Rationality and Expected Utility

Total Page:16

File Type:pdf, Size:1020Kb

Rationality and Expected Utility Rationality and Expected Utility by Maxwell Gee A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Philosophy in the Graduate Division of the University of California, Berkeley Committee in Charge: Associate Professor Lara Buchak, Co-Chair Professor Niko Kolodny, Co-Chair Associate Professor David Ahn Summer 2015 Abstract Rationality and Expected Utility by Maxwell Gee Doctor of Philosophy in Philosophy University of California, Berkeley Professor Niko Kolodny, Co-Chair Associate Professor Lara Buchak, Co-Chair We commonly make a distinction between what we simply tend to do and what we would have done had we undergone an ideal reasoning process|or, in other words, what we would have done if we were perfectly rational. Formal decision theories, like Expected Utility Theory or Risk-Weighted Expected Utility Theory, have been used to model the considerations that govern rational behavior. But questions arise when we try to articulate what this kind of modeling amounts to. Firstly, it is not clear how the components of the formal model correspond to real-world psychological or physical facts that ground judgments about what we ought to do. Secondly, there is a great deal of debate surrounding what an accurate model of rationality would look like. Theorists disagree about how much flexibility a rational agent has in weighing the risk of a loss against the value of potential gains, for example. The goal of this project is to provide an interpretation of Expected Utility Theory whereby it explicates or represents the pressure that fundamentally governs how human agents ought to behave. That means both articulating how the components of the formal model correspond to real-world facts, and defending Expected Utility Theory against alternative formal models of rationality. 1 Contents 1 Introduction 1 1.1 The Expected Utility Theorem and a Substantive Notion of Rationality1 1.1.1 Past Attempts at Answering These Questions . .4 1.1.2 Sen and the Problem of Action Explanation . .6 1.2 Project Thesis and Outline . .8 1.2.1 Chapter 1: Teleological Functionalism . 10 1.2.2 Chapter 2: The Steps in Practical Reasoning . 11 1.2.3 Chapter 3: Providing an EUM Interpretation . 11 1.2.4 Chapter 4: Coherentism . 12 1.2.5 Chapter 5: Defending the Independence Axiom . 12 2 Teleological Functionalism 15 2.1 Introduction . 15 2.1.1 Chapter Thesis and Plan . 16 2.2 The Deontic Normative Relation . 16 2.2.1 Challenges for a Theory of Deontic Normative Pressure . 18 2.2.2 4 Success Conditions on a Theory of Deontic Normative Pressure 21 2.3 Teleological Functionalism . 23 2.3.1 Teleological Functionalism Defined . 27 2.3.2 Teleological Functionalism and Causal Explanation . 31 2.3.3 Two Objections to Teleological Functionslism . 34 2.3.4 Teleological Functionalism and Deontic Normativity: our Four Success Conditions . 37 2.4 Foot and Biological Norms . 38 2.5 Conclusions . 39 3 The Steps in Practical Reasoning 41 3.1 Introduction . 41 i 3.1.1 Thesis and Plan . 42 3.2 Mental States and Deontic Normative Bridges . 43 3.3 Discovering the Steps in Practical Reasoning . 44 3.3.1 An Aside: Basic Versus Complex Normative Judgments . 45 3.3.2 Reasoning to a Particular Action . 46 3.3.3 From Judgments about Actions to Acting . 47 3.3.4 From What Is to What Ought to Be . 48 3.3.5 Objections to Externalism `Minus Desire' . 51 3.3.6 Two Objections to Internalism . 54 3.3.7 Externalism `Plus Desire' . 61 3.3.8 Conclusion: The Implications for EUM . 64 3.4 Teleological Functionalism and Normative Bridges . 65 3.4.1 Beliefs . 65 3.4.2 Desires . 66 3.4.3 Intentions and the Will . 73 3.4.4 Teleological Functionalism and Normative Bridges . 73 3.5 Formal Modeling and Resolute Choice . 75 3.5.1 McClennen and Gauthier . 77 3.5.2 Formal Separability and EUM . 78 3.5.3 Formal Separability and Feasibility . 81 3.6 Conclusions . 82 3.6.1 The Experience of Reasoning . 82 3.6.2 No Normative View from Nowhere . 82 3.6.3 Next Steps . 83 4 An Interpretation of Expected Utility Theory 85 4.1 Introduction . 85 4.1.1 Thesis and the Plan . 86 4.2 Interpreting the Formal Model . 87 4.2.1 Preference Orderings and Utility . 87 4.2.2 Outcomes . 