Similar Offspring Production by Normal and Intersex Females in Two Populations of Gammarus Minus (Malacostraca, Amphipoda) with High Levels of Intersexuality

Total Page:16

File Type:pdf, Size:1020Kb

Similar Offspring Production by Normal and Intersex Females in Two Populations of Gammarus Minus (Malacostraca, Amphipoda) with High Levels of Intersexuality Crustaceana 85 (7) 801-815 SIMILAR OFFSPRING PRODUCTION BY NORMAL AND INTERSEX FEMALES IN TWO POPULATIONS OF GAMMARUS MINUS (MALACOSTRACA, AMPHIPODA) WITH HIGH LEVELS OF INTERSEXUALITY BY DOUGLAS S. GLAZIER1,4), TAMELA L. BROWN2) and ALEX T. FORD3) 1) Department of Biology, Brumbaugh Academic Center, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, U.S.A. 2) 116 Administration Building, Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, U.S.A. 3) School of Biological Sciences, King Henry Building, University of Portsmouth, Portsmouth PO1 2DT, U.K. ABSTRACT Two Virginia (U.S.A.) populations of the freshwater amphipod Gammarus minus (Say, 1818) exhibit high frequencies of females with male genital papillae (60 to 75% in one population and 100% in the other) that have been observed for over 30 years. This observation is surprising because sex-allocation theory predicts that such intersex individuals should have lower evolutionary fitness than ‘normal’ males or females. Here we tested this theory by comparing a major component of reproductive fitness (offspring production, as estimated by number and total mass of offspring in a brood) between intersex and normal females. Although intersex females tend to brood slightly fewer, but larger embryos than those of normal females, these differences were not significant overall, and moreover they resulted in nearly identical mean production of total offspring mass per brood. Maternal somatic investment (body mass and body condition) during brooding also did not differ significantly between intersex and normal females. These results suggest that intersex females may not have lower reproductive fitness than that of normal females, which may help explain their high frequencies in the Virginia populations. Consistent with this hypothesis, available literature data on four amphipod species show a positive association between intersex frequency and the offspring production of intersex females relative to that of normal females. However, this hypothesis needs to be tested further by examining other reproductive and survival traits related to fitness, and by examining other amphipod populations with varying intersex frequencies. Moreover, the cause(s) of the intersex condition in the Virginia populations (and most other amphipod populations) remains largely unknown. 4) Corresponding author; e-mail: [email protected] © Koninklijke Brill NV, Leiden, 2012 DOI:10.1163/156854012X650241 802 DOUGLAS S. GLAZIER, TAMELA L. BROWN & ALEX T. FORD RÉSUMÉ Deux populations de Virginie (U.S.A.) de l’amphipode d’eau douce Gammarus minus (Say, 1818) qui ont été observées sur une période de 30 ans, présentent une grande fréquence de femelles avec une papille génitale mâle (60 à 75% dans une population et 100% dans l’autre). Cette observation est surprenante car la théorie d’allocation du sexe prédit que de tels individus intersexués doivent avoir une fitness moindre que les males ou femelles “normaux”. Nous avons donc testé cette théorie en comparant un composant essentiel de la fitness reproductrice (la fertilité, estimée par le nombre et la masse de descendants dans une portée) entre les intersexués et les femelles normales. Bien que les femelles intersexuées tendent à se reproduire légèrement moins, mais avec des embryons plus gros que les femelles normales, ces différences n’ont pas été significatives, et de plus elles résultent en une moyenne de production totale de masse de descendants par portée presque identique. De même l’investissement somatique maternel (poids et condition corporelle) pendant la reproduction ne diffère pas significativement entre les intersexués et les femelles normales. Ces résultats suggèrent que les femelles intersexuées n’ont peut-être pas une fitness reproductrice plus basse que les femelles normales, ce qui peut expliquer leur fréquence élevée dans les populations de Virginie. En accord avec cette hypothèse, les données de la littérature sur quatre espèce d’amphipodes montrent une association positive entre la fréquence des intersexués et la fertilité des femelles intersexuées par rapport aux femelles normales. Cependant cette hypothèse demande à être testée plus à fond en examinant d’autres traits reproductifs et de survie reliés à la fitness, et en examinant les 48 populations d’amphipodes avec des fréquences d’intersexués variables. De plus les causes de la condition d’intersexués dans les populations de