Transgenic Manipulation of Tubulins in Populus Alters Cell Wall
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Brisbane Native Plants by Suburb
INDEX - BRISBANE SUBURBS SPECIES LIST Acacia Ridge. ...........15 Chelmer ...................14 Hamilton. .................10 Mayne. .................25 Pullenvale............... 22 Toowong ....................46 Albion .......................25 Chermside West .11 Hawthorne................. 7 McDowall. ..............6 Torwood .....................47 Alderley ....................45 Clayfield ..................14 Heathwood.... 34. Meeandah.............. 2 Queensport ............32 Trinder Park ...............32 Algester.................... 15 Coopers Plains........32 Hemmant. .................32 Merthyr .................7 Annerley ...................32 Coorparoo ................3 Hendra. .................10 Middle Park .........19 Rainworth. ..............47 Underwood. ................41 Anstead ....................17 Corinda. ..................14 Herston ....................5 Milton ...................46 Ransome. ................32 Upper Brookfield .......23 Archerfield ...............32 Highgate Hill. ........43 Mitchelton ...........45 Red Hill.................... 43 Upper Mt gravatt. .......15 Ascot. .......................36 Darra .......................33 Hill End ..................45 Moggill. .................20 Richlands ................34 Ashgrove. ................26 Deagon ....................2 Holland Park........... 3 Moorooka. ............32 River Hills................ 19 Virginia ........................31 Aspley ......................31 Doboy ......................2 Morningside. .........3 Robertson ................42 Auchenflower -
Guava (Eucalyptus) Rust Puccinia Psidii
INDUSTRY BIOSECURITY PLAN FOR THE NURSERY & GARDEN INDUSTRY Threat Specific Contingency Plan Guava (eucalyptus) rust Puccinia psidii Plant Health Australia March 2009 Disclaimer The scientific and technical content of this document is current to the date published and all efforts were made to obtain relevant and published information on the pest. New information will be included as it becomes available, or when the document is reviewed. The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific, independent professional advice. Plant Health Australia and all persons acting for Plant Health Australia in preparing this publication, expressly disclaim all and any liability to any persons in respect of anything done by any such person in reliance, whether in whole or in part, on this publication. The views expressed in this publication are not necessarily those of Plant Health Australia. Further information For further information regarding this contingency plan, contact Plant Health Australia through the details below. Address: Suite 5, FECCA House 4 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 Email: [email protected] Website: www.planthealthaustralia.com.au PHA & NGIA | Contingency Plan – Guava rust (Puccinia psidii) 1 Purpose and background of this contingency plan ............................................................. -
Post-Fire Recovery of Woody Plants in the New England Tableland Bioregion
Post-fire recovery of woody plants in the New England Tableland Bioregion Peter J. ClarkeA, Kirsten J. E. Knox, Monica L. Campbell and Lachlan M. Copeland Botany, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, AUSTRALIA. ACorresponding author; email: [email protected] Abstract: The resprouting response of plant species to fire is a key life history trait that has profound effects on post-fire population dynamics and community composition. This study documents the post-fire response (resprouting and maturation times) of woody species in six contrasting formations in the New England Tableland Bioregion of eastern Australia. Rainforest had the highest proportion of resprouting woody taxa and rocky outcrops had the lowest. Surprisingly, no significant difference in the median maturation length was found among habitats, but the communities varied in the range of maturation times. Within these communities, seedlings of species killed by fire, mature faster than seedlings of species that resprout. The slowest maturing species were those that