88 4.2.3 The Axioms and/or the Idea of Maximizing Utility . 89 4.3 Basic `Ought' Judgments . 90 4.3.1 The v(φ) Function and No Interaction Effects . 94 4.4 A Rational Justification for Compliance with EUM Axioms . 98 4.4.1 Transitivity . 99 4.4.2 Completeness . 101 4.4.3 Continuity . 105 ii 4.4.4 Independence . 108 4.5 TF Solutions to the Tension between NR and CR . 109 4.5.1 TNC1 and Reply . 109 4.5.2 TNC2 and Reply . 112 4.5.3 Objection: Do we really need to respond to TNC? . 113 4.6 Conclusion . 114 5 Coherentism 115 5.1 Introduction . 115 5.1.1 The Thesis and the Plan . 117 5.2 Detecting the Presence of Norms of Coherence as Such . 118 5.3 Davidson and Lewis: Radical Interpretation . 121 5.3.1 Radical Interpretation and Norms of Coherence as Such . 124 5.3.2 My Objections . 125 5.4 Dreier: The Founding Spirit of Decision Theory . 128 5.5 Armendt: Being `Of Two Minds' . 136 5.6 Three Problems with Norms of Coherence as Such . 138 5.6.1 Radical Inconsistency . 143 5.7 Instrumentalism, Parity, and Exploitability . 143 5.8 Conclusions . 147 6 A Defense of the Independence Axiom 149 6.1 Introduction . 149 6.1.1 Thesis and the Plan . 153 6.2 EUM and Global Property Sensitivity . 155 6.3 Basic `Ought' Judgments in REU . 158 6.4 Independence and Group Decision . 161 6.5 Independence and Inferences about Efficacy . 164 6.6 Independence and Sequential Choice . 167 6.6.1 Long Term Decision Making . 167 6.6.2 Valuing Lotteries by their Parts . 173 6.7 Independence in the Real World . 178 6.8 On the Tendency to Violate Independence . 181 6.8.1 Objection: TF and the Problem of Reflective Irrationality . 183 6.8.2 Failed Reply 1: Coherence with Other Concepts . 183 6.8.3 Failed Reply 2: The Existence of Actual REU Agents . 184 6.8.4 Failed Reply 3: Practical Disjunctivism . 184 6.8.5 A Working Reply: Desires for Risk Profiles . 186 iii 6.8.6 A Working Reply: Evolved Heuristics, the Discovery of Risk, and Extrapolating Intuitions to Principles . 187 6.9 Conclusions . 189 6.9.1 On This Chapter . 189 6.9.2 Regarding the Overall Project . 190 7 Appendix 197 7.1 Introduction . 197 7.2 Chapter 3 . 198 7.2.1 Theorem 1: Linearity . 199 7.2.2 Theorem 2.1: That for any outcomes, !A and !B, that v(φ) is in compliance with the above axioms implies that a tradeoff rate ((1)-(3) for some r=s) exists between !A and !B...... 199 7.2.3 Theorem 2.2: That the tradeoff rate r=s between !A and !B is fixed. That is, if there exists a tradeoff rate x=y between !A and !B then x=y = r=s...................... 200 7.2.4 Theorem 3: That if l1 l2 then there exist two partitions Φl1 and Φl2, each with n members, such that for all i from 1 to n, v(φl1i) > v(φl2i)........................... 200 7.2.5 Continuity from the Definition of v(φ)............. 201 7.2.6 Independence from the Definition of v(φ)............ 201 7.3 Chapter 5 . 202 7.3.1 Mission to Mars . 202 7.3.2 Antibiotics . 203 7.3.3 Riflery Competition . 205 iv Chapter 1 Introduction 1.1 The Expected Utility Theorem and a Substan- tive Notion of Rationality This project is about the applicability of Expected Utility Theory to rational human decision making. By `rational' I do not mean representability by a complete and transitive preference ordering (although that may ultimately be a consequence of rationality). We make a common distinction between what we simply tend to do and what we would have done had we undergone an ideal reasoning process. For example, I might fail to accurately calculate the expected income from an investment, or I might be overcome by a desire for cake even though I would prefer to eat healthy. In cases like this there is a sense in which am not behaving ideally, that I am not as I ought to be|that I am getting in my own way. This sense of ideal decision making is what I mean by rationality. So another way of putting the goal of this project is to provide an interpretation of Expected Utility Theory whereby it explicates or represents the structure of deontic normative pressure|the pressure that fundamentally governs how human agents ought to behave. This description might not be perfectly clear baldly stated, so I want to make it a bit clearer by highlighting what exactly is involved in meeting this goal and why one would want to do it or expect it could be done. We will take Expected Utility Theory to refer, first and foremost, to a structure that is almost purely formal. This structure can be characterized by the Expected Utility Theorem, which is just the idea that if a ranking obeys certain axioms, then it will be possible to assign numbers called utilities to each object being ranked such that vector space mixtures of those objects have utility numbers according to the 1 following rule when N is the number of objects N (Utility of the mixture) = P (Utility of object n)∗(Weight of object n in the n=1 vector).