Virginie (et dans la plupart des autres populations d’amphipodes) restent largement inconnues. INTRODUCTION Intersex individuals exhibit both male and female sexual characteristics (Rein- both, 1975; Narita et al., 2010). Sex-allocation theory predicts that intersexes should have lower evolutionary fitness than normal males or females, and thus should be selected against (Charnov, 1982). Therefore, it is not surprising that in- tersexuality is usually relatively rare in animal populations (Reinboth, 1975; Kelly et al., 2004; Ford & Fernandes, 2005; LeBlanc, 2007; Narita et al., 2010), and typ- ically appears to be an abnormality putatively caused by genetic defects, chemical contamination, endocrine disruption, environmental sex determination, endosym- bionts (e.g., microsporidia parasites), low food quantity/quality, and (or) other en- vironmental factors, though this is still an open question in most cases (Bulnheim, 1978; Dunn et al., 1996; Takahashi et al., 2000; Ford et al., 2004a; Jungmann et al., 2004; Kelly et al., 2004; Bjerregaard et al., 2006; Olmstead & LeBlanc, 2007; Gusmão & McKinnon, 2009; West, 2009; Narita et al., 2010). For example, populations of amphipod crustaceans usually exhibit low frequencies of intersexes (0-10%: Ford & Fernandes, 2005), with some of the highest levels (up to approx- imately 20%) recorded in polluted habitats (Ford et al., 2006, 2007; Pastorinho et al., 2009; but see Gross et al., 2001; Jungmann et al., 2004) and (or) in the pres- ence of sex-distorting microsporidia (Kelly et al., 2004; Ford et al., 2006; but see Bulnheim, 1978)..
Recommended publications
  • Volume 2, Chapter 10-2: Arthropods: Crustacea
    Glime, J. M. 2017. Arthropods: Crustacea – Ostracoda and Amphipoda. Chapt. 10-2. In: Glime, J. M. Bryophyte Ecology. Volume 2. 10-2-1 Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 10-2 ARTHROPODS: CRUSTACEA – OSTRACODA AND AMPHPODA TABLE OF CONTENTS CLASS OSTRACODA ..................................................................................................................................... 10-2-2 Adaptations ................................................................................................................................................ 10-2-3 Swimming to Crawling ....................................................................................................................... 10-2-3 Reproduction ....................................................................................................................................... 10-2-3 Habitats ...................................................................................................................................................... 10-2-3 Terrestrial ............................................................................................................................................ 10-2-3 Peat Bogs ............................................................................................................................................ 10-2-4 Aquatic ...............................................................................................................................................
    [Show full text]
  • Crustacea: Amphipoda) in Texas and New Mexico, Usa
    ANALYSIS OF THE GAMMARUS-PECOS COMPLEX (CRUSTACEA: AMPHIPODA) IN TEXAS AND NEW MEXICO, USA GERALD A. COLE Route 4, Box 892 Flagstaff, Arizona 86001 ABSTRACT A comparative study was made of representatives from seven populations of Gammarus in Texan and New Mexican fresh-to-miohaline waters in areas once overlain by Permian seas. They included the described species: G. pecos Cole and Bousfield (symbolized P) from Pecos Co., TX; G. hyalelloides Cole (H) from Phantom Lake Spring, Jeff Davis Co., TX; and G. desperatus Cole (D) from Chaves Co., NM. Members of other populations were examined from: San Solomon Spring (S), Toyahvale, Reeves Co., TX; a large species (C) co-occurring with H in Phantom Lake Spring; a small form (M) that came either from Phantom Lake Spring or from a spring 350 m to the north; and a species (E) from a pool near Carlsbad, Eddy Co., NM. All members of the group lack calceoli, bear C-setae on their mandibular palps, and have narrow oostegites. Coxae 1-4, in the larger individuals, are armed abundantly with long setae, and all animals have at least one spine at the posterodistal corner of the first peduncular article of the antennule. Twenty Mann-Whitney U tests were applied to certain morphologic attributes of the seven populations. The results suggest that: P and S are conspecific, with the latter showing some affinities to the larger animals (C) in the nearby Phantom Lake Spring system; C probably is a new species although more closely related to M and H than are the other four; G.
