Mvg 3 - Subtropical and Temperate Open Eucalypt Forest

Total Page:16

File Type:pdf, Size:1020Kb

Mvg 3 - Subtropical and Temperate Open Eucalypt Forest MVG 3 - SUBTROPICAL AND TEMPERATE OPEN EUCALYPT FOREST Dry shrub/grass sclerophyll forest near Awaba (Newcastle area), NSW (M. Fagg) Overview Correspond well with ‘dry sclerophyll forests’ (Beadle 1981; Keith 2004), but may include some wet sclerophyll forests (mostly classified within MVG 2) that do not exceed 30 m in height. Distributed widely in subtropical and temperate latitudes where mean annual rainfall exceeds 600 mm, on soils of low to moderate fertility (Gill and Catling 2002). Dominant trees vary from 10 m to 30 m tall and with crown cover 50 - 80% (foliage projective cover of 30 - 70%) depending on soil characteristics, local moisture and rainfall. Occur in a broad range of humid to subhumid climates from subtropical to temperate latitudes. Dominated by a variety of eucalypts from the genera Corymbia, Angophora and Eucalyptus subgenus Eucalyptus, occasionally with Eucalyptus species from other subgenera. Understories typically dominated by shrubs, but may have a variable grass component, depending on soil characteristics (Specht and Specht 1999). Periodically fire-prone. Form the bulk of Australia’s forested country and are a primary resource for the timber industry Facts and figures Major Vegetation Group MVG 3 - Subtropical and Temperate Open Eucalypt Forests Major Vegetation Subgroups 4 Eastern dry shrubby sclerophyll forests ACT, (number of NVIS descriptions) QLD, NSW, VIC, SA, TAS (747) 5 Dry shrub/grass sclerophyll forests ACT, QLD, NSW, VIC, SA, TAS (370) xx Western dry shrubby sclerophyll forests WA xx Riparian eucalypt forests QLD, NSW, VIC, SA, WA Xx Subtropical open wet sclerophyll forest NSW, QLD (primarily in MVG 2) Xx Cool temperate open wet sclerophyll forest ACT, NSW, VIC, TAS (primarily in MVG 2) Typical NVIS structural formations Mid open forest Open forest Number of IBRA regions 51 Most extensive in IBRA region Est. pre-1750 and Present: South Eastern (Est. pre-1750 and present) Highlands (NSW and Vic) Estimated pre-1750 extent (km2) 394 280 Present extent (km2) 272 121 Area protected (km2) 61 661 Riparian eucalypt forest Narrabri, NSW (D. Keith) Structure and physiognomy In comparison to Eucalypt Tall Open Forests (MVG 2), Subtropical and temperate open eucalypt forests allow more light to penetrate the canopy providing scope for development of less shade- tolerant understories. Generally the tree canopy varies from 10 m to 30 m tall and has a crown cover 50 - 80% (foliage projective cover of 30 - 70%) depending on soil characteristics, local moisture and rainfall. Leaf canopies are evergreen, typically with vertically oriented notophyll (20-45 cm2) leaves. Sclerophyllous understories dominated by shrubs with varying grass component, depending on soil texture, moisture and fire history. Substantial structural variation in both tree and understorey components of open forests occurs at local scales (Gill and Catling 2002). Indicative flora This MVG exhibits high levels of species turnover in dominant species regionally, and with local environmental gradients. Dominance by Corymbia, Angophora or Eucalyptus subgenus Eucalyptus is a uniting feature. Other subgenera within Eucalyptus may be present, but rarely dominate or occur without co-occurring trees of these three main taxa. Forest understories are similarly variable, but typically contain some genera from Fabaceae, Myrtaceae, Proteaceae and Asteraceae and have a variable ground layer. Shrub genera common to both east and west Australian forms of MVG 3 include species of Acacia, Allocasuarina, Banksia, Daviesia, Grevillea, Hakea, Hibbertia, Leptospermum, Pultenaea, Xanthorrhoea and Xanthosia. Common herbaceous genera include Dianella, Lepidosperma and Lomandra and the ferns Adiantum and Pteridium (Gill 1994). Six subgroups are recognised, including two that occur primarily within MVG 2. o Eastern dry shrubby sclerophyll forests – eucalypt forests with sclerophyllous shrubby understories. Corymbia gummifera is widespread, but trees and shrubs show marked spatial turnover across the distribution of the subgroup. To the south Eucalyptus sieberi, Eucalyptus baxteri and Eucalyptus agglomerata are widespread while in the north Eucalyptus baileyana, Eucalyptus planchoniana and Eucalyptus signata are widespread. In