Recommended publications
  • Collective Action and Rational Choice Explanations
    Collective Action and Rational Choice Explanations Randall Harp University of Vermont 70 South Williams St, Burlington, VT 05401 [email protected] ABSTRACT In order for traditional rational choice theory (RCT) to explain the production of collective action, it must be able to distinguish between two behaviorally identical possibilities: one, that all of the agents in a group are each performing behaviors in pursuit of a set of individual actions; and two, that all of those agents are performing those behaviors in pursuit of a collective action. I argue that RCT does not have the resources necessary to distinguish between these two possibilities. RCT could distinguish between these possibilities if it were able to account for commitments. I argue that successful rational choice explanations of collective action appeal to commitments, and distinguish this way of explaining collective action from a general class of explanations called plural subject (or team reasoning) theories. I. INTRODUCTION One virtue of a good explanatory model is that it is capable of explaining why event � occurs rather than event �", for some domain of events � which is within the explanatory purview of the model. For certain domains of events, rational choice theory (RCT) is a good explanatory model in this respect. Given a set of actions �, where every � ∈ � is an individual action, RCT can be an important part of a good explanation for why agent � performed action �( rather than action �): namely, because � is rational, and because � judges that �( is more likely to produce a more highly-valued outcome than action �). As I argue in this paper, however, for another domain of events RCT is not a very good explanatory model.
    [Show full text]
  • Behavioral Inattention
    Behavioral Inattention Xavier Gabaix∗ December 4, 2017 Abstract Inattention is a central, unifying theme for much of behavioral economics. It per- meates such disparate fields as microeconomics, macroeconomics, finance, public eco- nomics, and industrial organization. It enables us to think in a rather consistent way about behavioral biases, speculate about their origins, and trace out their implications for market outcomes. This survey first discusses the most basic models of attention, using a fairly unified framework. Then, it discusses the methods used to measure attention, which present a number of challenges on which much progress has been done. It then examines the various theories of attention, both behavioral and more Bayesian. It finally discusses some applications. For instance, inattention offers a way to write a behavioral version of basic microeconomics, as in consumer theory, producer theory, and Arrow-Debreu. A last section is devoted to open questions in the attention literature. This chapter is a pedagogical guide to the literature on attention. Derivations are self-contained. ∗[email protected]. Draft chapter for the Handbook of Behavioral Economics, edited by Douglas Bernheim, Stefano DellaVigna and David Laibson. Comments solicited. Please email me if you see an important reference that's missing (including your own papers). I thank Vu Chau and Antonio Coppola for excellent research assistance. For comments and suggestions, I thank the editors of this Handbook, Hunt Allcott, and Gautam Rao. For sharing their with data, I thank Stefano DellaVigna, Josh Pollet, and Devin Pope. I thank the Sloan Foundation for support. 1 Contents 1 Motivation 5 2 A Simple Framework for Modeling Attention 6 2.1 An introduction: Anchoring and adjustment via Gaussian signal extraction7 2.2 Models with deterministic attention and action .
