The Flame-Tree

Total Page:16

File Type:pdf, Size:1020Kb

The Flame-Tree The Forest Flora of New South Wales Volume 7 Parts 61-70 Maiden, J. H. (Joseph Henry) University of Sydney Library Sydney, Australia 1999 http://setis.library.usyd.edu.au/badham © University of Sydney Library. The texts and images are not to be used for commercial purposes without permission. Illustrations have been included from the print version. Source Text: Prepared from the print edition published by John Spence, Acting Government Printer Sydney 1922 J.H.Maiden, Government Botanist of New South Wales and Director of the Botanic Gardens, Sydney. Volume 7 includes Parts 61 to 70. All quotation marks retained as data. All unambiguous end-of-line hyphens have been removed, and the trailing part of a word has been joined to the preceding line. Images exist as archived TIFF images, one or more JPG and GIF images for general use. Australian Etexts botany natural history 1910-1939 26th November 1999 Final Checking and Parsing Forest Flora of New South Wales Volume 7: Parts LXI-LXX Sydney William Applegate Gullick, Government Printer 1922. Part LXI. Joseph Henry Maiden The Forest Flora of New South Wales Part LXI Sydney William Applegate Gullick, Government Printer 1917 Published by the Forest Department of New South Wales, under authority of the Honourable the Secretary for Lands. Price, 1/- per Part, or 10/- per dozen Parts, payable in advance. No. 223: Eucalyptus propinqua Deane and Maiden. Small-Fruited Grey Gum. (Family MYRTACEÆ) Botanical description. — Genus Eucalyptus. (See Part II, p. 33). Botanical description. — Species E. propinqua Deane and Maiden in Proc. Linn. Soc. N.S.W., xx, 541 (1895), with Plate xliii. A large, straight growing, cylindrical-stemmed tree, found up to 4 or 5 feet in diameter, and 120 feet and more in height. Bark. — It has a grey, dusty-looking, slightly raspy appearance as regards its bark. Next to the Blue or Flooded Gum (saligna) it is one of the straightest stemmed trees in the forest. The bark darkens, peels off in large, longitudinal irregular patches, leaving a smooth white surface, which in course of time darkens, peels off, and the process is indefinitely repeated. The bark closely resembles, and is perhaps not to be distinguished from, that of E. punctata. Timber. — Dark coloured, and so closely resembling Red Ironbark (E. siderophloia) that care is required to distinguish the two timbers. Inclined to have rings or "scabs" of kino, which diminishes the demand for it for sawn stuff. Very durable in or out of the ground, but its tensile strength inferior to that of the Ironbark already referred to. Juvenile leaves. — More broadly lanceolate, and with the marginal vein more distant from the edge, than in the case of mature leaves. At first opposite. Mature leaves. — Narrow lanceolate and very uniform. Average length 4–5 inches, breadth 3/4 inch. Veins not prominent, lateral veins nearly parallel; marginal vein on or very close to the edge of the leaf as a very general rule. Edge usually slightly recurved. Peduncles flattened. Calyx-tube hemispherical, and longer than the operculum. Sometimes with the angles of the flattened pedicel decurrent. Flowers in a marked manner pedicellate; usually in tons, but the umbels containing as few as five flowers. Operculum hemispherical in general outline, but with a low pointed apex. Stamens inflexed before expansion, the anthers opening by parallel slits, and all fertile. Fruit. — Very uniform in size, about 2 1/2 lines broad by 1 1/2 lines deep. Usually 4-celled, occasionally 3-celled; 5-celled not seen at present. The rim usually shows two sharp edges, with the intervening space concave. The valves are well exserted. Botanical Name. — Eucalyptus, already explained (see Part II, p, 34); propinqua, Latin, near of kin, or allied, a name given because of its close affinity to E. punctata DC. Vernacular Name. — "Grey Gum," because of the dull grey appearance of the bark. This species is fortunate in having but one general name. To distinguish it from Eucalyptus punctata, a Grey Gum to which it is most closely related, the name "Small-fruited Grey Gum" is suggested. Aboriginal Name. — "Warrimbarng" of those of the Hastings River (Forest Ranger George R. Brown). Timber. — Characteristics. — It is so much like ironbark in appearance that it is difficult to discriminate between the two timbers. That will be the best guide to its appearance. An expert would usually detect the substitution for ironbark (if he suspected any substitution), by noting that a chip of grey gum is more brittle than that of ironhark. It also cuts less horny. Nevertheless, the two timbers are wonderfully alike, and for many purposes grey gum is an efficient, substitute for ironbark, for it is remarkably durable. Its inferior