Drought and Leaf Herbivory Influence Floral Volatiles and Pollinator Attraction

Total Page:16

File Type:pdf, Size:1020Kb

Drought and Leaf Herbivory Influence Floral Volatiles and Pollinator Attraction Global Change Biology (2016) 22, 1644–1654, doi: 10.1111/gcb.13149 Drought and leaf herbivory influence floral volatiles and pollinator attraction LAURA A. BURKLE1 and JUSTIN B. RUNYON 2 1Department of Ecology, Montana State University, Bozeman, MT 59717, USA, 2Rocky Mountain Research Station, USDA Forest Service, 1648 S. 7th Avenue, Bozeman, MT 59717, USA Abstract The effects of climate change on species interactions are poorly understood. Investigating the mechanisms by which species interactions may shift under altered environmental conditions will help form a more predictive understand- ing of such shifts. In particular, components of climate change have the potential to strongly influence floral volatile organic compounds (VOCs) and, in turn, plant–pollinator interactions. In this study, we experimentally manipulated drought and herbivory for four forb species to determine effects of these treatments and their interactions on (1) visual plant traits traditionally associated with pollinator attraction, (2) floral VOCs, and (3) the visitation rates and community composition of pollinators. For all forbs tested, experimental drought universally reduced flower size and floral display, but there were species-specific effects of drought on volatile emissions per flower, the composition of compounds produced, and subsequent pollinator visitation rates. Moreover, the community of pollinating visitors was influenced by drought across forb species (i.e. some pollinator species were deterred by drought while others were attracted). Together, these results indicate that VOCs may provide more nuanced information to potential floral visitors and may be relatively more important than visual traits for pollinator attraction, particularly under shifting environmental conditions. Keywords: Campanula rotundifolia, climate change, floral display, floral scent, Heterotheca villosa, Phacelia hastata, plant–pollinator interactions, pollinator community, Potentilla recta, volatile organic compounds Received 28 July 2015; revised version received 11 October 2015 and accepted 21 October 2015 2015). To date, pollination biology has focused largely Introduction on the role of visual cues for pollinator attraction One of the main challenges facing ecologists today is to (Raguso, 2008a), which contribute to community-level gain a better understanding of how climate change is patterns in plant–pollinator interaction networks (Vaz- affecting ecological interactions among species so that quez et al., 2009). The importance of floral odors for we may maintain and restore the essential ecosystem pollination is increasingly appreciated (e.g. Kessler services they provide, like pollination. To better under- et al., 2008; Raguso, 2008a,b; Morse et al., 2012; Riffell stand the mechanisms by which shifts in species inter- et al., 2013), yet how they structure plant–pollinator actions could occur, ecologists quantify traits interactions, particularly in the context of climate potentially involved in mediating these interactions. change, is relatively poorly studied. Given their crucial Volatile organic compounds (VOCs) are traits that can roles in directing other plant–insect interactions (e.g. in be influenced by climate change and strongly mediate a the context of herbivory), plant VOCs likely exert wide array of interactions between plants and insects, important influences on plant–pollinator interactions either in an attractive or repellant manner. VOCs have and community dynamics. been most extensively studied in the context of tri- Components of climate change, including increasing – – trophic (plant herbivore natural enemy) interactions temperatures and CO2 levels and altered precipitation where they play important roles in plant defense (e.g. patterns, can affect plant traits important for pollinator De Moraes et al., 2001; Kessler & Baldwin, 2001; Xiao attraction (e.g. Jablonski et al., 2002; Scaven & Rafferty, et al., 2012). Although less studied, VOCs emitted from 2013). For instance, elevated temperatures can influence flowers can mediate mutualistic interactions between flower production, flower size, floral phenology, plant plants and their pollinators (Dudareva et al., 2006). For height, and the production and composition of nectar example, pollinators use these airborne chemical sig- and pollen (e.g. Delph et al., 1997; Wahid et al., 2007; nals while searching for nectar and pollen (Schiestl, Liu et al., 2012). Importantly, studying the effects of cli- mate change on these traits of plants has done little to Correspondence: Laura A. Burkle, tel. +1 406 994 7223, fax advance our understanding of how plant–pollinator +1 406 994 3190, e-mail: [email protected] interactions and community dynamics may shift 1644 © 2015 John Wiley & Sons Ltd DROUGHT AFFECTS VOLATILES AND POLLINATORS 1645 because (1) plant species often respond similarly to the (Bidart-Bouzat & Imeh-Nathaniel, 2008). Thus, it will be same environmental cue (i.e. community-wide reduc- important to not only investigate the effects of multiple tions in flower production due to drought, or advance- climate change factors and their interactions (e.g. ment of flowering phenology due to warmer spring Schweiger et al., 2010; Hoover et al., 2012), but also temperatures); (2) when species-specific responses multiple types of species interactions (Tylianakis et al., occur, it has proved difficult to leverage this informa- 2008; Fontaine et al., 2011). tion in a predictive way, and (3) a slow recognition that Environmental conditions that induce stress in plants pollinator foraging behavior is not static (i.e. interac- (e.g. drought and herbivory) have the potential to tions within a community are flexible consequences of change floral VOCs and affect pollination attraction, context-dependent pollinator choices) hinders our but this remains poorly understood. Here, we experi- understanding of how cascades of shifts in foraging mentally manipulated drought and herbivory for four patterns may occur in communities altered by climate species of forbs in a fully factorial design to investigate change. Thus, studying floral VOCs – information-rich effects on (1) traditional measures of pollinator attrac- signals that are highly responsive to the environment – tion (i.e. plant size, floral display, and flower size), (2) and plant–pollinator interactions in the context of cli- floral VOC quantity (i.e. total volatile production per mate change will likely enhance our ability to form a flower) and quality (i.e. shifts in VOC composition and more predictive understanding of how plant–pollinator dispersion of compounds), and (3) subsequent rates interactions will change. In fact, increasing tempera- and composition of pollinator visitors. Our results sug- tures have been found to increase the quantity of floral gest that floral VOCs represent a strong, consistent link VOCs and alter the quality (i.e. shift ratios of com- between plant physiological responses to drought and pounds in floral bouquets) with potentially important, information-rich signals by which pollinators make for- but unknown, effects on pollinators (Farre-Armengol aging choices. We also show that herbivory can modify et al., 2014). the effects of drought on plant traits including floral Reduced precipitation resulting in drought is occur- VOCs, at least in some species. ring as a result of anthropogenic climate change, and drought is predicted to become more severe in many Materials and methods places across the globe (e.g. Pederson et al., 2010; Dai, 2013; Cook et al., 2015). Water availability can have Plant material and growth conditions strong effects on plant growth as well as plant traits important for pollination and other species interactions. We used three species of widespread native forbs: Campanula For example, drought stress reduced flower size and rotundifolia L., harebell; Heterotheca villosa (Pursh) Shinners, nectar volume in fireweed (Epilobium angustifolium) hairy false goldenaster; and Phacelia hastata Douglas ex Lehm., (Carroll et al., 2001) and the wild tobacco species Nico- silverleaf phacelia as well as one invasive forb: Potentilla recta L., sulphur cinquefoil; native to Eurasia. Sixty individuals of tiana quadrivalvis (Halpern et al., 2010). Given shifts in each species were grown from seed in a greenhouse with a plant quality under drought conditions, the amount day/night temperature regime of 26 °C/15 °C and a 16 h and consequences of herbivory are also likely to be photoperiod with supplemental lighting provided by metal altered (Huberty & Denno, 2004). In fact, drought may halide lamps. Seeds were collected locally at the Mt. Ellis field have the strongest effects on herbivory compared to site (see below). Plants were grown in 6.5 cm wide by 25 cm other components of climate change (Scherber et al., tall plastic cone-tainers using