    [Show full text]
  • Can Resources Save Rationality? “Anti-Bayesian”
    Commentary/Lieder and Griffiths: Resource-rational analysis 31 want to draw inspiration from the theory of optimal feedback formalisms, and finding ways to decide which ones are more control, in which more precise control incurs greater metabolic applicable to particular settings. expenses at the organismal level (Todorov and Jordan 2002). The time scale over which resources are allocated.Attentioncanbe efficiently allocated in response to trial-to-trial variations in reward Can resources save rationality? or priority (Bays 2014;Sims2003;vandenBergandMa2018), in Anti-Bayesian updating in other words, on a timescale of seconds. By contrast, efficient neural “ ” codes are often assumed to be optimized with respect to natural sta- cognition and perception tistics (Barlow 1961;Laughlin1981), which vary on a much longer timescale. This distinction seems largely aligned with the one made under (1), with shorter timescales being associated with task Eric Mandelbauma, Isabel Wonc, Steven Grossb specificity. Resource-rational models are often non-committal and Chaz Firestonec about the timescales over which the optimization occurs. Recent work on efficient codes in nonstationary environments (Młynarski aBaruch College, CUNY Graduate Center, Department of Philosophy, New York, and Hermundstad 2018)holdspromiseforbridgingthedivide. NY10016; bDepartment of Philosophy, Johns Hopkins University, Baltimore, Learning to be resource-rational. A question that is not often MD 21218; and cDepartment of Psychological & Brain Sciences, Johns Hopkins asked is how resource-rational mechanisms are learned. The target University, Baltimore, MD 21218 article simply defines a constrained optimum and supposes that [email protected] “evolution, cognitive development, and life-long learning” have [email protected] somehow solved it, without saying how.
    [Show full text]
  • Economic Theory, Ideal Types, and Rationality
    Lansana Keita Economic Theory, Ideal Types, and Rationality Abstract: Contemporary economic theory is generally regarded as a scien­ tific or at least potentially so. The replacing of the cardinal theory of utility measurement by the ordinal theory was supposed to prepare the groundwork for economics as a genuine science. But in adopting the ordinal approach, theorists saw fit to anchor ordinal theory to axioms of choice founded on principles of rational behavior. Behavior according to these axioms was embodied in the ideal type model of rational economic man. This model served the basis for scientific explanation of the choices made by actual economic agents. I argue though that the postulate of rationality is a normative principle and that this compromises the scientific pre­ tensions of economic theory. Yet the theorist must rely on this principle to formulate predictive and explanatory theories. This raises questions as to whether it is possible that economic theory satisfy the same kind of scientific criteria set down for research in the natural sciences. I. It is generally assumed that of all the social sciences, econom­ ics is the most promising candidate for acceptance as a science. Theories in economics conform to the formal requirements de­ manded of theories in natural science in the sense that they possess basic postulates, axioms and laws whose function is to describe at a fundamental level some segment of the empir­ ical world particular to the discipline itself. Predictive and explanatory theories are then constructed from these posited axioms and postulates. For example, microeconomic theory which is founded on a set of axioms of choice purports to predict and explain the behavior of the consumer and that of the entre­ preneur.