strength, as compared with ironbark, precludes its use as girders of any length, and when substituted for ironbark in sleepers, the bolts and spikes work loose in them. I would encourage its use in every possible way for wood-blocks. The chief objectors to its use at the present time the saw-millers themselves, as the logs often contain gum-scabs or gum-veins. At present, where unblemished timber is insisted upon for wood-blocks, a saw-miller cannot afford to cut up grey gum (although it frequently turns out beause of the risk of having it condemned. I have often spoken on this subject in connection with bloodwood, and would emphasise the opinion that wood blocks should not be condemned because they contain a few gum-scabs or veins. Such excess of care practically leads to great waste of really valuable timber. Principal uses. — Recommended for paving-blocks, as already stated. It is in high repute for posts, having excellent records when employed in this very trying situation. I have seen it used for felloes and for shingles. It is very largely used as an ironbark substitute for railway sleepers, &c., which fact is in itself testimony to its excellence. The late Mr. J. V. de Coque wrote of it:— "This timber must not be confounded, with the 'Blue Gum.' (E. saligna). It is a remarkably close grained, durable timber, and except as regards strength (to which it is inferior to ironbark), it makes an admirable substitute, particularly in the erection of large beam bridges. It is very like red ironbark in general appearance, and is often substituted for it. An experienced man can however detect the difference owing to the shortness of grain. A chip of grey gum bent between the fingers will snap instantly. The quality of this timber varies considerably like most hardwoods in different districts. I found that the best variety is found in the Hawkesbury district, particularly around Wyong and Cooranbong. Grey gum from these places have a record of thirty years in bridge members. For general building work it is hardly so suitable as some of the pale hardwoods; it is hard to plane, and in scantling sizes. subject to crack and open. As piles or girders I consider it next to ironbark, and one of the best of our timbers." Ironbark and Grey Gum. — With the view of economising Ironbark, various suggestions were made, including the calling for tenders of sleepers of various sizes. Under date 3rd July, 1889, the Secretary for Railways wrote that the Engineer for Existing Lines declined to recommend the acceptance of sawn instead of split sleepers, but with a view to economy in respect of timber, the Commissioners had decided that in future as far as possible, tenders should he invited for sleepers and fence posts at the same time. One cannot blame railway engineers for preferring Ironbark to Grey Gum if they can get the former, but for a long time certain North Coast foresters, in view of the shortage of Ironbark which was everywhere proclaimed, and of the fact that Grey Gum is a really valuable timber, brought the merits of Grey Gum under notice, but the time was not opportune. Here are two letters from Foresters who impressed its excellence on me and with whom I maintained a correspondence on the subject for years. (a) From the late Forest Ranger Augustus Rudder, of Booral, dated 15th July, 1890. "Fortunately we have here an excellent substitute for Ironbark in a tree locally known as Grey Gum. "This timber is in quantity, and up to 4 and 5 feet in diameter, but it is said the railway authorities will not accept of it for railway purposes, for what reason I am at a loss to determine, unless it is their want of knowledge of its true character; probably because they have been misled by some other timber of the same local name. As to the lasting qualities of this Grey Gum in the ground, and generally, I have known and used it for over forty years, and will stake my reputation as a Forest Ranger on this my testimony to its excellence, nor is it more liable, if so much so, as Ironbark to the ravages of the white ant, and is far superior to the Broad-leaved Red Ironbark (E. siderophloia), which is so readily accepted for railway purposes. In what I have said of this Grey Gum I will, I am sure, be sustained by nine-tenths of the old experienced bushmen, who invariably speak well of it." (b) From the late Forest Ranger G. R. Brown, of Port Macquarie, dated 7th July, 1890. "In view of Ironbark timber being so much used for girders and railway sleepers, I have the honour to ask that the following suggestion might be tested:— 'To use Grey Gum, and Spotted Gum, more particularly the former, for railway sleepers, and other purposes where practicable.' My reasons are: In my district Grey Gum is almost as plentiful as the Blackbutt, but only an odd log is used by the sawmills.