have canopy held seed banks and were killed by fire, and these were used as indicator species to examine fire immaturity risk. Finally, we examine whether current fire management immaturity thresholds appear to be appropriate for these communities and find they need to be amended. Cunninghamia (2009) 11(2): 221–239 Introduction Maturation times of new recruits for those plants killed by fire is also a critical biological variable in the context of fire Fire is a pervasive ecological factor that influences the regimes because this time sets the lower limit for fire intervals evolution, distribution and abundance of woody plants that can cause local population decline or extirpation (Keith (Whelan 1995; Bond & van Wilgen 1996; Bradstock et al. -
D.Nicolle, Classification of the Eucalypts (Angophora, Corymbia and Eucalyptus) | 2
Taxonomy Genus (common name, if any) Subgenus (common name, if any) Section (common name, if any) Series (common name, if any) Subseries (common name, if any) Species (common name, if any) Subspecies (common name, if any) ? = Dubious or poorly-understood taxon requiring further investigation [ ] = Hybrid or intergrade taxon (only recently-described and well-known hybrid names are listed) ms = Unpublished manuscript name Natural distribution (states listed in order from most to least common) WA Western Australia NT Northern Territory SA South Australia Qld Queensland NSW New South Wales Vic Victoria Tas Tasmania PNG Papua New Guinea (including New Britain) Indo Indonesia TL Timor-Leste Phil Philippines ? = Dubious or unverified records Research O Observed in the wild by D.Nicolle. C Herbarium specimens Collected in wild by D.Nicolle. G(#) Growing at Currency Creek Arboretum (number of different populations grown). G(#)m Reproductively mature at Currency Creek Arboretum. – (#) Has been grown at CCA, but the taxon is no longer alive. – (#)m At least one population has been grown to maturity at CCA, but the taxon is no longer alive. Synonyms (commonly-known and recently-named synonyms only) Taxon name ? = Indicates possible synonym/dubious taxon D.Nicolle, Classification of the eucalypts (Angophora, Corymbia and Eucalyptus) | 2 Angophora (apples) E. subg. Angophora ser. ‘Costatitae’ ms (smooth-barked apples) A. subser. Costatitae, E. ser. Costatitae Angophora costata subsp. euryphylla (Wollemi apple) NSW O C G(2)m A. euryphylla, E. euryphylla subsp. costata (smooth-barked apple, rusty gum) NSW,Qld O C G(2)m E. apocynifolia Angophora leiocarpa (smooth-barked apple) Qld,NSW O C G(1) A. -
Evaluation of Eucalyptus Triantha Timber for Structural Applications
Silva Lusitana, 28(1): 1 - 13, 2020 1 © INIAV, Oeiras, Portugal Evaluation of Eucalyptus triantha Timber for Structural Applications *Marta C.J.A. Nogueira, Victor A. de Araujo, Juliano S. Vasconcelos, André L. Christoforo, Francisco A.R. Lahr Abstract. Eucalypt wood is an important raw material with multiple uses applied for furniture, pulp and paper, charcoal, biomass, and construction. Sixteen tests were performed to evaluate physical and mechanical properties of Eucalyptus triantha, which could estimate the possibility of utilization of this woody material in construction. In all, about 267 repeats were realized. Two moisture contents were regarded according to the Brazilian and American standard documents: fiber saturation point (30%) and standard dried point (12%). Results were statistically treated with t-test and demonstrated increases in six mechanical properties from Eucalyptus triantha wood species: rupture moduli in perpendicular and parallel compressions and static bending; elasticity moduli in parallel tensile, perpendicular compression, and static bending. Volumetric mass and bulk densities were practically stable. Physical and mechanical properties estimation evinced that Eucalyptus triantha wood can be used in structural elements. Key words: Eucalypt; wood; density; moisture content; strength Avaliação da Madeira de Eucalyptus triantha para Aplicações Estruturais Sumário. A madeira de eucalipto é uma importante matéria-prima de múltiplos usos utilizada em móveis, papel e celulose, carvão vegetal, biomassa e construção. Dezesseis testes foram realizados para avaliar as propriedades físicas e mecânicas do Eucalyptus triantha, os quais puderam estimar a possibilidade de utilização desse material madeirável na construção. Ao todo, aproximadamente 267 repetições foram realizadas. Dois teores de umidade foram considerados segundo os documentos normativos brasileiro e norte-americano: ponto de saturação das fibras (30%) e estado seco padrão * Full Professor Ph.D., Federal University of Mato Grosso, Dept. -