    [Show full text]
  • Behavioural Economics for Investors
    Behavioural economics for investors Guide CNMV Guide 1 Behavioural economics for investors Table of contents 3 5 Introduction Concept and basic foundations of behavioural economics 7 16 The decision-making process Phases of investment decision making 19 21 Mitigation of cognitive biases Mitigation strategies for that affect the investment cognitive biases decision process 31 Final recommendations CNMV Guide 2 Behavioural economics for investors Behavioural economics for investors I. Introduction Since the beginning, traditional economic theory has addressed the way in which people make their investment, saving and spending decisions. It is also based on the assumptions that people know what they want, use the available information to achieve their objectives and fully understand the risks and rewards of their financial decisions. In recent years, however, numerous discoveries from disciplines such as psychology, neurology or neurophysiology about how the human brain works have revealed that this is not the case. People often do not know what their preferences are, misuse available information and do not adequately understand the risks they take on. Behavioural economics studies real human behaviours in a real world to develop more precise and practical economic models than those provided by conventional economic theory. Behavioural economics takes into account those subtle and not-so-subtle factors that underlie financial decisions. CNMV Guide 3 Behavioural economics for investors This discipline is an attempt to analyse the patterns and biases of people’s behaviour and use these as a base to predict behaviour models. Research conducted in the field of behavioural economics shows that most of these patterns or biases are predictable.
    [Show full text]
  • A Model of Boundedly Rational “Neuro” Agents
    A Model of Boundedly Rational “Neuro” Agents Kfir Eliaz (corressponding author) Tel Aviv University and University of Michigan [email protected] Ariel Rubinstein Tel Aviv University and New York University [email protected] Abstract. We propose a simple model in which a boundedly rational agent observes not only the choices made by others, but also some information about the process that led them to those choices. We consider two cases: In the first, an agent observes whether another agent has compared the alternatives before making his choice. In the second, he also observes whether the decision was hasty. It is shown that the probability of making a mistake is higher in the second case and that the existence of these non-standard “neuro” observations systematically biases the equilibrium distribution of choices. Keywords: Bounded Rationality, Neuroeconomics. The second author acknowledges financial support from ERC grant 269143. We would like to thank Zvi Artstein, Hadar Binsky, Tom Cunningham and especially Neil Thakral for their assistance. 1 1. Introduction The standard method of modeling a decision maker in economics utilizes the concept of a choice function, which assigns a single alternative (“the choice”) to every subset of available alternatives (“a choice problem”) in some relevant domain. Thus, CA a means that the agent chooses the alternative a from the set A. Recent advances in choice theory have extended the traditional definition of a choice problem to include additional information, referred to as a frame. A frame represents the circumstances in which the choice problem was encountered, circumstances that do not affect the preferences of the decision maker, but may nevertheless affect his choice.
    [Show full text]
  • Rational Choice Theory: Toward a Psychological, Social, and Material Contextualization of Human Choice Behavior
    Theoretical Economics Letters, 2016, 6, 195-207 Published Online April 2016 in SciRes. http://www.scirp.org/journal/tel http://dx.doi.org/10.4236/tel.2016.62022 Rational Choice Theory: Toward a Psychological, Social, and Material Contextualization of Human Choice Behavior Tom Burns1,2, Ewa Roszkowska3 1Department of Sociology, University of Uppsala, Uppsala, Sweden 2Lisbon University Institute/CIES-ISCTE, Lisbon, Portugal 3Faculty of Economy and Management, University of Bialystok, Bialystok, Poland Received 4 March 2016; accepted 11 April 2016; published 14 April 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract The main purpose of this paper is to provide a brief overview of the rational choice approach, fol- lowed by an identification of several of the major criticisms of RCT and its conceptual and empiri- cal limitations. It goes on to present a few key initiatives to develop alternative, more realistic ap- proaches which transcend some of the limitations of Rational Choice Theory (RCT). Finally, the ar- ticle presents a few concluding reflections and a table comparing similarities and differences be- tween the mainstream RCT and some of the initial components of an emerging choice theory. Our method has been to conduct a brief selective review of rational choice theoretical formulations and applications as well as a review of diverse critical literature in the social sciences where ra- tional choice has been systematically criticized. We have focused on a number of leading contri- butors (among others, several Nobel Prize Recipients in economics, who have addressed rational choice issues).