Recommended publications
  • Lake Pinaroo Ramsar Site
    Ecological character description: Lake Pinaroo Ramsar site Ecological character description: Lake Pinaroo Ramsar site Disclaimer The Department of Environment and Climate Change NSW (DECC) has compiled the Ecological character description: Lake Pinaroo Ramsar site in good faith, exercising all due care and attention. DECC does not accept responsibility for any inaccurate or incomplete information supplied by third parties. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. Readers should seek appropriate advice about the suitability of the information to their needs. © State of New South Wales and Department of Environment and Climate Change DECC is pleased to allow the reproduction of material from this publication on the condition that the source, publisher and authorship are appropriately acknowledged. Published by: Department of Environment and Climate Change NSW 59–61 Goulburn Street, Sydney PO Box A290, Sydney South 1232 Phone: 131555 (NSW only – publications and information requests) (02) 9995 5000 (switchboard) Fax: (02) 9995 5999 TTY: (02) 9211 4723 Email: [email protected] Website: www.environment.nsw.gov.au DECC 2008/275 ISBN 978 1 74122 839 7 June 2008 Printed on environmentally sustainable paper Cover photos Inset upper: Lake Pinaroo in flood, 1976 (DECC) Aerial: Lake Pinaroo in flood, March 1976 (DECC) Inset lower left: Blue-billed duck (R. Kingsford) Inset lower middle: Red-necked avocet (C. Herbert) Inset lower right: Red-capped plover (C. Herbert) Summary An ecological character description has been defined as ‘the combination of the ecosystem components, processes, benefits and services that characterise a wetland at a given point in time’.
    [Show full text]
  • Cooperative National Park Resources Studies Unit Department of Botany University of Hawaii at Manoa Honolulu, Hawaii 96822 (808) 948-8218
    COOPERATIVE NATIONAL PARK RESOURCES STUDIES UNIT DEPARTMENT OF BOTANY UNIVERSITY OF HAWAII AT MANOA HONOLULU, HAWAII 96822 (808) 948-8218 PROCEEDINGS FIRST CONFERENCE IN NATURAL SCIENCES HAWAII VOLCANOES NATIONAL PARK NATIONAL PARK SERVICE CONTRACT #CX8000 6 0031 Clifford W. Smith, Unit Director The National Park Service and the University of Hawaii signed the memorandum of agreement establishing this Cooperative National Park Resources Studies Unit on March 16, 1973. The Unit provides a multidisciplinary approach to studies on the biological resources in the National Parks in Hawaii, that is, Hawaii Volcanoes National Park, Haleakala National Park, City of Refuge National Historical Park, and Puukohola Heiau National Historic Site. Through the Unit Director, projects are undertaken in areas identified by park management. These studies provide information of resource management programs. The involvement of University faculty and students in the resource management of the National Parks in Hawaii lends to a greater awareness of the problems and needs of the Service. At the same time research not directly or immediately applicable to management is also encouraged through the Unit. PROCEEDINGS of the FIRST CONFERENCE IN NATURAL SCIENCES in Hawaii held at Hawaii Field Research Center Hawaii Volcanoes National Park on August 19 - 20, 1976 edited by C. W. Smith, Director, CPSUJUH Department of Botany 3190 Maile Way University of Hawaii Honolulu, Hawaii 96822 CONTENTS PREFACE DESCRIPTIVE SUMMARY OF A NORTH KONA BURIAL CAVE, ISLAND OF HAWAII by M.S. Allen and T.L. Hunt KOA AND LEHUA TIMBER HARVESTING AND PRODUCT UTILIZATION: RELIGIO-ECOLOGICAL RELATIONSHIPS IN HAWAII, A.D. 1778 by R.A.