Tasmania Eucalyptus amygdalina, Eucalyptus tenuaramis and Eucalyptus pulchella are common. Shrubs include Banksia serrata, Banksia spinulosa, Allocasuarina littoralis and various other sclerophyll species of Fabaceae, Myrtaceae and Proteaceae. The groundlayer has a sparse cover of sclerophyllous Cyperaceae and various forbs with few grasses (Keith 2004; Harris and Kitchener 2005; Neldner et al. 2014). o Dry shrub/grass sclerophyll forests – eucalypt forests with mixed shrub and grass understories. In the south Eucalyptus globoidea, Eucalyptus amygdalina, Eucalyptus ovata, Eucalyptus pulchella and Eucalyptus sieberi are widespread. In the north Corymbia intermedia, Eucalyptus biturbinata, Eucalyptus caliginosa and Corymbia citriodora are widespread. Shrubs include Allocasuarina littoralis, Exocarpos cupressiformis, and various species of Acacia, Cassinia, Daviesia, Dillwynia and Jacksonia. The open groundlayer is dominated by tussock grasses, including various species of Aristida, Rytidosperma, Themeda, and in the south Poa (Keith 2004; Harris and Kitchener 2005; Neldner et al. 2014). o Western dry shrubby sclerophyll forests – eucalypt forests with sclerophyllous shrubby understories. Eucalyptus marginata is the primary dominant trees species, sometimes mixed with Corymbia calophylla. A small tree layer includes Banksia grandis, Allocasuarina fraseriana and Persoonia longifolia. A rich shrub layer with many species from the families Myrtaceae, Proteaceae, Fabaceae, Ericaceae and Xanthorrhoeaceae (Beard et al. 2013). o Riparian eucalypt forests – are dominated by Eucalyptus camaldulensis. Occasionally Eucalyptus largiflorens, Eucalyptus melliodora or Eucalyptus microcarpa can co-occur. In south Western Australia Eucalyptus camaldulensis is replaced by Eucalyptus rudis. Shrubs are sparse and include species of Acacia, Muehlenbeckia and Melaleuca. The groundlayer has a broad range of species from the following families Asteraceae, Poaceae, Cyperaceae, Goodeniaceae, Campanulaceae, Chenopodiaceae and Ranunculaceae (Keith 2004; Victoria Department of Sustainability and Environment 2004; Beard et al. 2013; Neldner et al. 2014). o Subtropical open wet sclerophyll forests – are primarily in MVG 2, but some structural forms less than 30 m tall are assigned here. They are dominated by Eucalyptus pilularis, Eucalyptus siderophloia, Eucalyptus propinqua, Eucalyptus microcorys, Eucalyptus montivaga, Eucalyptus campanulata, Syncarpia glomulifera, Corymbia intermedia and Lophostemon confertus. Shrubs and small trees occur more sparsely than in the preceding subgroup and include Allocasuarina torulosa, Acacia species, Alphitonia excelsa, Breynia oblongifolia, Maytenus species, Notelaea longifolia, Persoonia species and Pittosporum species. Graminoids are prominent in the ground layer and include Imperata cylindrica, Lomandra longifolia, Entolasia stricta, Lepidosperma laterale, Themeda australis and Oplismenus species. Other common ground layer species include the fern Pteridium esculentum, vines such as Eustrephus latifolius, Hardenbergia violacea, and Smilax australis, and herbs including species of Desmodium, Dianella, Geranium and Pratia. The distribution extends from southeast Queensland to southeast NEW SOUTH WALES (Keith 2004; Neldner et al. 2014). o Cool temperate open wet sclerophyll forests - are primarily in MVG 2, but some structural forms less than 30 m tall are assigned here. They include Eucalyptus viminalis, Eucalyptus radiata, Eucalyptus obliqua, Eucalyptus fraxinoides, Eucalyptus delegatensis, Eucalyptus dalrympleana, Eucalyptus laevopinea, Eucalyptus brunnea and Eucalyptus campanulata. Small trees and shrubs are scattered include species of the Fabaceae family and from the genera Acacia, Lomatia, Leucopogon, Olearia, Persoonia and Trochocarpa. A prominent grassy groundlayer is dominated by tussocks of several species of Poa, and from the genera Geranium, Veronica and Viola as well as Lomandra longifolia. These forests are found from Tasmania to the New England tableland in northern New South Wales (Keith 2004; Harris and Kitchener 2005). Western dry shrubby sclerophyll forests (Eucalyptus marginata), south-west WA (Photo: M. Bolton) Environment Low soil fertility and soil phosphorus in particular, is crucial in determining the distribution of dry sclerophyll forests (Beadle 1954). The forest terrain in much of south eastern Australia