    [Show full text]
  • Resource-Rational Analysis: Understanding Human Cognition As the Optimal Use of Cambridge.Org/Bbs Limited Computational Resources
    Behavioral and Brain Sciences Resource-rational analysis: Understanding human cognition as the optimal use of cambridge.org/bbs limited computational resources a b Target Article Falk Lieder and Thomas L. Griffiths a b Cite this article: Lieder F, Griffiths TL. (2020) Max Planck Institute for Intelligent Systems, Tübingen 72076, Germany and Departments of Psychology and Resource-rational analysis: Understanding Computer Science, Princeton University, Princeton, New Jersey 08544, USA human cognition as the optimal use of limited [email protected] https://re.is.mpg.de computational resources. Behavioral and Brain [email protected] https://psych.princeton.edu/person/tom-griffiths Sciences 43,e1:1–60. doi:10.1017/ S0140525X1900061X Abstract Target Article Accepted: 18 January 2019 Modeling human cognition is challenging because there are infinitely many mechanisms that Target Article Manuscript Online: 4 February can generate any given observation. Some researchers address this by constraining the hypoth- 2019 Commentaries Accepted: 22 May 2019 esis space through assumptions about what the human mind can and cannot do, while others constrain it through principles of rationality and adaptation. Recent work in economics, psy- Keywords: chology, neuroscience, and linguistics has begun to integrate both approaches by augmenting bounded rationality; cognitive biases; rational models with cognitive constraints, incorporating rational principles into cognitive cognitive mechanisms; cognitive modeling; representations; resource rationality
    [Show full text]
  • Rationality Vs Reality: the Dissonance Between Economic Models and Experimental Data Piotr Broda College of the Holy Cross, [email protected]
    College of the Holy Cross CrossWorks Honors Theses Honors Projects 4-2017 Rationality vs Reality: The Dissonance between Economic Models and Experimental Data Piotr Broda College of the Holy Cross, [email protected] Follow this and additional works at: https://crossworks.holycross.edu/honors Part of the Behavioral Economics Commons, and the Psychology Commons Recommended Citation Broda, Piotr, "Rationality vs Reality: The Dissonance between Economic Models and Experimental Data" (2017). Honors Theses. 13. https://crossworks.holycross.edu/honors/13 This Thesis is brought to you for free and open access by the Honors Projects at CrossWorks. It has been accepted for inclusion in Honors Theses by an authorized administrator of CrossWorks. Rationality vs Reality: ​ ​ ​ ​ The Dissonance between Economic Models and Experimental Data ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Piotr Broda ​ ​ Honors Thesis ​ ​ College Honors Program ​ ​ ​ ​ Advisor: Professor Mark Hallahan ​ ​ ​ ​ ​ ​ Reader: Professor Kolleen Rask ​ ​ ​ ​ ​ ​ Broda 1 ​ ​ Abstract Rationality was not embedded in economic theory from its onset. In fact, the discipline started with a more holistic approach to human nature, incorporating notions of empathy and altruism. It was not until economics progressed and became more concerned with mathematical models and abstract theories that rationality entered the fray. Game theory, developed in the 1940s, established several axioms about human behavior that presented people as perfectly rational economic agents. It was not until behavioral researchers started investigating the question of rationality that the economic worldview was critically challenged. This research was the driving force in the development of behavioral economics. In particular, ultimatum game experiments demonstrate systematic deviations from rational decision-making. As more and more research has emerged documenting how observed human behavior challenges the predictions of neoclassical economic theory, mainstream economics has begun incorporating these ideas.