    [Show full text]
  • Hill Landscape Evolution of Far Western New South Wales
    REGOLITH AND LANDSCAPE EVOLUTION OF FAR WESTERN NEW SOUTH WALES S.M. Hill CRC LEME, Department of Geology and Geophysics, University of Adelaide, SA, 5005 INTRODUCTION linked with a period of deep weathering and an erosional and sedimentary hiatus (Idnurm and Senior, 1978), or alternatively The western New South Wales landscape contains many of the denudation and sedimentation outside of the region I areas such as elements that have been important to the study of Australian the Ceduna Depocentre (O’Sullivan et al., 1998). Sedimentary landscapes including ancient, indurated and weathered landscape basin development resumed in the Cainozoic with the formation remnants, as well as young and dynamic, erosive and sedimentary of the Lake Eyre Basin in the north (Callen et al., 1995) and the landforms. It includes a complex landscape history closely related Murray Basin in the south (Brown and Stephenson, 1991; Rogers to the weathering, sedimentation and denudation histories of et al., 1995). Mesozoic sediments in the area of the Bancannia major Mesozoic and Cainozoic sedimentary basins and their Basin (Trough) have been traditionally considered as part of the hinterlands, as well as the impacts of climate change, eustacy, Eromanga Basin, which may have been joined to the Berri Basin tectonics, and anthropogenic activities. All this has taken place through this area. Cainozoic sediments in the Bancannia Basin across a vast array of bedrock types, including regolith-dominated have been previously described within the framework of the Lake areas extremely prospective for mineral exploration. Eyre Basin (Neef et al., 1995; Gibson, this volume), but probably PHYSICAL SETTINGS warrant a separate framework.
    [Show full text]
  • TML Propagation Protocols
    PROPAGATION PROTOCOLS This document is intended as a guide for Tamborine Mountain Landcare members who wish to assist our regeneration projects by growing some of the plants needed. It is a work in progress so if you have anything to add to the protocols – for example a different but successful way of propagating and growing a particular plant – then please give it to Julie Lake so she can add it to the document. The idea is that our shared knowledge and experience can become a valuable part of TML's intellectual property as well as a useful source of knowledge for members. As there are many hundreds of plants native to Tamborine Mountain, the protocols list will take a long time to complete, with growing information for each plant added alphabetically as time permits. While the list is being compiled by those members with competence in this field, any TML member with a query about propagating a particular plant can post it on the website for other me mb e r s to answer. To date, only protocols for trees and shrubs have been compiled. Vines and ferns will be added later. Fruiting times given are usual for the species but many rainforest plants flower and fruit opportunistically, according to weather and other conditions unknown to us, thus fruit can be produced at any time of year. Finally, if anyone would like a copy of the protocols, contact Julie on [email protected] and she’ll send you one. ………………….. Growing from seed This is the best method for most plants destined for regeneration projects for it is usually fast, easy and ensures genetic diversity in the regenerated landscape.
    [Show full text]
  • Sturt National Park
    Plan of Management Sturt National Park © 2018 State of NSW and the Office of Environment and Heritage With the exception of photographs, the State of NSW and the Office of Environment and Heritage (OEH) are pleased to allow this material to be reproduced in whole or in part for educational and non-commercial use, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. Specific permission is required for the reproduction of photographs. OEH has compiled this publication in good faith, exercising all due care and attention. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. OEH shall not be liable for any damage that may occur to any person or organisation taking action or not on the basis of this publication. All content in this publication is owned by OEH and is protected by Crown Copyright. It is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) , subject to the exemptions contained in the licence. The legal code for the licence is available at Creative Commons . OEH asserts the right to be attributed as author of the original material in the following manner: © State of New South Wales and Office of Environment and Heritage 2018. This plan of management was adopted by the Minister for the Environment on 23 January 2018. Acknowledgments OEH acknowledges that Sturt is in the traditional Country of the Wangkumara and Malyangapa people. This plan of management was prepared by staff of the NSW National Parks and Wildlife Service (NPWS), part of OEH.