Sunshine Mix #1 soil (Sun Gro 2013). Moreover, herbivory and pollination do not Horticulture, Agawam, MA, USA) with added fertilizer (1 tea- occur in isolation (i.e. plants are simultaneously spoon or ca. 5 mL of Osmocote per pot; The Scotts Company, exposed to herbivores and pollinators). Plant herbivory Marysville, OH, USA). Seeds were planted in the fall (Octo- is ubiquitous, predicted to increase as the climate ber), allowed to grow and establish for 6 weeks, and then ver- ° warms (Currano et al., 2010), and herbivore feeding has nalized in a climate-controlled chamber at approximately 4 C with a 12 h photoperiod for 100–130 days. Plants removed recently been shown to affect flower volatile emissions from
Recommended publications
  • Relatório Anual Bolsa CAPES
    0 NATALIE DO VALLE CAPELLI ULTRASTRUCTURE AND CHEMICAL ANALYSIS OF OSMOPHORES IN APOCYNACEAE SÃO PAULO 2017 0 NATALIE DO VALLE CAPELLI ULTRASTRUCTURE AND CHEMICAL ANALYSIS OF OSMOPHORES IN APOCYNACEAE ULTRAESTRUTURA E ANÁLISE QUÍMICA DE OSMÓFOROS EM APOCYNACEAE Dissertação apresentada ao Instituto de Biociências da Universidade de São Paulo, para a obtenção do título de Mestre em Ciências, na área de Botânica. Orientação: Prof. Dr. Diego Demarco São Paulo 2017 1 Abstract Apocynaceae presents the flowers with the highest degree of synorganization among the eudicots and highly elaborated pollination mechanisms associated with the high diversity of glands. The osmophore stands out as responsible to produce a floral scent which attracts pollinators and, despite its fundamental relevance for pollination, its structure and mechanism of production and release of the perfume is essentially unknown in Apocynaceae. This present work aims to characterize morphologically and ultrastructurally the osmophores of Apocynaceae, besides chemically identifying the compounds that constitute the floral scent. Species from two subfamilies were selected to describe the diversity of osmophores and types of scent in the family. The osmophores were firstly located histochemically and, later, this region was processed for transmission electron microscopy. Micromorphological analysis was performed by scanning electron microscopy, and the identification of volatile oils made by GC-MS. Osmophores are located on the adaxial surface of the free portion of the petals. They varied in the shape of epidermal cells, striation of the cuticle and presence of trichomes. This gland is mostly formed by secretory epidermis and parenchyma, except in Plumeria, where the osmophores are exclusively epidermal. The secretory cells presented thick walls in the Asclepiadoideae and secretion produced by plastids and SER in all species.
    [Show full text]
  • The Only African Wild Tobacco, Nicotiana Africana: Alkaloid Content and the Effect of Herbivory
    The Only African Wild Tobacco, Nicotiana africana: Alkaloid Content and the Effect of Herbivory Danica Marlin1, Susan W. Nicolson1, Abdullahi A. Yusuf1, Philip C. Stevenson2,3, Heino M. Heyman4, Kerstin Kru¨ ger1* 1 Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Pretoria, South Africa, 2 Royal Botanic Gardens, Kew, Surrey, United Kingdom, 3 Natural Resources Institute, University of Greenwich, Chatham, Kent, United Kingdom, 4 Department of Plant Sciences, University of Pretoria, Private Bag X20, Pretoria, South Africa Abstract Herbivory in some Nicotiana species is known to induce alkaloid production. This study examined herbivore-induced defenses in the nornicotine-rich African tobacco N. africana, the only Nicotiana species indigenous to Africa. We tested the predictions that: 1) N. africana will have high constitutive levels of leaf, flower and nectar alkaloids; 2) leaf herbivory by the African bollworm Helicoverpa armigera will induce increased alkaloid levels in leaves, flowers and nectar; and 3) increased alkaloid concentrations in herbivore-damaged plants will negatively affect larval growth. We grew N. africana in large pots in a greenhouse and exposed flowering plants to densities of one, three and six fourth-instar larvae of H. armigera, for four days. Leaves, flowers and nectar were analyzed for nicotine, nornicotine and anabasine. The principal leaf alkaloid was nornicotine (mean: 28 mg/g dry mass) followed by anabasine (4.9 mg/g) and nicotine (0.6 mg/g). Nornicotine was found in low quantities in the flowers, but no nicotine or anabasine were recorded. The nectar contained none of the alkaloids measured. Larval growth was reduced when leaves of flowering plants were exposed to six larvae.