is rugged but in the south western region the terrain is relatively subdued (Gill and Catling 2002). o Eastern dry shrubby sclerophyll forests occur across a broad range of environments from coastal sand plains, hills and plateaus of sandstone dolerite and granites. Soils can be deep sands to shallow, infertile soils derived from sedimentary or granitic substrates with a high concentration of quartz. Rainfall ranges from 500 to 2000 mm annually (Keith 2004; Neldner et al. 2014; Harris and Kitchener 2005). o Dry shrub/grass sclerophyll forests occurs on well drained loams and sandy loams of moderate fertility on undulating lowlands, foothills and gorges and the western slopes of, the Great Dividing Range. Substrates include mudstones, dolerite, lithic sandstones, lateritic duricrusts, acid volcanics and metamorphosed siltstones. Rainfall ranges from 500m to 1200mm annually (Keith 2004;
Recommended publications
  • Jervis Bay Territory Page 1 of 50 21-Jan-11 Species List for NRM Region (Blank), Jervis Bay Territory
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Approximate Annual Rainfall
    COMPONENT A B C D E PROPORTION(%) 30 20 20 20 10 RAINFALL (mm) Approximate Annual Rainfall: GEOLOGY 625-750Jurassic Dolerite TOPOGRAPHY Hills and Associated Flats Position Exposed Exposed Upper Protected Exposed Lower Slopes Drainage Flats Crests/Ridges Slopes Slopes/Gullies Typical 7 10-30 25 10 3 NATIVESlope(o) VEGETATION Structure Woodland Over (Low) Woodland Over Open Forest Low Woodland Woodland/Open Forest Floristlc GrasslandEucalyptus pulchella HeathEucalyptus Eucalyptus globulus Eucalyptus viminalis Eucalyptus ovata Association (Eucalyptus Lepidospermapulchella Eucalyptus obliqua Eucalyptus globulus Lomandra longifolia (Eucalyptus Dlplarrena moraea Pomaderris apetala Eucalyptus pulchella Diplarrena moraea (Eucalyptus ovata) Lomandra longifolia Acacia verticlllata Bossiaea prostrata Leptospermum Lomandra longifolia Eriostemon Acacia melanoxylon Casuarina stricta Lepidosperma Correa lawrenclana Bursaria spinosa Dodonaea viscosa Themeda australis Pultenaea Goodenia ovata Lomandra longifolia Stipa sp. Astroloma humifusum Pultenaea Bursaria spinosa Pultenaea juniperina Casuarina Bedfordia salicina Acacia mearnsii Pimelea nivea Acacia dealbata Lepidosperma laterale Callistemon pallidus Acacia myrtifolia Themeda australia Lomatia tinctoria Stipa stuposa Leptospermum Gahnia graminifolia Banksia marginata Exocarpos Acrotriche Tetratheca pilosa Hibbertia riparia SOIL Leucopogon collinus Surface(A)Texture (Sandy) Clay Loam Sandy (Clay) Loam Clay Loam Light Clay/Clay Loam Medium Clay B Shallow stony Shallow stony, Deep medium clay - Deep heavy
    [Show full text]
  • Ecological Influences in the Biogeography of the Austral Sedges
    ECOLOGICALINFLUENCESINTHEBIOGEOGRAPHYOFTHE AUSTRALSEDGES jan-adriaan viljoen Dissertation presented in fulfillment of the requirements for the degree MSc in Botany Department of Biological Sciences Faculty of Sciences University of Cape Town UniversityFebruary of2016 Cape Town The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Jan-Adriaan Viljoen. Ecological influences in the biogeography of the aus- tral sedges. MSc dissertation. University of Cape Town. Cape Town. February 2016. supervisors: A. Muthama Muasya G. Anthony Verboom ABSTRACT The biogeographic history of a species is a result of both stochastic processes such as dispersal and habitat filters that determine where a population with a given set of biological requirements can become es- tablished. In this dissertation, I examine the geographical and ecolog- ical distribution of the sedge tribe Schoeneae in conjunction with its inferred speciation history in order to determine the pattern of disper- sal and the environmental factors that have influenced establishment. The biogeographic reconstruction indicates numerous transoceanic dispersal events consistent with random diffusion from an Australian point of origin, but with a bias towards habitats with vegetation type and moisture regime similar to the ancestral conditions of the given subgroup (open and dry habitats in the majority of cases). The global distribution of the tribe also suggests a preference for low-nutrient soils, which I investigate at the local (microhabitat) scale by contrast- ing the distributions of the tribes Schoeneae and Cypereae on the Cape Peninsula along soil fertility axes.
