Determination of Strock Z-GPR-Pna Concentration
Total Page:16
File Type:pdf, Size:1020Kb
ENHANCING EFFICACY OF PROTEASE DRUGS THROUGH SITE DIRECTED MUTAGENESIS A Thesis submitted to the faculty of A 5 San Francisco State University In partial fulfillment of the requirements for A o n - the Degree •AH Master of Science In Chemistry: Biochemistry by Angela Nicole Amorello San Francisco, California August 2017 CERTIFICATION OF APPROVAL I certify that I have read ENHANCING EFFICACY OF PROTEASE DRUGS THROUGH SITE DIRECTED MUTAGENESIS by Angela Nicole Amorello, and that in my opinion this work meets the criteria for approving a thesis submitted in partial fulfillment of the requirement for the degree Master of Science in Chemistry: Biochemistry at San Francisco State University. ENHANCING EFFICACY OF PROTEASE DRUGS THROUGH SITE-DIRECTED MUTAGENESIS Angela Nicole Amorello San Francisco, California 2017 A modem approach to drug development draws from nature to treat disease. Proteases, historically targeted for the development of inhibitors, show therapeutic potential. Development of protease therapeutics is complicated by the presence of endogenous inhibitors, which result in reduced serum half-lives of these agents. Determining which residues influence inhibitor binding can inform the design of efficacious protease therapeutics that have less favorable interactions with inhibitors through mutagenesis. Trypsin-fold serine proteases account for the majority of commercially available protease therapeutics. Consequently, substitutions that confer inhibitor resistance while maintaining catalytic activity in trypsin may be applied to prospective serine protease drugs. Examination of crystal structures of trypsin and its macromolecular inhibitors have shown a conserved hydrogen bond interaction between Tyr 39, Lys 60 and inhibitor. Using PCR mutagenesis, four trypsin variants were produced with amino acid substitutions at position 39 (Y39E, Y39S, Y39V and Y39L). Single variants Y39S and Y39L display activity that is comparable to wild type [kcat= (8.5 ± 47) x 103 m in'1), (9.1 ± 143) x 10'3 min*1 and (4.9 ± 100) x 103 min'1] respectively. I certify that the Abstract is a correct representation of the content of this thesis. Date TABLE OF CONTENTS List of Tables..................................................................................................................................vii List of Figures............................................................................................................................... viii 1. Introduction....................................................................................................................................1 Background and Significance........................................................................................... 1 Protease Therapeutics.........................................................................................................1 Serine Proteases.................................................................................................................. 2 Protease Inhibitors..............................................................................................................4 Protease Engineering......................................................................................................... 4 Experimental Design.........................................................................................................10 2. Experimental............................................................................................................................... 14 Construction of Variant Trypsin Zymogens.................................................................14 Bacterial Transformation.................................................................................................14 DNA Extraction and Purification....................................................................................15 Yeast Transformation........................................................................................................16 Small Scale Expression.................................................................................................... 17 Large Scale Expression.................................................................................................... 18 Zymogen Activation.........................................................................................................19 Active Site Titration..........................................................................................................19 Separation of Mature Trypsin from Trypsinogen....................................................... 20 Determination of Strock Z-GPR-pNA Concentration.................................................21 Characterization of Wild Type and Variants ..............................................................22 3. Results and Discussion.......................................................................................................... 24 Rationale for Variant Selection...................................................................................... 24 Small and Large Scale Expression.................................................................................25 Fast Protein Liquid Chromatography............................................................................ 26 Activation of Trypsin Variants...................................................................................... 27 Active Site Titration......................................................................................................... 30 Kinetic Characterization of Trypsin Variants..............................................................32 Inhibition Studies..............................................................................................................36 Future Directions........................................................................................................................... 40 References........................................................................................................................................43 LIST OF TABLES Table Page 1. Table 1 ...32 2. Table 2 ...36 LIST OF FIGURES Figures Page 1. Figure 1........... 3 2. Figure 2 ........................................................................................................................... 6 3. Figure 3 ............................................................................................................................7 4. Figure 4 ........................................................................................................................... 8 5. Figure 5 ...........................................................................................................................12 6. Figure 6...........................................................................................................................13 7. Figure 7 .......................................................................................................................... 29 8. Figure 8.......................................................................................................................... 31 9. Figure 9 .......................................................................................................................... 33 10. Figure 10........................................................................................................................12 11. Figure 11.......................................................................................................................38 12. Figure 12.......................................................................................................................39 1 1. Introduction A. Background and Significance Proteases are essential for a wide range of biological processes, including digestion, blood coagulation, and signal transduction pathways (Craik et. al 2011). Protease malfunction can result in various pathologies including bleeding disorders, cancer, and inflammation (Drag et. al 2010). Proteases either activate or inactivate growth factors, cytokines, chemokines, and cellular receptors resulting in downstream signal transduction and gene regulation (Craik et. al 2011). For example, up-regulation of matrix-metalloproteinases and matriptases is often observed in cancer (Drag et. al 2010, p. 2008). The roles of proteases in important biological processes and disease has made them attractive targets for drug design. B. Protease Therapeutics Protease-based drug discovery has traditionally involved development of inhibitors of proteolytic activity, which has resulted in highly successful drugs. Examples of these include Angiotensin Converting Enzyme inhibitors and HIV protease inhibitors, which treat cardiovascular disorders and HIV respectively (Drag et. al 2010). However, a long standing goal of the pharmaceutical industry has been to develop a protease therapeutic agent that remains catalytically active (Li et. al 2013). Protease therapeutics can provide unique benefits in contrast to other drugs. As a result of their catalytic activity, protease 2 drugs have the potential to inactivate multiple target proteins with higher efficacy in comparison to small molecule drugs. Exploiting this feature may allow smaller and less frequent doses, as well as lower costs to consumers (Li et. al 2013). A variety of protease therapeutic agents have gained approval from the U.S. Food and Drug Administration for clinical use in the treatment of traumatic bleeding (thrombin), hemophilia (FIX), and psoriasis