    [Show full text]
  • A Molecular Phylogeny of the Solanaceae
    TAXON 57 (4) • November 2008: 1159–1181 Olmstead & al. • Molecular phylogeny of Solanaceae MOLECULAR PHYLOGENETICS A molecular phylogeny of the Solanaceae Richard G. Olmstead1*, Lynn Bohs2, Hala Abdel Migid1,3, Eugenio Santiago-Valentin1,4, Vicente F. Garcia1,5 & Sarah M. Collier1,6 1 Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A. *olmstead@ u.washington.edu (author for correspondence) 2 Department of Biology, University of Utah, Salt Lake City, Utah 84112, U.S.A. 3 Present address: Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt 4 Present address: Jardin Botanico de Puerto Rico, Universidad de Puerto Rico, Apartado Postal 364984, San Juan 00936, Puerto Rico 5 Present address: Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California, Berkeley, California 94720, U.S.A. 6 Present address: Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, U.S.A. A phylogeny of Solanaceae is presented based on the chloroplast DNA regions ndhF and trnLF. With 89 genera and 190 species included, this represents a nearly comprehensive genus-level sampling and provides a framework phylogeny for the entire family that helps integrate many previously-published phylogenetic studies within So- lanaceae. The four genera comprising the family Goetzeaceae and the monotypic families Duckeodendraceae, Nolanaceae, and Sclerophylaceae, often recognized in traditional classifications, are shown to be included in Solanaceae. The current results corroborate previous studies that identify a monophyletic subfamily Solanoideae and the more inclusive “x = 12” clade, which includes Nicotiana and the Australian tribe Anthocercideae. These results also provide greater resolution among lineages within Solanoideae, confirming Jaltomata as sister to Solanum and identifying a clade comprised primarily of tribes Capsiceae (Capsicum and Lycianthes) and Physaleae.
    [Show full text]
  • Viability Analyses for Vascular Plant Species Within Prescott National Forest, Arizona
    Viability analyses for vascular plant species within Prescott National Forest, Arizona Marc Baker Draft 4 January 2011 1 Part 1. Description of Ecological Context (Adapted from: Ecological Sustainability Report, Prescott National Forest, Prescott, Arizona, April 2009) Description of the Planning Unit Prescott National Forest (PNF) includes mostly mountains and associated grassy valleys of central Arizona that lie between the forested plateaus to the north and the arid desert region to the south. Elevations range between 3,000 feet above sea level along the lower Verde Valley to 7,979 feet at the top of Mount Union, the highest natural feature on the Forest. Roughly half of the PNF occurs west of the city of Prescott, Arizona, in the Juniper, Santa Maria, Sierra Prieta, and Bradshaw Mountains. The other half of the PNF lies east of Prescott and takes in the terrain of Mingus Mountain, the Black Hills, and Black Mesa. The rugged topography of the PNF provides important watersheds for both the Verde and Colorado Rivers. Within these watersheds are many important continuously or seasonally flowing stream courses and drainages. A portion of the Verde River has been designated as part of the National Wild and Scenic Rivers System. Vegetation within PNF is complex and diverse: Sonoran Desert, dominated by saguaro cacti and paloverde trees, occurs to the south of Bradshaw Mountains; and cool mountain forests with conifer and aspen trees occur within as few as 10 miles upslope from the desert . In between, there are a variety of plant and animal habitats including grasslands, hot steppe shrub, chaparral, pinyon-juniper woodlands, and ponderosa pine forests.