Indigenous Plants of Greater Taree
Indigenous Plants of Greater Taree Copyright & Acknowledgements Images are all copyright of Andrew Paget (1981-) and are provided for use in this booklet on the basis that this publication is not for commercial sale. Thanks to all the community groups and individuals who commented on drafts of this booklet, and to the Hunter-Central Rivers Catchment Management Authority who funded the production of this booklet through the Australian Natural Heritage Trust. Third edition published in 2010 by Greater Taree City Council‟s Strategic Planning Department. NOTE: This booklet includes only a small range of the 1800 plants known to be indigenous to the Greater Taree Local Government Area. It provides information and photos on 127 species, which are more commonly used in horticulture, attractive for cultivation and widespread across the region. The summary table in the rear of the booklet provides further information on these species and an additional 198 species, including species suitable for bushland revegetation and others less common to the region. Page 1 Indigenous Plants of Greater Taree Contents Introduction ..................................................................... p3 What are Indigenous Plants? ........................................... P4 Why use Indigenous Plants? ........................................... p4 Genetic Purity Issues ....................................................... p5 Which plants are Suitable for Cultivation? ...................... p6 Where do you obtain Indigenous Plants? ........................ -
Lacerda Lt Dr Rcla Int.Pdf
UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” INSTITUTO DE BIOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS (MICROBIOLOGIA APLICADA) DIVERSIDADE DE FUNGOS EM Eucalyptus microcorys F. MUELL DA FLORESTA ESTADUAL EDMUNDO NAVARRO DE ANDRADE, RIO CLARO-SP LORENA TIGRE LACERDA Tese apresentada ao Instituto de Biociências, do Câmpus de Rio Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de Doutor em Ciências Biológicas (Microbiologia Aplicada). Rio Claro Outubro – 2018 LORENA TIGRE LACERDA DIVERSIDADE DE FUNGOS EM Eucalyptus microcorys F. MUELL DA FLORESTA ESTADUAL EDMUNDO NAVARRO DE ANDRADE, RIO CLARO-SP Tese apresentada ao Instituto de Biociências, do Câmpus de Rio Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de Doutor em Ciências Biológicas (Microbiologia Aplicada). Orientador: Prof. Dr. André Rodrigues Co-orientador: Prof. Dr. Luís Fernando P. Gusmão Rio Claro Outubro – 2018 Lacerda, Lorena Tigre L131d Diversidade de fungos em Eucalyptus microcorys F. Muell da Floresta Estadual Edmundo Navarro de Andrade, Rio Claro - SP / Lorena Tigre Lacerda. -- Rio Claro, 2018 123 p. : tabs., fotos Tese (doutorado) - Universidade Estadual Paulista (Unesp), Instituto de Biociências, Rio Claro Orientador: André Rodrigues Coorientador: Luís Fernando P. Gusmão 1. Endófitos. 2. Ecologia. 3. Folhas. 4. Sapróbios. 5. Taxonomia. I. Título. Sistema de geração automática de fichas catalográficas da Unesp. Biblioteca do Instituto de Biociências, Rio Claro. Dados fornecidos pelo autor(a). Essa ficha não pode ser modificada. À minha mãe, pelo apoio e incentivo, durante todo o tempo. Dedico AGRADECIMENTOS Aprendi que nada se constrói sozinho e que a vida é uma constante troca de conhecimento. ―Ninguém é tão ignorante que não tenha algo a ensinar. -
A Bibliography of Plantation Hardwood and Farm Forestry Silviculture Research Trials in Australia
