss types of catalysts are used; however, the catalysts used in petro- was found to be 44%. The chemical composition of the devolatil- leum refineries have received much attention in recent years. Recov- sed catalyst is given in Table 1. ery of transition metals from spent petroleum refining catalysts is 2. Characterization an important problem. These industries mostly use molybdenum 2-1. XRD containing catalyst for desulfurization and mild hydrogenation pro- Phase determination by X-ray diffractometry study was done by cess. During the hydrorefining the catalyst gets poisoned due to con- using Phillips powder diffractometer PW 1830 X’pert system in tamination with different elements such as S, Fe, Si and Zn etc. the 2θ range of 10 to 70o with voltage of 30 kV and CuKα was used The only way to avoid disposing these spent catalysts directly in to characterize the samples. the environment is to process them, meeting the acceptable envi- 2-2. ICP-AES ronmental demands, to get a value added product. Various options The constitutional elemental analysis was done by ICP-AES of such as soda roasting [1] and salt roasting [2] are there for molybde- model No. Perkin- Elmer Plasma 4000 ICP-AES. num recovery where a water soluble molybdate product is obtained. 2-3. AAS Carbothermic reduction can also be done for hydrorefining spent cata- Other trace metals were estimated by Perkin Elmer 300A atomic lyst to extract molybdenum metal [3]. Molybdenum can also be re- absorption spectrophotometer. covered through hydrometallurgical processing via leaching with so- 2-4. Analyses dium carbonate mixed with hydrogen peroxide [4]. Direct ammonical Volumetric estimation of molybdenum was done by following or alkali leaching is another option for spent catalyst processing [5,6]. the complexometric determination of Mo [13]. EDTA reacts with Processing via fusion is also an option for utilization of spent catalyst MoV ion to form a stable complex compound. MoVI is reduced to [7]. Recovery of molybdenum compound from the leached liquor MoV by hydrazine in sulphuric acid medium in the presence of excess is another course like carbon adsorption-desorption studies [3,8] and EDTA which is titrated with a standard solution of zinc salt with solvent extraction [9-12]. In this paper the preparation and character- erichrome black T. The method is applicable to analysis of alloys ization of molybdenum trioxide from the HDS spent catalyst through containing Bi, Cd, Co, Zn, Ni, Cu, Hg, V, Cr and Pb. All accompa- roasting, leaching and precipitation has been carried out. nying elements are first titrated in one portion of the solution without reducing MoVI. The total amount of Mo and the accompanying ele- †To whom correspondence should be addressed. ments is titrated in the other portion after reduction. Substracting E-mail: [email protected] the former titration value from the later gives the value of molyb- 1546 Preparation and characterization of molybdenum trioxide from spent HDS catalyst 1547 denum titration. Volumetric estimation of vanadium was carried out by titrimetric determination method [14] of vanadium in ores with Mohr’s salt. The method is based on the titration of the pentavalent vanadium ion in a medium of 5N solution of sulphuric acid using standard solution of Mohr’s salt in the presence of excess phosphoric acid, which binds the Fe3+ ion in a colorless complex. 3. Roasting The catalyst was roasted in a 6”x6” electrically heated 4 kW muf- fle furnace (horizontal type). A charge consisting of devolatized HDS catalyst mixed with 20% (w/w) anhydrous sodium carbonate (Merck, India) was introduced in the furnace and heated to the desired tem- perature. The rate of heating was set as 5 oC per minute. The effect of temperature of roasting was studied from 550 oC to 950 oC while that of duration was carried out at 850 oC. Fig. 2. TG and DTA analysis of mixture of catalyst and sodium car- 4. Leaching bonate. Leaching of the soda roasted materials was carried out by taking 20 g soda roasted material with 100 ml water in a 250 ml conical flask fitted in a condenser. Heating and stirring were done through a hot plate with magnetic stirrer at around 250 rpm. After the leach- ing was completed, the slurry was filtered. The liquor contains dis- solved molybdenum and vanadium. 