    [Show full text]
  • Brisbane Native Plants by Suburb
    INDEX - BRISBANE SUBURBS SPECIES LIST Acacia Ridge. ...........15 Chelmer ...................14 Hamilton. .................10 Mayne. .................25 Pullenvale............... 22 Toowong ....................46 Albion .......................25 Chermside West .11 Hawthorne................. 7 McDowall. ..............6 Torwood .....................47 Alderley ....................45 Clayfield ..................14 Heathwood.... 34. Meeandah.............. 2 Queensport ............32 Trinder Park ...............32 Algester.................... 15 Coopers Plains........32 Hemmant. .................32 Merthyr .................7 Annerley ...................32 Coorparoo ................3 Hendra. .................10 Middle Park .........19 Rainworth. ..............47 Underwood. ................41 Anstead ....................17 Corinda. ..................14 Herston ....................5 Milton ...................46 Ransome. ................32 Upper Brookfield .......23 Archerfield ...............32 Highgate Hill. ........43 Mitchelton ...........45 Red Hill.................... 43 Upper Mt gravatt. .......15 Ascot. .......................36 Darra .......................33 Hill End ..................45 Moggill. .................20 Richlands ................34 Ashgrove. ................26 Deagon ....................2 Holland Park........... 3 Moorooka. ............32 River Hills................ 19 Virginia ........................31 Aspley ......................31 Doboy ......................2 Morningside. .........3 Robertson ................42 Auchenflower
    [Show full text]
  • Five-Year Survival and Growth of Farm Forestry Plantings of Native Trees and Radiata Pine in Pasture Affected by Position in the Landscape
    CSIRO PUBLISHING Animal Production Science, 2013, 53, 817–826 http://dx.doi.org/10.1071/AN11247 Five-year survival and growth of farm forestry plantings of native trees and radiata pine in pasture affected by position in the landscape Nick Reid A,C, Jackie Reid B, Justin Hoad A, Stuart Green A, Greg Chamberlain A and J. M. Scott A ASchool of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia. BSchool of Science and Technology, University of New England, Armidale, NSW 2351, Australia. CCorresponding author. Email: [email protected] Abstract. Woodlots ranging in area from 0.18 to 0.5 ha were established within the Cicerone Project farmlet trial on the Northern Tablelands of New South Wales, Australia, due to a lack of physical protection in most paddocks across the farmlets. Two percent of each farmlet was planted to trees to examine the commercial and environmental potential of seven species to provide shade and shelter for livestock, increase biodiversity or contribute to cash flow through farm forestry diversification. Eucalyptus caliginosa (timber), E. nitens (timber, pulp wood), E. radiata (essential oil) and Pinus radiata (timber) were planted in four upslope plots (1059–1062 m a.s.l.) in different paddocks. Casuarina cunninghamiana (timber, shelter), E. acaciiformis (shade, shelter and biodiversity), E. dalrympleana (timber, biodiversity), E. nitens (timber, pulp wood), E. radiata (essential oil) and P. radiata (timber) were planted in four low-lying plots (1046–1050 m a.s.l.) in separate paddocks, 400–1200 m distant. The pines and natives were planted in August and October 2003, respectively, into a well prepared, weed-free, mounded, planting bed.