    [Show full text]
  • Esox Lucius) Ecological Risk Screening Summary
    Northern Pike (Esox lucius) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2019 Web Version, 8/26/2019 Photo: Ryan Hagerty/USFWS. Public Domain – Government Work. Available: https://digitalmedia.fws.gov/digital/collection/natdiglib/id/26990/rec/22. (February 1, 2019). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019a): “Circumpolar in fresh water. North America: Atlantic, Arctic, Pacific, Great Lakes, and Mississippi River basins from Labrador to Alaska and south to Pennsylvania and Nebraska, USA [Page and Burr 2011]. Eurasia: Caspian, Black, Baltic, White, Barents, Arctic, North and Aral Seas and Atlantic basins, southwest to Adour drainage; Mediterranean basin in Rhône drainage and northern Italy. Widely distributed in central Asia and Siberia easward [sic] to Anadyr drainage (Bering Sea basin). Historically absent from Iberian Peninsula, Mediterranean France, central Italy, southern and western Greece, eastern Adriatic basin, Iceland, western Norway and northern Scotland.” Froese and Pauly (2019a) list Esox lucius as native in Armenia, Azerbaijan, China, Georgia, Iran, Kazakhstan, Mongolia, Turkey, Turkmenistan, Uzbekistan, Albania, Austria, Belgium, Bosnia Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Macedonia, Moldova, Monaco, 1 Netherlands, Norway, Poland, Romania, Russia, Serbia, Slovakia, Slovenia, Sweden, Switzerland, United Kingdom, Ukraine, Canada, and the United States (including Alaska). From Froese and Pauly (2019a): “Occurs in Erqishi river and Ulungur lake [in China].” “Known from the Selenge drainage [in Mongolia] [Kottelat 2006].” “[In Turkey:] Known from the European Black Sea watersheds, Anatolian Black Sea watersheds, Central and Western Anatolian lake watersheds, and Gulf watersheds (Firat Nehri, Dicle Nehri).
    [Show full text]
  • Nabs 2004 Final
    CURRENT AND SELECTED BIBLIOGRAPHIES ON BENTHIC BIOLOGY 2004 Published August, 2005 North American Benthological Society 2 FOREWORD “Current and Selected Bibliographies on Benthic Biology” is published annu- ally for the members of the North American Benthological Society, and summarizes titles of articles published during the previous year. Pertinent titles prior to that year are also included if they have not been cited in previous reviews. I wish to thank each of the members of the NABS Literature Review Committee for providing bibliographic information for the 2004 NABS BIBLIOGRAPHY. I would also like to thank Elizabeth Wohlgemuth, INHS Librarian, and library assis- tants Anna FitzSimmons, Jessica Beverly, and Elizabeth Day, for their assistance in putting the 2004 bibliography together. Membership in the North American Benthological Society may be obtained by contacting Ms. Lucinda B. Johnson, Natural Resources Research Institute, Uni- versity of Minnesota, 5013 Miller Trunk Highway, Duluth, MN 55811. Phone: 218/720-4251. email:[email protected]. Dr. Donald W. Webb, Editor NABS Bibliography Illinois Natural History Survey Center for Biodiversity 607 East Peabody Drive Champaign, IL 61820 217/333-6846 e-mail: [email protected] 3 CONTENTS PERIPHYTON: Christine L. Weilhoefer, Environmental Science and Resources, Portland State University, Portland, O97207.................................5 ANNELIDA (Oligochaeta, etc.): Mark J. Wetzel, Center for Biodiversity, Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820.................................................................................................................6 ANNELIDA (Hirudinea): Donald J. Klemm, Ecosystems Research Branch (MS-642), Ecological Exposure Research Division, National Exposure Re- search Laboratory, Office of Research & Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268- 0001 and William E.
    [Show full text]
  • Northern Spring Amphipod Gammarus Pseudolimnaeus
    Natural Heritage Northern Spring Amphipod & Endangered Species Gammarus pseudolimnaeus Program State Status: Special Concern www.mass.gov/nhesp Federal Status: None Massachusetts Division of Fisheries & Wildlife DESCRIPTION: The Northern Spring Amphipod is a laterally compressed, many segmented, freshwater crustacean that looks like a small, flat shrimp. It is uniformly dark and mature specimens can reach lengths of 11 to 18 mm (Bousfield 1958, Bell 1971, Hynes and Harper 1972). Its head has two pairs of antennae and a pair of eyes, and is fused with the first of seven thoracic segments. Each thoracic segment, as well as the six abdominal segments, has a pair of legs and/or gills that aid in respiration and locomotion. Identification of amphipods is difficult because knowledge of specific 2 mm amphipod anatomy is required. male SIMILAR SPECIES: Amphipods in the genus Gammarus are similar to this species. Gammarus Smith, D.G. 1984. Selected freshwater invertebrates proposed for special concern status in Massachusetts, Part II. Mass. Dept. of Env. Qual. fasciatus is most similar in that it is uniformly colored, Engineering, Div. of Wat. Pollut. Control. Westborough, MA. although it is smaller and has conspicuous dark bands. Identification guides sufficiently illustrate the differences among these species (Smith 2000). RANGE: The range of the Northern Spring Amphipod extends throughout the previously glaciated regions of New York and the Great Lakes region. Three localities in southwestern Massachusetts and an isolated locality in the central Hudson River system in New York represent the currently known southeastern range limit of the species along the Atlantic seaboard. The Massachusetts populations appear to be the only populations in New England and are possibly glacial relict populations (D.G.