    [Show full text]
  • Vegetation Inventory Report: 'Riverside / Rock Correa' Properties
    Vegetation Inventory Report: ‘Riverside / Rock Correa’ properties Melbourne Strategic Assessment © The State of Victoria Department of Environment, Land, Water and Planning 2020 This work is licensed under a Creative Commons Attribution 4.0 International licence. You are free to re-use the work under that licence, on the condition that you credit the State of Victoria as author. The licence does not apply to any images, photographs or branding, including the Victorian Coat of Arms, the Victorian Government logo and the Department of Environment, Land, Water and Planning (DELWP) logo. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ ISBN 978-1-76105-333-7 (online) Disclaimer This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication. Accessibility If you would like to receive this publication in an alternative format, please telephone the DELWP Customer Service Centre on 136186, email [email protected], or via the National Relay Service on 133 677 www.relayservice.com.au. This document is also available on the internet at www.delwp.vic.gov.au. Contents Introduction .....................................................................................................................................................
    [Show full text]
  • Biodiversity Summary: Wimmera, Victoria
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Traditional Use of Tobacco Among Indigenous Peoples in North America
    Literature Review Traditional Use of Tobacco among Indigenous Peoples of North America March 28, 2014 Dr. Tonio Sadik Chippewas of the Thames First Nation 1. Overview This literature review arises as one part of the Chippewas of the Thames1 First Nation’s (CoTTFN) engagement with the Province of Ontario regarding tobacco issues and related First Nation interests (the “Tobacco Initiative”). The specific focus of this review is on existing academic literature pertaining to the traditional use of tobacco by indigenous peoples in North America. For the purposes of this review, traditional use refers to those uses of tobacco by indigenous peoples2 that may be distinct from the contemporary commercial use of tobacco, that is, recreational smoking. Most current knowledge about tobacco is dominated by the history of European and Euro- American tobacco use, despite the fact that the growing and harvesting of tobacco by indigenous peoples predates the arrival of Europeans (Pego, Hill, Solomon, Chisholm, and Ivey 1995). Tobacco was first introduced to Europeans shortly after Columbus’ landfall in the Americas in 1492, and was likely the first plant to have been domesticated in the so-called New World. Generally speaking, indigenous peoples of North America had four uses for tobacco: for prayers, offerings, and ceremonies; as medicine; as gifts to visitors; and as ordinary smoking tobacco.3 The traditional use of tobacco can in many cases be traced back to the creation stories of a respective indigenous nation. Although the meanings associated with such stories vary, tobacco is consistently described for its sacred elements: to bring people together; for its medicinal or healing properties; or as an offering.