5. Precipitaion For the precipitation of the leach liquor, ammonium chloride (Merck, India) and HCl (Merck, India) were added in two sequences, i.e., route 1 and route 2. In route 1 HCl was first added to acidify 40 ml leach liquor to pH 1.0 taken in a 100 ml glass beaker. After that 8 g ammonium chloride was added with stirring by a magnetic stirrer. In another two similar sets of experiments, 1 g and 3 g ammo- nium chloride were aded to study the variation in the amount of Fig. 3. Variation of roasting temperature, Condn: 20% soda, time- ammonium chloride. In route-2 again 1, 3 and 8 g of ammonium 1h. chloride were added followed by addition of HCl upto pH 1.0 in each case. Precipitates obtained from all cases through both the routes and other volatile matters and organics. TG and DTA analysis of were filtered and dried in a hot air oven at 80 oC for 24 h. soda (20% w/w) mixed catalyst was done, which is shown in Fig. 2. The first weight loss of 7.84% was observed at 100 oC, showing RESULTS AND DISCUSSION the loss of moisture. Then the second weight loss for the rest of the region up to 1,000 oC was 5.34% in the thermogram. This loss can The detailed chemical analyses, spectrophotometric analyses, be attributed to loss of carbon dioxide. leaching procedure and precipitation are given below in different sec- In the process of soda roasting, molybdenum trioxide reacts with tions. Fig. 1 shows the XRD pattern of the devolatilized catalyst. It in- sodium carbonate giving sodium molybdate and carbon dioxide. dicates major presence of alumina, MoO3 and NiO to a lesser extent. The reaction is as follows: 1. Roasting MoO +Na CO →Na MoO +CO (1) The catalyst was initially devolatilized at 600 oC to remove oils 3 2 3 2 4 2 The roasting temperature was varied from 550 to 950 oC and the percentage of extraction of Mo in the leach liquor was plotted as shown in Fig. 3. The extraction of molybdenum was in increasing order up to 850 oC. The highest extraction was found at 850 oC and above due to the complete diffusion of sodium carbonate. This is because the melt- ing point of anhydrous sodium carbonate is 850 oC. At 750 oC and above molybdenum has a tendency to form polymeric species. But 2− when it is alkalized the polymolybdate ion converts into MoO4 [15]. 2− Thus, molybdenum forms soluble sodium molybdate (Na2MoO4 ). The kinetics of roasting is given in Fig. 4. The time period of 45 minutes was optimized. 2. Leaching Fig. 1. XRD of devolatilized catalyst. Leaching experiments were carried out by taking the soda roasted Korean J. Chem. Eng.(Vol. 28, No. 7) 1548 B. Dash et al. Table 2. Recovery of Mo from route 1 Amount of NH4Cl Recovery of Mo 8g 94.24% 3g 94.19% 1g 90.03% Table 3. Recovery of Mo from route 2 Amount of NH4Cl Recovery of MoO3 8g 89%00. Fig. 4. Kinetic of leaching with soda roasting of spent catalyst, 3g 87.5%0 Condn; temp.- 850 oC, 20% sodium carbonate. 1g 78.44% (28 oC) to 80 oC as shown in Fig. 6. At 28 oC the leaching effi- ciency was found to be 77%, and it increased to 99% at 80 oC.
Recommended publications
  • Moo3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells
    Materials 2012, 5, 2521-2536; doi:10.3390/ma5122521 OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Article MoO3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells Sylvain Chambon 1, Lionel Derue 1, Michel Lahaye 2, Bertrand Pavageau 3, Lionel Hirsch 1 and Guillaume Wantz 1,* 1 University Bordeaux, CNRS, IMS, UMR 5218, 33400 Talence, France; E-Mails: [email protected] (S.C.); [email protected] (L.D.); [email protected] (L.H.) 2 University Bordeaux, CNRS, ICMCB, UPR 9048, 33600 Pessac, France; E-Mail: [email protected] 3 University Bordeaux, CNRS, RHODIA, LOF, UMR 5258, 33600 Pessac, France; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-5-40-00-66-30; Fax: +33-5-40-00-66-31. Received: 1 November 2012; in revised form: 16 November 2012 / Accepted: 19 November 2012 / Published: 27 November 2012 Abstract: Several parameters of the fabrication process of inverted polymer bulk heterojunction solar cells based on titanium oxide as an electron selective layer and molybdenum oxide as a hole selective layer were tested in order to achieve efficient organic photovoltaic solar cells. Thermal annealing treatment is a common process to achieve optimum morphology, but it proved to be damageable for the performance of this kind of inverted solar cells. We demonstrate using Auger analysis combined with argon etching that diffusion of species occurs from the MoO3/Ag top layers into the active layer upon thermal annealing.