    [Show full text]
  • Amphipoda Key to Amphipoda Gammaridea
    GRBQ188-2777G-CH27[411-693].qxd 5/3/07 05:38 PM Page 545 Techbooks (PPG Quark) Dojiri, M., and J. Sieg, 1997. The Tanaidacea, pp. 181–278. In: J. A. Blake stranded medusae or salps. The Gammaridea (scuds, land- and P. H. Scott, Taxonomic atlas of the benthic fauna of the Santa hoppers, and beachhoppers) (plate 254E) are the most abun- Maria Basin and western Santa Barbara Channel. 11. The Crustacea. dant and familiar amphipods. They occur in pelagic and Part 2 The Isopoda, Cumacea and Tanaidacea. Santa Barbara Museum of Natural History, Santa Barbara, California. benthic habitats of fresh, brackish, and marine waters, the Hatch, M. H. 1947. The Chelifera and Isopoda of Washington and supralittoral fringe of the seashore, and in a few damp terres- adjacent regions. Univ. Wash. Publ. Biol. 10: 155–274. trial habitats and are difficult to overlook. The wormlike, 2- Holdich, D. M., and J. A. Jones. 1983. Tanaids: keys and notes for the mm-long interstitial Ingofiellidea (plate 254D) has not been identification of the species. New York: Cambridge University Press. reported from the eastern Pacific, but they may slip through Howard, A. D. 1952. Molluscan shells occupied by tanaids. Nautilus 65: 74–75. standard sieves and their interstitial habitats are poorly sam- Lang, K. 1950. The genus Pancolus Richardson and some remarks on pled. Paratanais euelpis Barnard (Tanaidacea). Arkiv. for Zool. 1: 357–360. Lang, K. 1956. Neotanaidae nov. fam., with some remarks on the phy- logeny of the Tanaidacea. Arkiv. for Zool. 9: 469–475. Key to Amphipoda Lang, K.
    [Show full text]
  • Growth, Survival and Distribution of Gammarus Lacustris
    Growth. Survival and Distribution ·of Gammarus /acustris · (Crustacea- Amphipoda) Stocked into Ponds <J: "'~ ~ N . · ~ o athias and M. Papst .!J ..-- ~=--~'(') ... > 0 • eJ 0 Ul 0 w 0 Lt.. 0 ~ N n Region ~ ~ nent of Fisheries and Oceans ~ ; ~g, Manitoba R3T 2N6 Ul=>_ August . 198~ · Canadian Technical Report of ·Fisheries & Aquatic Sciences No.989 ' ' Canadian Technical Report of Fisheries and Aquatic Sciences These reports contain scientific and technical information that represents an important contribution to existing knowledge but which for some reason may not be appropriate for primary scientific (i.e. Journa[) publication. Technical Reports are directed primarily towards a worldwide audience and have an international distribution. No restriction is placed on subject matter and the series reflects the broad interests and policies of the Department of Fisheries and Oceans, namely, fisheries management, technology and development, ocean sciences, and aquatic environments relevant to Canada. Technical Reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report will be abstracted in Aquatic Sciences and Fisheries Abstracts and will be indexed annually in the Department's index to scientific and technical publications. Numbers 1-456 in this series were issued as Technical Reports of the Fisheries Research Board of Canada. Numbers 457-714 were issued as Department of the Environment, Fisheries and Marine Service, Research and Development Directorate Technical Reports. Numbers 715-924 were issued as Department of Fisheries and the Environment, Fisheries and Marine Service Technical Reports. The current series name was changed with report number 925. Details on the availability of Technical Reports in hard copy may be obtained from the issuing establishment indicated on the front cover.