    [Show full text]
  • Checklist of the Vascular Plants of San Diego County 5Th Edition
    cHeckliSt of tHe vaScUlaR PlaNtS of SaN DieGo coUNty 5th edition Pinus torreyana subsp. torreyana Downingia concolor var. brevior Thermopsis californica var. semota Pogogyne abramsii Hulsea californica Cylindropuntia fosbergii Dudleya brevifolia Chorizanthe orcuttiana Astragalus deanei by Jon P. Rebman and Michael G. Simpson San Diego Natural History Museum and San Diego State University examples of checklist taxa: SPecieS SPecieS iNfRaSPecieS iNfRaSPecieS NaMe aUtHoR RaNk & NaMe aUtHoR Eriodictyon trichocalyx A. Heller var. lanatum (Brand) Jepson {SD 135251} [E. t. subsp. l. (Brand) Munz] Hairy yerba Santa SyNoNyM SyMBol foR NoN-NATIVE, NATURaliZeD PlaNt *Erodium cicutarium (L.) Aiton {SD 122398} red-Stem Filaree/StorkSbill HeRBaRiUM SPeciMeN coMMoN DocUMeNTATION NaMe SyMBol foR PlaNt Not liSteD iN THE JEPSON MANUAL †Rhus aromatica Aiton var. simplicifolia (Greene) Conquist {SD 118139} Single-leaF SkunkbruSH SyMBol foR StRict eNDeMic TO SaN DieGo coUNty §§Dudleya brevifolia (Moran) Moran {SD 130030} SHort-leaF dudleya [D. blochmaniae (Eastw.) Moran subsp. brevifolia Moran] 1B.1 S1.1 G2t1 ce SyMBol foR NeaR eNDeMic TO SaN DieGo coUNty §Nolina interrata Gentry {SD 79876} deHeSa nolina 1B.1 S2 G2 ce eNviRoNMeNTAL liStiNG SyMBol foR MiSiDeNtifieD PlaNt, Not occURRiNG iN coUNty (Note: this symbol used in appendix 1 only.) ?Cirsium brevistylum Cronq. indian tHiStle i checklist of the vascular plants of san Diego county 5th edition by Jon p. rebman and Michael g. simpson san Diego natural history Museum and san Diego state university publication of: san Diego natural history Museum san Diego, california ii Copyright © 2014 by Jon P. Rebman and Michael G. Simpson Fifth edition 2014. isBn 0-918969-08-5 Copyright © 2006 by Jon P.
    [Show full text]
  • Appendix D Vascular Plant Species Observed
    LSA ASSOCIATES, INC. CITY OF MONROVIA HILLSIDE WILDERNESS PRESERVE AND HILLSIDE RECREATION AREA AUGUST 2008 DRAFT RESOURCE MANAGEMENT PLAN CITY OF MONROVIA, CALIFORNIA APPENDIX D VASCULAR PLANT SPECIES OBSERVED P:\CNV0601\Management Plan\Final Management Plan- August 2008\Final Admin Draft.doc (08/08/08) D-1 LSA ASSOCIATES, INC. CITY OF MONROVIA HILLSIDE WILDERNESS PRESERVE AND HILLSIDE RECREATION AREA AUGUST 2008 DRAFT RESOURCE MANAGEMENT PLAN CITY OF MONROVIA, CALIFORNIA APPENDIX D VASCULAR PLANT SPECIES OBSERVED The following vascular plant species were observed or documented as having a high potential to occur in the study area by various biologists during the course of on-site surveys. * Introduced nonnative species Scientific Name Common Name Observed PTERIDOPHYTA FERNS AND FERN-ALLIES Dryopteridaceae Wood Fern Family Dryopteris arguta Coastal wood fern X Polystichum munitum Canyon sword fern X Polypodiaceae Polypody Family Polypodium californicum California polypody X Pteridaceae Lip Fern Family Pellaea andromedifolia Coffee fern X Pellaea mucronata Bird’s foot cliff-brake X Pentagramma triangularis ssp. triangularis California goldenback fern X Pteridium aquilinum var. pubescens Bracken fern X Selaginellaceae Spike-Moss Family Selaginella bigelovii Bigelow’s spike-moss X GYMNOSPERMAE CONE-BEARING PLANTS Cupressaceae Cypress Family *Caloedrus sp. Cedar X Pinaceae Pine Family *Abies spp. Fir X *Pinus spp. Pine X Pseudotsuga macrocarpa Big-cone Douglas-fir X ANGIOSPERMAE: DICOTYLEDONAE DICOT FLOWERING PLANTS Aceraceae Maple Family
    [Show full text]
  • Flora of Australia, Volume 29, Solanaceae
    FLORA OF AUSTRALIA Volume 29 Solanaceae This volume was published before the Commonwealth Government moved to Creative Commons Licensing. © Commonwealth of Australia 1982. This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced or distributed by any process or stored in any retrieval system or data base without prior written permission from the copyright holder. Requests and inquiries concerning reproduction and rights should be addressed to: [email protected] FLORA OF AUSTRALIA In this volume all 206 species of the family Solanaceae known to be indigenous or naturalised in Australia are described. The family includes important toxic plants, weeds and drug plants. The family Solanaceae in Australia contains 140 indigenous species such as boxthorn, wild tobacco, wild tomato, Pituri and tailflower. The 66 naturalised members include nightshade, tomato, thornapple, petunia, henbane, capsicum and Cape Gooseberry. There are keys for the identification of all genera and species. References are given for accepted names and synonyms. Maps are provided showing the distribution of nearly all species. Many are illustrated by line drawings or colour plates. Notes on habitat, variation and relationships are included. The volume is based on the most recent taxonomic research on the Solanaceae in Australia. Cover: Solanum semiarmatum F . Muell. Painting by Margaret Stones. Reproduced by courtesy of David Symon. Contents of volumes in the Flora of Australia, the faiimilies arranged according to the system of A.J.