    [Show full text]
  • Synthesis, Characterization, and Application of Molybdenum Oxide Nanomaterials Michael S
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 11-9-2017 Synthesis, Characterization, and Application of Molybdenum Oxide Nanomaterials Michael S. McCrory University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Mechanical Engineering Commons Scholar Commons Citation McCrory, Michael S., "Synthesis, Characterization, and Application of Molybdenum Oxide Nanomaterials" (2017). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/7424 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Synthesis, Characterization, and Application of Molybdenum Oxide Nanomaterials by Michael S. McCrory A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Mechanical Engineering College of Engineering University of South Florida Co-Major Professor: Ashok Kumar, Ph.D. Co-Major Professor: Manoj K. Ram, Ph.D. Daniel Hess, Ph.D. Sylvia Thomas, Ph.D. Sagar Pandit, Ph.D. Date of Approval: November 2, 2017 Keywords: Battery, Decontamination, Photocatalyst, Adsorbent, Methylene Blue Copyright © 2017, Michael S. McCrory DEDICATION I’d like to dedicate this work to grandma, Janet, and my parents, Gail and James. Thank you for everything; the love, support, encouragement, etc. I’d also like to dedicate this work to my soon-to-be wife, Courtney. Words just cannot describe my feelings here, so I’ll simply say thank you for everything and I love you.
    [Show full text]
  • Safety Data Sheet According to 1907/2006/EC, Article 31 Printing Date 17.07.2021 Revision: 14.07.2021
    Page 1/6 Safety data sheet according to 1907/2006/EC, Article 31 Printing date 17.07.2021 Revision: 14.07.2021 SECTION 1: Identification of the substance/mixture and of the company/undertaking · 1.1 Product identifier · Trade name: Cobalt oxide-molybdenum oxide on alumina (3.5% CoO, 14% MoO3) · Item number: 27-0480 · 1.2 Relevant identified uses of the substance or mixture and uses advised against No further relevant information available. · 1.3 Details of the supplier of the safety data sheet · Manufacturer/Supplier: Strem Chemicals, Inc. 7 Mulliken Way NEWBURYPORT, MA 01950 USA [email protected] · Further information obtainable from: Technical Department · 1.4 Emergency telephone number: EMERGENCY: CHEMTREC: + 1 (800) 424-9300 During normal opening times: +1 (978) 499-1600 SECTION 2: Hazards identification · 2.1 Classification of the substance or mixture · Classification according to Regulation (EC) No 1272/2008 The product is not classified according to the CLP regulation. · 2.2 Label elements · Labelling according to Regulation (EC) No 1272/2008 Void · Hazard pictograms Void · Signal word Void · Hazard statements Void · Precautionary statements P262 Do not get in eyes, on skin, or on clothing. P280 Wear protective gloves/protective clothing/eye protection/face protection. P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P304+P340 IF INHALED: Remove person to fresh air and keep comfortable for breathing. P403+P233 Store in a well-ventilated place. Keep container tightly closed. P501 Dispose of contents/container in accordance with local/regional/national/international regulations.