    [Show full text]
  • Human-Mediated Introductions of Australian Acacias
    Diversity and Distributions, (Diversity Distrib.) (2011) 17, 771–787 S EDITORIAL Human-mediated introductions of PECIAL ISSUE Australian acacias – a global experiment in biogeography 1 2 1 3,4 David M. Richardson *, Jane Carruthers , Cang Hui , Fiona A. C. Impson , :H Joseph T. Miller5, Mark P. Robertson1,6, Mathieu Rouget7, Johannes J. Le Roux1 and John R. U. Wilson1,8 UMAN 1 Centre for Invasion Biology, Department of ABSTRACT - Botany and Zoology, Stellenbosch University, MEDIATED INTRODUCTIONS OF Aim Australian acacias (1012 recognized species native to Australia, which were Matieland 7602, South Africa, 2Department of History, University of South Africa, PO Box previously grouped in Acacia subgenus Phyllodineae) have been moved extensively 392, Unisa 0003, South Africa, 3Department around the world by humans over the past 250 years. This has created the of Zoology, University of Cape Town, opportunity to explore how evolutionary, ecological, historical and sociological Rondebosch 7701, South Africa, 4Plant factors interact to affect the distribution, usage, invasiveness and perceptions of a Protection Research Institute, Private Bag globally important group of plants. This editorial provides the background for the X5017, Stellenbosch 7599, South Africa, 20 papers in this special issue of Diversity and Distributions that focusses on the 5Centre for Australian National Biodiversity global cross-disciplinary experiment of introduced Australian acacias. A Journal of Conservation Biogeography Research, CSIRO Plant Industry, GPO Box Location Australia and global. 1600, Canberra, ACT, Australia, 6Department of Zoology and Entomology, University of Methods The papers of the special issue are discussed in the context of a unified Pretoria, Pretoria 0002, South Africa, framework for biological invasions.
    [Show full text]
  • Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
    Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade.
    [Show full text]
  • WRA Species Report
    Family: Sterculiaceae Taxon: Brachychiton populneus Synonym: Poecilodermis populnea Schott & Endl. (basio Common Name: bottletree Sterculia diversifolia G. Don bottelboom kurrajong whiteflower kurrajong Questionaire : current 20090513 Assessor: Chuck Chimera Designation: EVALUATE Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 6 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 n 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see y Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see y Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 n 403 Parasitic y=1, n=0 n 404 Unpalatable
    [Show full text]
  • Downloading Or Purchasing Online At
    On-farm Evaluation of Grafted Wildflowers for Commercial Cut Flower Production OCTOBER 2012 RIRDC Publication No. 11/149 On-farm Evaluation of Grafted Wildflowers for Commercial Cut Flower Production by Jonathan Lidbetter October 2012 RIRDC Publication No. 11/149 RIRDC Project No. PRJ-000509 © 2012 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-328-4 ISSN 1440-6845 On-farm Evaluation of Grafted Wildflowers for Commercial Cut Flower Production Publication No. 11/149 Project No. PRJ-000509 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright.
    [Show full text]
  • Full Significant Tree List
    Trees not on Significant Tree Register Acmena smithii, Lilly-pilly - 42 French St, front garden The Lilypilly has been widely planted from the nineteenth century through to the present day often as a wind break and hedge. The specimen in the front garden of 42 French Street is impressive in size and most likely remains from an earlier larger garden. There are many specimens of Lilypilly planted around Hamilton. Dimensions: precise dimensions not available Significance: Important as part of original garden planting. Acmena smithii, Lilly-pilly - 9 Gray St, front garden Older planting which was originally part of the garden at 13 Gray Street. Dimensions: precise dimensions not available Significance: Important as part of original garden planting. Aesculus hippocastanum, Horse Chestnut - Melville Oval, Thompson St side near water fountain. The Horse Chestnut is not very widely planted throughout Victoria although a very popular tree throughout Europe. It is best in the cooler climates of the Dandenong and Mt Macedon ranges. Dimensions: precise dimensions not available Significance: This is the only specimen found in Hamilton and therefore of local interest. Araucaria heterophylla, Norfolk Island Pine - 13 Gray St, front garden Araucarias have been popular in Victoria from the mid- nineteenth century to the present time producing a distinct form in the landscape. The large specimen here remains from the original garden and was probably planted about 1904 and is one of two large specimens in the Church Hill area. The other, identical in size, was planted at 31 Gray St, apparently the home of a member of the same family. Both trees are excellent examples of the species and have become landmarks in the Church Hill area.