    [Show full text]
  • Guava (Eucalyptus) Rust Puccinia Psidii
    INDUSTRY BIOSECURITY PLAN FOR THE NURSERY & GARDEN INDUSTRY Threat Specific Contingency Plan Guava (eucalyptus) rust Puccinia psidii Plant Health Australia March 2009 Disclaimer The scientific and technical content of this document is current to the date published and all efforts were made to obtain relevant and published information on the pest. New information will be included as it becomes available, or when the document is reviewed. The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific, independent professional advice. Plant Health Australia and all persons acting for Plant Health Australia in preparing this publication, expressly disclaim all and any liability to any persons in respect of anything done by any such person in reliance, whether in whole or in part, on this publication. The views expressed in this publication are not necessarily those of Plant Health Australia. Further information For further information regarding this contingency plan, contact Plant Health Australia through the details below. Address: Suite 5, FECCA House 4 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 Email: [email protected] Website: www.planthealthaustralia.com.au PHA & NGIA | Contingency Plan – Guava rust (Puccinia psidii) 1 Purpose and background of this contingency plan .............................................................
    [Show full text]
  • Post-Fire Recovery of Woody Plants in the New England Tableland Bioregion
    Post-fire recovery of woody plants in the New England Tableland Bioregion Peter J. ClarkeA, Kirsten J. E. Knox, Monica L. Campbell and Lachlan M. Copeland Botany, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, AUSTRALIA. ACorresponding author; email: [email protected] Abstract: The resprouting response of plant species to fire is a key life history trait that has profound effects on post-fire population dynamics and community composition. This study documents the post-fire response (resprouting and maturation times) of woody species in six contrasting formations in the New England Tableland Bioregion of eastern Australia. Rainforest had the highest proportion of resprouting woody taxa and rocky outcrops had the lowest. Surprisingly, no significant difference in the median maturation length was found among habitats, but the communities varied in the range of maturation times. Within these communities, seedlings of species killed by fire, mature faster than seedlings of species that resprout. The slowest maturing species were those that have canopy held seed banks and were killed by fire, and these were used as indicator species to examine fire immaturity risk. Finally, we examine whether current fire management immaturity thresholds appear to be appropriate for these communities and find they need to be amended. Cunninghamia (2009) 11(2): 221–239 Introduction Maturation times of new recruits for those plants killed by fire is also a critical biological variable in the context of fire Fire is a pervasive ecological factor that influences the regimes because this time sets the lower limit for fire intervals evolution, distribution and abundance of woody plants that can cause local population decline or extirpation (Keith (Whelan 1995; Bond & van Wilgen 1996; Bradstock et al.
    [Show full text]
  • New England Peppermint (Eucalyptus Nova-Anglica) Grassy
    Advice to the Minister for Sustainability, Environment, Water, Population and Communities from the Threatened Species Scientific Committee on an Amendment to the List of Threatened Ecological Communities under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) 1. Name of the ecological community New England Peppermint (Eucalyptus nova-anglica) Grassy Woodlands This advice follows the assessment of two public nominations to list the ‘New England Peppermint (Eucalyptus nova-anglica) Woodlands on Sediment on the Northern Tablelands’ and the ‘New England Peppermint (Eucalyptus nova-anglica) Woodlands on Basalt on the Northern Tablelands’ as threatened ecological communities under the EPBC Act. The Threatened Species Scientific Committee (the Committee) recommends that the national ecological community be renamed New England Peppermint (Eucalyptus nova-anglica) Grassy Woodlands. The name reflects the fact that the definition of the ecological community has been expanded to include all grassy woodlands dominated or co-dominated by Eucalyptus nova-anglica (New England Peppermint), in New South Wales and Queensland. Also the occurrence of the ecological community extends beyond the New England Tableland Bioregion, into adjacent areas of the New South Wales North Coast and the Nandewar bioregions. Part of the national ecological community is listed as endangered in New South Wales, as ‘New England Peppermint (Eucalyptus nova-anglica) Woodland on Basalts and Sediments in the New England Tableland Bioregion’ (NSW Scientific Committee, 2003); and, as an endangered Regional Ecosystem in Queensland ‘RE 13.3.2 Eucalyptus nova-anglica ± E. dalrympleana subsp. heptantha open-forest or woodland’ (Qld Herbarium, 2009). 2. Public Consultation A technical workshop with experts on the ecological community was held in 2005.