    [Show full text]
  • The Radiochemistry of Molybdenum COMMITTEE on NUCLEAR SCIENCE
    National Academy of Sciences National Research council s NUCLEAR SCIENCE SERIES The Radiochemistry of Molybdenum COMMITTEE ON NUCLEAR SCIENCE L. F. CURTISS, Chairman ROBLEY D. EVANS, ViceCkainna?I NationalBureau ofStandards MassachusettsInstituteofTechnology J.A. DeJUREN, Secretary WestinghouseElectricCorporation H. J. CURTIS G. G. MANOV BrookhavenNationalLaboratory Tracerlah,Inc. SAMUEL EPSTEIN W. WAYNE MEINKE CaliforniaInstituteofTechnology Universityof Michigan HERBERT GOLDSTEIN A. H. SNELL NuclearDevelopmentCorporationof Oak Ridge NationalLaboratory America E. A. UEHLING H. J. GOMBERG UniversityofWashington UniversityofMichigan D. M. VAN PATTER E. D. KLEMA BartolResearch Foundation NorthwesternUniversity ROBERT L. PLATZMAN Argonne NationalLaboratory LIA SON MEMBERS PAUL C. AEBERSOLD W. D. URRY Atomic EnerW Commission U. S.Air Force J.HOWARD McMILLEN WILLIAM E. WRIGHT NationalScienceFoundation OfficeofNavalResearch SUBCOMMITTEE ON RADIOCHEMISTRY W. WAYNE MEINICE, Chai?man EARL HYDE Universityof Mlchlgan UniversityofCalifornia(Berkeley) NATHAN BALLOU HAROLD KIRBY Navy RadiologicalDefenseLaboratory Mound Laboratory GREGORY R. CHOPPIN GEORGE LEDDICOTTE FloridaStateUniver~ity Oak Ridge NationalLaboratory GEORGE A. COWAN ELLIS P. STEINBERG Los Alsmos ScientificLshoratory Argonne NationalLaboratory ARTHUR W. FAIRHALL PETER C. STEVENSON UniversityofWashington UniversityofCalifornia(Llvermore) HARMON FINSTON LEO YAFFE Brookhaven,NationalLaboratory McGillUniversity .. The Radiochernistry d Molybdenum By E. hf.SCADDEN and N. E. BALLOU U. S.
    [Show full text]
  • FLAME RETARDANTS in PRINTED CIRCUIT BOARDS Chapter 3
    FLAME RETARDANTS IN PRINTED CIRCUIT BOARDS Chapter 3 FINAL REPORT August 2015 EPA Publication 744-R-15-001 3 Chemical Flame Retardants for FR-4 Laminates This chapter summarizes the general characteristics of flame retardants and associated mechanisms of flame retardancy. The flame-retardant chemicals currently used in printed circuit boards (PCBs) are also briefly introduced, with more detailed information about their potential exposure pathways, toxicity, and life-cycle considerations presented in later chapters. 3.1 General Characteristics of Flame-Retardant Chemicals Fire occurs in three stages: (a) thermal decomposition, where the solid, or condensed phase, breaks down into gaseous decomposition products as a result of heat, (b) combustion chain reactions in the gas phase, where thermal decomposition products react with an oxidant (usually air) and generate more combustion products, which can then propagate the fire and release heat, and (c) transfer of the heat generated from the combustion process back to the condensed phase to continue the thermal decomposition process (Hirschler, 1992; Beyler and Hirschler, 2002). In general, flame retardants decrease the likelihood of a fire occurring and/or decrease the undesirable consequences of a fire (Lyons, 1970; Cullis and Hirschler, 1981). The simplest way, in theory, of preventing polymer combustion is to design the polymer so that it is thermally very stable. Thermally stable polymers are less likely to thermally degrade, which prevents combustion from initiating. However, thermally stable polymers are not typically used due to cost and/or other performance issues such as mechanical and electrical properties incompatible with end-use needs for the finished part/item.
    [Show full text]
  • Large-Batch Reduction of Molybdenum Trioxide
    ORNL/TM-2014/630 Large-Batch Reduction of Molybdenum Trioxide R. A. Lowden J. O. Kiggans, Jr. S. D. Nunn F. Montgomery P. Menchhofer C. D. Bryan Approved for public release. Distribution is unlimited. July 2015 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect. Website http://www.osti.gov/scitech/ Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail [email protected] Website http://www.ntis.gov/help/ordermethods.aspx Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange representatives, and International Nuclear Information System representatives from the following source: Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831 Telephone 865-576-8401 Fax 865-576-5728 E-mail [email protected] Website http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.