    [Show full text]
  • Harmful Non-Indigenous Species in the United States
    DOCUMENT RESUME ED 368 561 SE 054 264 TITLE Harmful Non-Indigenous Species in the United States. INSTITUTION Congress of the U.S., Washington, D.C. Office of Technology Assessment. REPORT NO ISBN-0-16-042075-X; OTA-F-565 PUB DATE Sep 93 NOTE 409p.; Chapter One, The "Summary" has also been printed as a separate publication (OTA-F-566). ANAILABLE FROMU.S. Government Printing Office, Superintendent of Documents, Mail Stop: SSOP, Washington, DC 20402-9328. PUB TYPE Books (010) Reports Research/Technical (143) EDRS PRICE MF01/PC17 Plus Postage. DESCRIPTORS *Animals; Biotechnology; Case Studies; Decision Making; *Federal Legislation; Financial Support; Genetic Engineering; International Law; Natural Resources; *Plants (Botany); *Public Policy; Science Education; State Legislation; Weeds; Wildlife Management IDENTIFIERS Environmental Issues; Environmental Management; *Environmental Problems; Florida; Global Change; Hawaii; *Non Indigenous Speciez ABSTRACT Non-indigenous species (NIS) are common in the United States landscape. While some are beneficial, others are harmful and can cause significant economic, environmental, and health damage. This study, requested by the U.S. House Merchant Marine and Fisheries Committee, examined State and Federal policies related to these harmful NIS. The report is presented in 10 chapters. Chapter 1 identifies the issues and options related to the topic and a summary of the findings from the individual chapters that follow. Chapters 2 "The Consequences of NIS" and 3 "The Changing Numbers, Causes, and Rates of
    [Show full text]
  • 1 Amphipoda of the Northeast Pacific
    Amphipoda of the Northeast Pacific (Equator to Aleutians, intertidal to abyss): XIV. Gammaroidea – an updated and expanded review Donald B. Cadien, LACSD 22Jul2004 (revised 1Mar2015) Preface The purpose of this review is to bring together information on all of the species reported to occur in the NEP fauna. It is not a straight path to the identification of your unknown animal. It is a resource guide to assist you in making the required identification in full knowledge of what the possibilities are. Never forget that there are other, as yet unreported species from the coverage area; some described, some new to science. The natural world is wonderfully diverse, and we have just scratched its surface. Introduction to the Gammaroidea The superfamily, while having both marine and freshwater members, is most prominent in epigean fresh-waters. Marine occurrences are coastal, with no superfamily members belonging to pelagic or deep-sea communities. There is a vast literature on the fresh-water members of the superfamily, particularly in European waters, where they have been studied for centuries. According to Bousfield (1982) they are a fairly recently derived group which appeared in the Tertiary. The superfamily contains a number of families not represented in the NEP, including the Acanthogammaridae, Caspicolidae, Macrohectopidae, Micruropidae, Pachyschesidae, and the Typhlogammaridae. These families are most prominent in Indo- European fresh-water habitats. The Gammaridae is poorly represented in the NEP, with only one widely distributed arctic-boreal form, and two species introduced from the Atlantic. One additional member of the family has been introduced to the waters of the saline relict Salton Sea, now landlocked in southern California (J.
    [Show full text]
  • Native and Exotic Amphipoda and Other Peracarida in the River Meuse: New Assemblages Emerge from a Fast Changing Fauna
    Hydrobiologia (2005) 542:203–220 Ó Springer 2005 H. Segers & K. Martens (eds), Aquatic Biodiversity II DOI 10.1007/s10750-004-8930-9 Native and exotic Amphipoda and other Peracarida in the River Meuse: new assemblages emerge from a fast changing fauna Guy Josens1,*, Abraham Bij de Vaate2, Philippe Usseglio-Polatera3, Roger Cammaerts1,4, Fre´de´ric Che´rot1,4, Fre´de´ric Grisez1,4, Pierre Verboonen1 & Jean-Pierre Vanden Bossche1,4 1Universite´ Libre de Bruxelles, Service de syste´matique et d’e´cologie animales, av. Roosevelt, 50, cp 160/13, B-1050 Bruxelles 2Institute for Inland Water Management & Waste Water Treatment, Lelystad, The Netherlands 3Universite´ de Metz, LBFE, e´quipe de De´moe´cologie, av. Ge´ne´ral Delestraint, F-57070 Metz 4Centre de Recherche de la Nature, des Foreˆts et du Bois, DGRNE, Ministe`re de la Re´gion wallonne, Avenue Mare´chal Juin, 23, B-5030 Gembloux (*Author for correspondence: e-mail: [email protected]) Key words: aquatic biodiversity, alien species, invasive species, invasibility, community dynamics, Dikerogammarus villosus, Chelicorophium curvispinum Abstract Samples issued from intensive sampling in the Netherlands (1992–2001) and from extensive sampling carried out in the context of international campaigns (1998, 2000 and 2001) were revisited. Additional samples from artificial substrates (1992–2003) and other techniques (various periods) were analysed. The combined data provide a global and dynamic view on the Peracarida community of the River Meuse, with the focus on the Amphipoda. Among the recent exotic species found, Crangonyx pseudogracilis is regressing, Dikerogammarus haemobaphes is restricted to the Condroz course of the river, Gammarus tigrinus is restricted to the lowlands and seems to regress, Jaera istri is restricted to the ‘tidal’ Meuse, Chelicorophium curvispinum is still migrating upstream into the Lorraine course without any strong impact on the other amphipod species.