    [Show full text]
  • Higher Plants Part A1
    APPLICATION FOR CONSENT TO RELEASE A GMO – HIGHER PLANTS PART A1: INFORMATION REQUIRED UNDER SCHEDULE 1 OF THE GENETICALY MODIFIED ORGANISMS (DELIBERATE RELEASE) REGULATIONS 2002 PART 1 General information 1. The name and address of the applicant and the name, qualifications and experience of the scientist and of every other person who will be responsible for planning and carrying out the release of the organisms and for the supervision, monitoring and safety of the release. Applicant: Rothamsted Research, West Common, Harpenden Hertfordshire, AL5 2JQ UK 2. The title of the project. Study of aphid, predator and parasitoid behaviour in wheat producing aphid alarm pheromone PART II Information relating to the parental or recipient plant 3. The full name of the plant - (a) family name, Poaceae (b) genus, Triticum (c) species, aestivum (d) subspecies, N/A (e) cultivar/breeding line, Cadenza (f) common name. Common wheat/ bread wheat 4. Information concerning - (a) the reproduction of the plant: (i) the mode or modes of reproduction, (ii) any specific factors affecting reproduction, (iii) generation time; and (b) the sexual compatibility of the plant with other cultivated or wild plant species, including the distribution in Europe of the compatible species. ai) Reproduction is sexual leading to formation of seeds. Wheat is approximately 99% autogamous under natural field conditions; with self-fertilization normally occurring before flowers open. Wheat pollen grains are relatively heavy and any that are released from the flower remain viable for between a few minutes and a few hours. Warm, dry, windy conditions may increase cross- pollination rates on a variety to variety basis (see also 6 below).
    [Show full text]
  • Diversity and Distribution of Floral Scent
    The Botanical Review 72(1): 1-120 Diversity and Distribution of Floral Scent JETTE T. KNUDSEN Department of Ecology Lund University SE 223 62 Lund, Sweden ROGER ERIKSSON Botanical Institute GOteborg University Box 461, SE 405 30 GOteborg, Sweden JONATHAN GERSHENZON Max Planck Institute for Chemical Ecology Hans-KnOll Strasse 8, 07745 ,lena, Germany AND BERTIL ST,~HL Gotland University SE-621 67 Visby, Sweden Abstract ............................................................... 2 Introduction ............................................................ 2 Collection Methods and Materials ........................................... 4 Chemical Classification ................................................... 5 Plant Names and Classification .............................................. 6 Floral Scent at Different Taxonomic Levels .................................... 6 Population-Level Variation .............................................. 6 Species- and Genus-Level Variation ....................................... 6 Family- and Order-Level Variation ........................................ 6 Floral Scent and Pollination Biology ......................................... 9 Floral Scent Chemistry and Biochemistry ...................................... 10 Floral Scent and Evolution ................................................. 11 Floral Scent and Phylogeny ................................................ 12 Acknowledgments ....................................................... 13 Literature Cited ........................................................
    [Show full text]