    [Show full text]
  • Studies on Electrochemical Magnesium Intercalation in Molybdenum Trioxide
    Master's Thesis 석사 학위논문 Studies on electrochemical magnesium intercalation in molybdenum trioxide Hun-Ho Kwak (곽 헌 호 郭 軒 豪 ) Department of Energy Systems Engineering 에너지시스템 전공 DGIST 2014 Master's Thesis 석사 학위논문 Studies on electrochemical magnesium intercalation in molybdenum trioxide Hun-Ho Kwak (곽 헌 호 郭 軒 豪 ) Department of Energy Systems Engineering 에너지시스템 전공 DGIST 2014 Studies on electrochemical magnesium intercalation in molybdenum trioxide Advisor : Professor Seung-Tae Hong Co-advisor : Doctor Jae-Hyun Kim By Hun-Ho Kwak Department of Energy Systems Engineering DGIST A thesis submitted to the faculty of DGIST in partial fulfillment of the requirements for the degree of Master of Science in the Department of Energy Systems Engineering. The study was conducted in accord- ance with Code of Research Ethics1 12. 05. 2013 Approved by Professor Seung-Tae Hong ( Signature ) (Advisor) Doctor Jae-Hyun Kim ( Signature ) (Co-Advisor) 1 Declaration of Ethical Conduct in Research: I, as a graduate student of DGIST, hereby declare that I have not committed any acts that may damage the credibility of my research. These include, but are not limited to: falsification, thesis written by someone else, distortion of research findings or plagiarism. I affirm that my thesis contains honest conclusions based on my own careful research under the guidance of my thesis advisor. Studies on electrochemical magnesium intercalation in molybdenum trioxide Hun-Ho Kwak Accepted in partial fulfillment of the requirements for the degree of Master of Science. 12. 05. 2013 Head of Committee (인) Prof. 홍 승 태 Committee Member (인) Prof.
    [Show full text]
  • The Coo-Moo3-Al2o3 Catalyst
    The CoO-MoO3-Al2O3 catalyst Citation for published version (APA): Lipsch, J. M. J. G. (1968). The CoO-MoO3-Al2O3 catalyst. Technische Hogeschool Eindhoven. https://doi.org/10.6100/IR25384 DOI: 10.6100/IR25384 Document status and date: Published: 01/01/1968 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Moo3-Molybdenum Oxide
    Revision date: 3/20/2017 Revision: 3 Supersedes date: 12/28/2015 SAFETY DATA SHEET Molybdenum Oxide (MoO3, powder and pieces) According to Appendix D, OSHA Hazard Communication Standard 29 CFR §1910.1200 1. Identification Product identifier Product name Molybdenum Oxide (MoO3, powder and pieces) Internal identification Replaces M-2200-187, M-2200-188 Synonyms; trade names molybdenum trioxide CAS number 1313-27-5 Recommended use of the chemical and restrictions on use Application Exterior surface coating. Uses advised against No specific uses advised against are identified. Details of the supplier of the safety data sheet Supplier Kurt J Lesker Company Manufacturer Kurt J Lesker Company 1925 Route 51 Jefferson Hills, PA 15025 +1 412-387-9200 Kurt J Lesker Company LTD United Kingdom 15-16 Burgess Road Hastings, East Sussex, TN35 4NR England Customer Service: +44 (0) 1424 458100 [email protected] Emergency telephone number Emergency telephone North America [USA, Canada, Mexico]: 1-866-519-4752 Mainland China: (+86) 4001 2001 74 Europe: {int'l call prefix}-1-760-476-3961 Asia Pacific: {int'l call prefix}-1-760-476-3960 Middle East & Africa: {int'l call prefix}-1-760-476-3959 2. Hazard(s) identification Classification of the substance or mixture Physical hazards Not Classified Health hazards Eye Irrit. 2B - H320 Carc. 2 - H351 STOT SE 3 - H335 Environmental hazards Not Classified Label elements 1/10 Revision date: 3/20/2017 Revision: 3 Supersedes date: 12/28/2015 Molybdenum Oxide (MoO3, powder and pieces) Pictogram Signal word Warning Hazard statements H320 Causes eye irritation. H335 May cause respiratory irritation.