    [Show full text]
  • Department of Environment, Water and Natural Resources
    Photograph: Helen Owens © Department of Environment, Water and Natural Resources, Government of South Australia Department of All rights reserved Environment, Copyright of illustrations might reside with other institutions or Water and individuals. Please enquire for details. Natural Resources Contact: Dr Jürgen Kellermann Editor, Flora of South Australia (ed. 5) State Herbarium of South Australia PO Box 2732 Kent Town SA 5071 Australia email: [email protected] Flora of South Australia 5th Edition | Edited by Jürgen Kellermann SANTALACEAE1 B.J. Lepschi2 (Korthalsella by B.A. Barlow3) Perennial herbs, shrubs, vines or small trees; hemiparasitic on roots or aerially on stems or branches, glabrous or variously hairy. Leaves alternate or opposite, sometimes decussate, rarely whorled, simple, entire, sometimes scale- like, caducous or persistent; stipules absent. Inflorescence axillary or terminal, a sessile or pedunculate raceme, spike, panicle or corymb, sometimes condensed or flowers solitary, usually bracteate, bracts sometimes united to form a bracteal cup; flowers bisexual or unisexual (and plants monoecious or dioecious), actinomorphic, perianth 1-whorled; tepals (3) 4–5 (–8), free or forming a valvately-lobed tube or cup; floral disc usually lobed, rarely absent; stamens as many as tepals and inserted opposite them; anthers sessile or borne on short filaments; carpels (2) 3 (–5); ovary inferior or superior; ovules 1–5 or lacking and embryo sac embedded in mamelon; style usually very short, rarely absent; stigma capitate or lobed. Fruit a nut, drupe or berry, receptacle sometimes enlarged and fleshy; seed 1 (2), without testa, endosperm copious. A family of 44 genera and about 875 species; almost cosmopolitan, well developed in tropical regions.
    [Show full text]
  • Fire Retardant Plants for the Urban Fringe and Rural Areas
    Flammability Groups Leptospermum scoparium TN Pittosporum undulatum AN X Cucurbita maxima E Pumpkin Morus sp. E Mulberry Manuka, Teatree Sweet Pittosporum Cymbopogon citratus E Lemon Grass Myoporum insulare AN Boobyalla In the following list E denotes an exotic plant, TN a plant Lomandra longifolia TN Saggs Platanus x acerifolia E Plane Tree Cyphomandra betacea E Tamarillo Nerium oleander E Oleander native to Tasmania, AN a plant native to mainland Australia Melaleuca alternifolia AN Paperbark Poa sp. AN Poa Grass Delonix regia E Poinciana Olearia argophylla TN Musk Monstera deliciosa E Monstera Populas sp. E Poplar and X a known environmental weed. Dicksonia antarctica TN Man Fern Photinia glabra var. rubens E Nadina domestica E Sacred Bamboo Quercus robur E English oak Diospryros sp. E Persimmon Chinese Fire Bush or Red-leafed Photinia High Flammability Nicotiana glauca AN Tobacco Bush Spiraea catoniensis E May Eriobotrya japonica E Loquat Pittosporum bicolor TN Cheesewood Pinus elliottii E Tasmannia lanceolata TN Escallonia macrantha E Escallonia These plants have been shown to be highly flammable and Slash or Elliott’s Pine Native Pepper Pteridium esculentum TN Euryops pectinatus E Bracken Fern should not be planted or allowed to remain inside your house’s Pinus patula E Ulex europaeus E X Gorse Yellow Daisy Bush Mexican or Weeping Pine Rhododendron sp. E Rhododendron Building Protection Zone. They should also be avoided in the Viburnum opulus E Guelder Rose Genista monspessulana E X Montpellier Broom Rosa sp. E X Roses, Briars Fuel Modified Zone. Move these plants away from your house Moderate Flammability Koelreuteria paniculata E Salix babylonica E Weeping Willow and replace them with less flammable plants.