A Bibliography of Plantation Hardwood and Farm Forestry Silviculture Research Trials in Australia A report for the RIRDC/Land & Water Australia/FWPRDC Joint Venture Agroforestry Program by Rosemary Lott October 2001 RIRDC Publication No 01/101 RIRDC Project No DAQ-222A © 2001 Rural Industries Research and Development Corporation. All rights reserved. ISBN 0 642 58323 4 ISSN 1440-6845 A Bibliography of Plantation Hardwood and Farm Forestry Silviculture Research trials in Australia Publication No. 01/101 Project No. DAQ-222A The views expressed and the conclusions reached in this publication are those of the author and not necessarily those of persons consulted. RIRDC shall not be responsible in any way whatsoever to any person who relies in whole or in part on the contents of this report. This publication is copyright. However, RIRDC encourages wide dissemination of its research, providing the Corporation is clearly acknowledged. For any other enquiries concerning reproduction, contact the Publications Manager on phone 02 6272 3186. Researcher Contact Details Rosemary Lott Queensland Forestry Research Institute M. S. 483 Fraser Road Gympie, QLD 4570 Phone:(07) 5482 0869 Fax: (07) 5482 8755 Email: [email protected] RIRDC Contact Details Rural Industries Research and Development Corporation Level 1, AMA House 42 Macquarie Street BARTON ACT 2600 PO Box 4776 KINGSTON ACT 2604 Phone: 02 6272 4539 Fax: 02 6272 5877 Email: [email protected] Website: http://www.rirdc.gov.au Published in October 2001 Printed on environmentally friendly paper by Canprint Foreword Australian federal and state government policies are supporting the development of plantations on cleared land for wood production, as part of the 20:20 vision. -
Max Watson's Vasona Eucalyptus Grove - Legend
Max Wat~on's Vasona Eucalyptus Grove- Legend Vasona Lake Park, 298 Garden Hill Drive, Los Gatos CA 95030 (408) 358-3741 Original plantings by Max Watson: Nov. 1964, Jan. 1967 & Oct. 1970 Map Revisions by Grace Heintz:June 1983 & Sept. 1986 I Dave Dockter: Feb 1995\ Dockter-Coate: 2005 16 44\\ 44 34 \ . ' 44· ·39 39 39 33 - 13 \ 27 '· .,, , " " , \., "asona Lak·e . o%" / ~,,·,27~ ' u u --· , , "" ",t, . " . / ' · 4,. ""' «.~ ,., ' ' ' - ,,fY' "·"' " ' '· //..i ~ce., ' ·. "• '' .,. '. ' J '/ "· (~ ~ c-43- ~ I 1 28 ~o~ ~ r I /111 '-.' 1 1 " ' ·:--."-• -. - / / I " ''"'"> < I y ~ ..] . ·~ ./~ ..,...-c~1-~\... 9 ~< ' '"' ~ ~ -. - - ~ '• ·' .s:-c/{Le I"·JO' / ; ..... 14 1 I ~>:1.-..' ~-=-·· _../,- :.,---- --_ -;;~Vfo>) t. 7 " ~·/· ~ ..,__ ~( I ' 2 '- '-. " ,. "" ., " u _,.. ~.._ _____...- / ;,P';""""!' -<./ ,;• "' . - •'' I ' . ' ' " AC- " ;;, ;.:r, :::;:.-- -9 39\2~ -..... _;..:::\ ·1 6_:...--- ,..- 6· 3f· ~ -;;... .,,_t' 5~" s~ ----.. ' " .._~ / // ~ ?-. \ " -. ' .. ,,,, ./ 7 1 37 '40 32 ...... __-r~ :;:-24 . 37 .· . ~l l'> ... -:::_,.. -.---.:_32 ___.. 1 1 ~ ~ 31 ~ . 31- ~~~ -0 " V asona Lake County Park, Los Gatos, CA. One of the best public collections of ornamental eucalyptus species in the Bay Area is located at V asona Lake County Park in Los Gatos. Originally planted by local eucalyptus · enthusiast Max Watson in 1964, most of the trees have been identified and labeled Directions and map to the Vasona Lake County Park, Los Gatos. CA as to species. The 40+-year-old trees provide valuable examples of more than 40 different can be accessed online at www.oark.here.org. The entrance to Vasona Lake Park is located at 333 Blossom Hill Road in Los Gatos. Frein southbound eucalyptus species appropriate for both landscape evaluation and botanical study. -
Mvg 3 - Subtropical and Temperate Open Eucalypt Forest
MVG 3 - SUBTROPICAL AND TEMPERATE OPEN EUCALYPT FOREST Dry shrub/grass sclerophyll forest near Awaba (Newcastle area), NSW (M. Fagg) Overview Correspond well with ‘dry sclerophyll forests’ (Beadle 1981; Keith 2004), but may include some wet sclerophyll forests (mostly classified within MVG 2) that do not exceed 30 m in height. Distributed widely in subtropical and temperate latitudes where mean annual rainfall exceeds 600 mm, on soils of low to moderate fertility (Gill and Catling 2002). Dominant trees vary from 10 m to 30 m tall and with crown cover 50 - 80% (foliage projective cover of 30 - 70%) depending on soil characteristics, local moisture and rainfall. Occur in a broad range of humid to subhumid climates from subtropical to temperate latitudes. Dominated by a variety of eucalypts from the genera Corymbia, Angophora and Eucalyptus subgenus Eucalyptus, occasionally with Eucalyptus species from other subgenera. Understories typically dominated