    [Show full text]
  • Gammarus Spp. in Aquatic Ecotoxicology and Water Quality Assessment: Toward Integrated Multilevel Tests
    Gammarus spp. in Aquatic Ecotoxicology and Water Quality Assessment: Toward Integrated Multilevel Tests Petra Y. Kunz, Cornelia Kienle, and Almut Gerhardt Contents 1 Introduction ................................. 2 2 Culturing of Gammarids ............................ 5 3 Gammarids in Lethality Testing ......................... 7 3.1 Pesticides, Metals, and Surfactants ..................... 7 3.2 Extracted, Fractionated Sediments ..................... 8 3.3 Coastal Sediment Toxicity ......................... 8 4 Feeding Activity ............................... 10 4.1 Time–Response Feeding Assays ...................... 10 4.2 Food Choice Experiments ......................... 16 4.3 Leaf-Mass Feeding Assays Linked to Food Consumption ........... 17 4.4 Modeling of Feeding Activity and Rate ................... 19 4.5 Post-exposure Feeding Depression Assay .................. 20 4.6 Effects of Parasites on Gammarid Feeding Ecology ............. 21 5Behavior................................... 22 5.1 Antipredator Behavior .......................... 22 5.2 Multispecies Freshwater BiomonitorR (MFB) ................ 27 5.3 A Sublethal Pollution Bioassay with Pleopod Beat Frequency and Swimming Endurance ........................... 29 5.4 Behavior in Combination with Other Endpoints ............... 29 6 Mode-of-Action Studies and Biomarkers .................... 31 6.1 Bioenergetic Responses, Excretion Rate and Respiration Rate ......... 32 6.2 Population Experiments, and Development and Reproduction Modeling .... 41 6.3 Endpoints and Biomarkers for
    [Show full text]
  • The Insecticide Imidacloprid Causes Mortality of the Freshwater Amphipod Gammarus Pulex by Interfering with Feeding Behavior
    The Insecticide Imidacloprid Causes Mortality of the Freshwater Amphipod Gammarus pulex by Interfering with Feeding Behavior Anna-Maija Nyman1,2*, Anita Hintermeister1, Kristin Schirmer1,2,3, Roman Ashauer1,4 1 Department of Environmental Toxicology, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Du¨bendorf, Switzerland, 2 Department of Environmental Systems Science, ETH Zu¨rich, Zu¨rich, Switzerland, 3 School of Architecture, Civil and Environmental Engineering, EPF Lausanne, Lausanne, Switzerland, 4 Environment Department, University of York, Heslington, York, United Kingdom Abstract If an organism does not feed, it dies of starvation. Even though some insecticides which are used to control pests in agriculture can interfere with feeding behavior of insects and other invertebrates, the link from chemical exposure via affected feeding activity to impaired life history traits, such as survival, has not received much attention in ecotoxicology. One of these insecticides is the neonicotinoid imidacloprid, a neurotoxic substance acting specifically on the insect nervous system. We show that imidacloprid has the potential to indirectly cause lethality in aquatic invertebrate populations at low, sublethal concentrations by impairing movements and thus feeding. We investigated feeding activity, lipid content, immobility, and survival of the aquatic arthropod Gammarus pulex under exposure to imidacloprid. We performed experiments with 14 and 21 days duration, both including two treatments with two high, one day pulses of imidacloprid and one treatment with a low, constant concentration. Feeding of G. pulex as well as lipid content were significantly reduced under exposure to the low, constant imidacloprid concentration (15 mg/L). Organisms were not able to move and feed – and this caused high mortality after 14 days of constant exposure.
    [Show full text]