    [Show full text]
  • Recovery of Molybdenum Using Alumina Microspheres and Precipitation with Selective Organic Reagents
    Recovery of Molybdenum using Alumina Microspheres and Precipitation with Selective Organic Reagents Fátima Maria Sequeira de Carvalho e Alcídio Abrão Departamento de Engenharia Química e Ambiental Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP) e-mail: [email protected] Presented at the 1998 International Meeting on Reduced Enrichment for Research and Test Reactors October 18 - 23, 1998 Recovery of Molybdenum using Alumina Microspheres and Precipitation with Selective Organic Reagents Fátima Maria Sequeira de Carvalho e Alcídio Abrão Departamento de Engenharia Química e Ambiental Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP) e-mail: [email protected] ABSTRACT In this paper is presented a study for the optimization of dissolution of the UAlx plates used for irradiation and production of radiomolybdenum. The alloy is dissolved in nitric acid with mercury as catalyst. The separation and concentration of the molybdenum was achieved using a chromatographic grade alumina microspheres column. The purified eluted molybdenum is finally precipitated using one of the selective reagents: alizarine blue, a,a’-bypiridine and 1,10- phenanthroline. Any one of the obtained precipitate can be fired to the molybdenum trioxide. The interference of the following elements was studied: Re(VII), U(VI), Cr(VI), W(VI), V(V), Te(IV), Ti(IV), Zr(IV), Th(IV), Fe(III), Au(III),Ru(III), Al(III), Bi(III), Sb(III), Ce(IV),Pr(III), Sc(III),Y(III), Sm(III), Ba(II), Sr(II), Ni(II), Co(II), Cs(I). The molybdenum precipitates were characterized by gravimetric, CHN, TG, DTG, IR and X-ray diffraction analyses.
    [Show full text]
  • Effect of Oxygen Content on the Liquid Metal Corrosion of Molybdenum Dale Leroy Smith Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1966 Effect of oxygen content on the liquid metal corrosion of molybdenum Dale LeRoy Smith Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Metallurgy Commons Recommended Citation Smith, Dale LeRoy, "Effect of oxygen content on the liquid metal corrosion of molybdenum " (1966). Retrospective Theses and Dissertations. 2920. https://lib.dr.iastate.edu/rtd/2920 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been znicrofihned exactly as received 66-10,443 SMITH, Dale LeRoy, 1938- EFFECT OF OXYGEN CONTENT ON THE LIQUID METAL CORROSION OF MOLYBDENUM. Iowa State University of Science and Technology Ph.D., 1966 Engineering, metallurgy University Microfilms, Inc., Ann Arbor, Michigan EFFECT OF OXYGEN CONTENT ON THE LIQUID METAL CORROSION OF MOLYBDENUM by Dale LeRoy Smith A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requi rements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Nuclear Engineering Approved: Signature was redacted for privacy. Signature was redacted for privacy. Head of Major Dep&^t^emt Signature
    [Show full text]
  • Molybdenum Trioxide Nanopowder
    T T I T A N I U M D I O X I D E N A N O P O W D E R /nanoshel www.nanoshel.com [email protected] Tel: 91+9779550077,9779238252 T I T A N I U M NANOSHEL D I O X I D E N A N O P O W D E R with Nanoscale TiO 2 that is manufactured for titanium oxide micro particles that gave the better specific applications is by approximately a factor products a pasty, sticky consistency. Leaving a of 100 finer than the TiO 2 pigments and has visible film, application of such sun creams was not innovations other physical properties. The production easy and not pleasing to the skin. Sun creams that your volume of nanoscale Titanium oxide amounts to contain the transparent nanoscale TiO 2 can be Make less than 1 percent that of TiO 2 pigments. applied much more easily. In addition, their Nanoscale titanium oxides are not used as food protective effect against harmful UV radiation is additives. Currently, they are mainly found in much better. At present, high sun protection high-factor sun protection creams, textile fibers factors can only be achieved using nanoscale or wood preservatives. For a long time, sun TiO 2 . creams have been manufactured adding QQuick F A C T S Product : Titanium Dioxide Nanopowder Stock No : NS6130-03-350 CAS : 1317-70-0 Color : White Form : Powder SCAN TO SEE E T /nanoshel N O H X R P U www.nanoshel.com [email protected] E ISO 9001:2015 O N Y Tel: +91 9779550077,9779238252 CERTIFIED COMPANY O N NANOSHEL with APPLICATIONS better üBused in antiseptic and üUsed in the production of fibres antibacterial compositions üUtilized in inks and glass innovations üDegrading organic contaminants and germs üAstronautics industry your üAs a UV-resistant material Make üManufacture of printing ink, self-cleaning ceramics and glass, coating, etc.
    [Show full text]