by shrubs, but may have a variable grass component, depending on soil characteristics (Specht and Specht 1999). Periodically fire-prone. Form the bulk of Australia’s forested country and are a primary resource for the timber industry Facts and figures Major Vegetation Group MVG 3 - Subtropical and Temperate Open Eucalypt Forests Major Vegetation Subgroups 4 Eastern dry shrubby sclerophyll forests ACT, (number of NVIS descriptions) QLD, NSW, VIC, SA, TAS (747) 5 Dry shrub/grass sclerophyll forests ACT, QLD, NSW, VIC, SA, TAS (370) xx Western dry shrubby sclerophyll forests WA xx Riparian eucalypt forests QLD, NSW, VIC, SA, WA Xx Subtropical open wet sclerophyll forest NSW, QLD (primarily in MVG 2) Xx Cool temperate open wet sclerophyll forest ACT, NSW, VIC, TAS (primarily in MVG 2) Typical NVIS structural formations Mid open forest Open forest Number of IBRA regions 51 Most extensive in IBRA region Est. -
Eucalypts in Asia
Eucalypts in Asia Proceedings of an international conference held in Zhanjiang, Guangdong, People’s Republic of China, 7–11 April 2003 Editor: J.W.Turnbull Conference organisers: China Eucalypt Research Centre CSIRO Forestry and Forest Products Forest Science Centre, Victoria Australian Centre for International Agricultural Research Australian Centre for International Agricultural Research Canberra 2003 The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australia and developing country researchers in fields where Australia has a special research competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR PROCEEDINGS This series of publications includes the full proceedings of research workshops or symposia organised or supported by ACIAR. Numbers in this series are distributed internationally to selected individuals and scientific institutions. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra, ACT 2601. Turnbull, J.W., ed., 2003. Eucalypts in Asia. Proceedings of an international conference held in Zhanjiang, Guangdong, People’s Republic of China, 7–11 April 2003. ACIAR Proceedings No. 111, 267 p. ISBN 1 86320 386 9 (print) 1 86320 392 3 (electronic) Technical editing and typesetting: Ed Highley, Clarus Design Pty Ltd Printed by Elect Printing, Canberra Contents Preface 7 Present Situation and Prospects for Eucalypt Plantations in China 9 Yang Minsheng Clonal Eucalyptus Plantations in India 16 P. Lal Social Dimensions of Silviculture, Especially with Regard to Forest Plantations 22 Masatoshi Endo Eucalypt Planting in Thailand 28 V. -
Woody Plants of the Auckland Domain Mike Wilcox, Colin Bradshaw & Ewen Cameron
References Blake, S. T. 1977. Allosyncarpia ternata, a new genus and species of Myrtaceae subfamily Leptospermoideae from northern Australia. Austrobaileya 1: 43-46. Briggs, B. G.; Johnson, L. A. S. 1979. Evolution in the Myrtaceae - evidence from inflorescence structure. Proceedings of the Linnean Society of New South Wales 102(4): 157-256. Carr, D. J.; Carr, S. G. M.; Hyland, B. P. M.; Wilson, P. G.; Ladiges, P. Y. 2002: Stockwellia quadrifida (Myrtaceae), a new Australian genus and species in the eucalypt group. Botanical Journal of the Linnean Society 139: 415-421. Dawson, J. W. 1970. Pacific capsular Myrtaceae. I. Reproductive morphology of Arillastrum gummiferum Panch. ex Baillon (New Caledonia). Blumea 18: 431-440. Dawson, J. W. 1992. Myrtaceae: Leptospermoideae. Vol. 18, Flore de la Nouvelle-Calédonie et Depéndances. Museum National d’Histoire Nautelle, Paris. Elick, R.; Wilson, P. 2002. The discovery of Stockwellia (Myrtaceae). Australian Systematic Botany Newsletter 113 (December 2002): 15-16. Hill, K. D.; Johnson, L. A. S. 1995. Systematic studies in the eucalypts. 7. A revision of the bloodwoods, genus Corymbia (Myrtaceae). Telopea 6(2-3): 185-504. Johnson, L. A. S. 1972. Evolution and classification in Eucalyptus. Proceedings of the Linneaean Society of New South Wales 97(1): 11-29. Johnson, L. A. S.; Briggs, B. G. 1984. Myrtales and Myrtaceae - a phylogenetic analysis. Annals of the Missouri Botanical Garden 71: 700- 756. Ladiges, P. Y.; Humphries, C. J. 1983. A cladistic study of Arillastrum, Angophora and Eucalyptus (Myrtaceae). Botanical Journal of the Linnean Society 87: 105-134. Ladiges, P. Y.; Udovicic, F.; Drinnan. A.