    [Show full text]
  • Vascular Plants of Santa Cruz County, California
    ANNOTATED CHECKLIST of the VASCULAR PLANTS of SANTA CRUZ COUNTY, CALIFORNIA SECOND EDITION Dylan Neubauer Artwork by Tim Hyland & Maps by Ben Pease CALIFORNIA NATIVE PLANT SOCIETY, SANTA CRUZ COUNTY CHAPTER Copyright © 2013 by Dylan Neubauer All rights reserved. No part of this publication may be reproduced without written permission from the author. Design & Production by Dylan Neubauer Artwork by Tim Hyland Maps by Ben Pease, Pease Press Cartography (peasepress.com) Cover photos (Eschscholzia californica & Big Willow Gulch, Swanton) by Dylan Neubauer California Native Plant Society Santa Cruz County Chapter P.O. Box 1622 Santa Cruz, CA 95061 To order, please go to www.cruzcps.org For other correspondence, write to Dylan Neubauer [email protected] ISBN: 978-0-615-85493-9 Printed on recycled paper by Community Printers, Santa Cruz, CA For Tim Forsell, who appreciates the tiny ones ... Nobody sees a flower, really— it is so small— we haven’t time, and to see takes time, like to have a friend takes time. —GEORGIA O’KEEFFE CONTENTS ~ u Acknowledgments / 1 u Santa Cruz County Map / 2–3 u Introduction / 4 u Checklist Conventions / 8 u Floristic Regions Map / 12 u Checklist Format, Checklist Symbols, & Region Codes / 13 u Checklist Lycophytes / 14 Ferns / 14 Gymnosperms / 15 Nymphaeales / 16 Magnoliids / 16 Ceratophyllales / 16 Eudicots / 16 Monocots / 61 u Appendices 1. Listed Taxa / 76 2. Endemic Taxa / 78 3. Taxa Extirpated in County / 79 4. Taxa Not Currently Recognized / 80 5. Undescribed Taxa / 82 6. Most Invasive Non-native Taxa / 83 7. Rejected Taxa / 84 8. Notes / 86 u References / 152 u Index to Families & Genera / 154 u Floristic Regions Map with USGS Quad Overlay / 166 “True science teaches, above all, to doubt and be ignorant.” —MIGUEL DE UNAMUNO 1 ~ACKNOWLEDGMENTS ~ ANY THANKS TO THE GENEROUS DONORS without whom this publication would not M have been possible—and to the numerous individuals, organizations, insti- tutions, and agencies that so willingly gave of their time and expertise.
    [Show full text]
  • Ecology of Pyrmont Peninsula 1788 - 2008
    Transformations: Ecology of Pyrmont peninsula 1788 - 2008 John Broadbent Transformations: Ecology of Pyrmont peninsula 1788 - 2008 John Broadbent Sydney, 2010. Ecology of Pyrmont peninsula iii Executive summary City Council’s ‘Sustainable Sydney 2030’ initiative ‘is a vision for the sustainable development of the City for the next 20 years and beyond’. It has a largely anthropocentric basis, that is ‘viewing and interpreting everything in terms of human experience and values’(Macquarie Dictionary, 2005). The perspective taken here is that Council’s initiative, vital though it is, should be underpinned by an ecocentric ethic to succeed. This latter was defined by Aldo Leopold in 1949, 60 years ago, as ‘a philosophy that recognizes[sic] that the ecosphere, rather than any individual organism[notably humans] is the source and support of all life and as such advises a holistic and eco-centric approach to government, industry, and individual’(http://dictionary.babylon.com). Some relevant considerations are set out in Part 1: General Introduction. In this report, Pyrmont peninsula - that is the communities of Pyrmont and Ultimo – is considered as a microcosm of the City of Sydney, indeed of urban areas globally. An extensive series of early views of the peninsula are presented to help the reader better visualise this place as it was early in European settlement (Part 2: Early views of Pyrmont peninsula). The physical geography of Pyrmont peninsula has been transformed since European settlement, and Part 3: Physical geography of Pyrmont peninsula describes the geology, soils, topography, shoreline and drainage as they would most likely have appeared to the first Europeans to set foot there.
    [Show full text]