    [Show full text]
  • Newsletter #259
    COOLEMAN RIDGE PARK CARE GROUP Newsletter February 2015 Previous Meeting - Sunday 18th Afterburn Following the November prescribed burn at January GAS Arawang Kathner Street, the blackened hillside has A grey and muggy morning saw a good turn- begun to glow. These yellow flowers haven’t out of volunteers. We welcomed back our just been *Hypericum perforatum St John’s octogenerian cyclist mate Gősta, as cheerful Wort, nor * Hypochaeris radicata Flatweed. and willing as ever. He sets us such a great We’re delighted to report that Tricoryne example! elatior Yellow Rush Lily has had a great Led by Alan, a scout party of Rob, Graham season – here’s Malcolm Gill’s photo! and Gősta set out after woody weeds, heading north along the base trail. Their quarry sighted, the scouts clambered up the stony hillside and attacked. Photos exist to show the slaughter. The rest of the mob stayed near our usual site, above the wooden bridge. As ever, Rohan and Doug found *Rubus fruticosus Blackberry and *Phalaris aquatica aplenty. Arminel and Linda bagged seeding *Vicia sp. Vetch just above the drain, then joined the lads. Pat The Friday Weeders have counted 40 hunted Bracken rhizomes for propagation. reappearing species. They are now attacking Malcolm joined us at a convivial morning tea. exposed weeds. *Eragrostis curvula Tall He had cycled from Kathner Street, weeding African Lovegrass tussocks near the dam are as he went. already carrying new seed! Future programme Weed Watching The Committee has appointed Linda to NB – Remember! We meet in the document and identify weeds. Linda is our mornings during the warmer months! first port of call if we notice a problem or if Sunday 15th February we want to check whether we have a problem.
    [Show full text]
  • The Mcguire Center for Lepidoptera and Biodiversity
    Supplemental Information All specimens used within this study are housed in: the McGuire Center for Lepidoptera and Biodiversity (MGCL) at the Florida Museum of Natural History, Gainesville, USA (FLMNH); the University of Maryland, College Park, USA (UMD); the Muséum national d’Histoire naturelle in Paris, France (MNHN); and the Australian National Insect Collection in Canberra, Australia (ANIC). Methods DNA extraction protocol of dried museum specimens (detailed instructions) Prior to tissue sampling, dried (pinned or papered) specimens were assigned MGCL barcodes, photographed, and their labels digitized. Abdomens were then removed using sterile forceps, cleaned with 100% ethanol between each sample, and the remaining specimens were returned to their respective trays within the MGCL collections. Abdomens were placed in 1.5 mL microcentrifuge tubes with the apex of the abdomen in the conical end of the tube. For larger abdomens, 5 mL microcentrifuge tubes or larger were utilized. A solution of proteinase K (Qiagen Cat #19133) and genomic lysis buffer (OmniPrep Genomic DNA Extraction Kit) in a 1:50 ratio was added to each abdomen containing tube, sufficient to cover the abdomen (typically either 300 µL or 500 µL) - similar to the concept used in Hundsdoerfer & Kitching (1). Ratios of 1:10 and 1:25 were utilized for low quality or rare specimens. Low quality specimens were defined as having little visible tissue inside of the abdomen, mold/fungi growth, or smell of bacterial decay. Samples were incubated overnight (12-18 hours) in a dry air oven at 56°C. Importantly, we also adjusted the ratio depending on the tissue type, i.e., increasing the ratio for particularly large or egg-containing abdomens.
    [Show full text]