    [Show full text]
  • The Role of Cognitive Biases in AI-Assisted Decision-Making
    Deciding Fast and Slow: The Role of Cognitive Biases in AI-assisted Decision-making Charvi Rastogi1;2, Yunfeng Zhang2, Dennis Wei2, Kush R. Varshney2 Amit Dhurandhar2, Richard Tomsett3 1Carnegie Mellon University, 2IBM Research – T. J. Watson Research Center, 3IBM Research – Europe Abstract and fraud monitoring. Specifically, judges use risk assess- ments to determine criminal sentences, banks use models Several strands of research have aimed to bridge the gap to manage credit risk, and doctors use image-based ML between artificial intelligence (AI) and human decision- predictions for diagnosis, to list a few. makers in AI-assisted decision-making, where humans are The emergence of AI-assisted decision-making in soci- the consumers of AI model predictions and the ultimate ety has raised questions about whether and when we can decision-makers in high-stakes applications. However, trust the AI model’s decisions. This has spurred research people’s perception and understanding is often distorted in crucial directions on various aspects of the human- by their cognitive biases, like confirmation bias, anchor- AI interaction, such as in interpretable, explainable and ing bias, availability bias, to name a few. In this work, trustworthy machine learning. One of the main objec- we use knowledge from the field of cognitive science to tives of this research is to bridge the “communication gap” account for cognitive biases in the human-AI collabora- between humans and AI. Research in interpretability and tive decision-making system and mitigate their negative explainability aims to develop AI systems that can effec- effects. To this end, we mathematically model cognitive tively communicate the reasoning and justification for its biases and provide a general framework through which decisions to humans.
    [Show full text]
  • BECO: Behavioral Economics of Cyberspace Operations by Victoria Fineberg
    BECO: Behavioral Economics of Cyberspace Operations By Victoria Fineberg his paper proposes a risk-management framework Behavioral Economics of Cyberspace Operations (BECO) for hardening Cyberspace Operations (CO) with T the Behavioral Economics (BE) models of cognitive biases in judgment and decision- making. In applying BE to CO, BECO augments a common assumption of a rational cyber warrior with more realistic expressions of human behavior in cyberspace. While the current development of the cyber workforce emphasizes education and training, BECO addresses typical conditions under which rational decision-making fails and knowledge is neglected. The BECO framework encompasses a full set of cyber actors, including attackers, defenders, and users on the friendly and adversary sides, across the full CO spectrum in space and time, and offers a structured approach to the cognitive bias mitigation. Bringing BE into CO focused extension of the Behavioral Economics of Cybersecurity This paper proposes enhancements of Cyberspace Operations (BEC) framework (Fineberg, 2014) that augments the National (CO) by adapting Behavioral Economics (BE) models in a novel Institute of Standards and Technology’s Risk Management framework Behavioral Economics of Cyberspace Operations Framework (RMF) of information security (NIST SP 800-39, (BECO). The essence of BECO is the identification of cognitive 2011) by introducing a new class of vulnerabilities corresponding biases of CO actors, mitigation of biases on the friendly side, to persistent human biases. BECO takes it further by applying and exploitation of biases on the adversary side. BECO is a CO- the BEC risk management approach to cyber operations and CO-specific cyberactors. Figure 1 depicts the progression from BE to BEC and BECO and the concepts that link them.
    [Show full text]
  • On the Problematic State of Economic 'Science'
    Africa Development, Volume XXXIX, No. 1, 2014, pp. 93-124 © Council for the Development of Social Science Research in Africa, 2014 (ISSN 0850-3907) On the Problematic State of Economic ‘Science’ Lansana Keita* Abstract Economics is arguably the most important social science on account of its fundamental and valuational role in human decision-making. Accordingly, it is a fit discipline for probing analysis. In its present dominant configuration as ‘neoclassical economics’, it presents itself as a species of engineering thereby ignoring its evolutionary history. An examination of such will reveal that economics was and is most cognitively comprehensible in its guise as ‘political economy’. Economics’ transition to ‘economic science’ can be best explained by the mathematisation of the empirical world by empirical science and an ideologically derived attempt to evade the serious sociological and political implications of macroscopic political economy as was evidenced in the works of the classical political economists including Marx. The new approach was founded on an abstract and individualised decision-making with little relevance to the real world. Thus the important issues concerning human welfare, equity and the decisive role that politics plays in economic decision-making were all regarded as irrelevant to neoclassical economic theory. A now-dominant neoclassical economic theory means that it has become standard academic fare in African universities. Given the ideological role that neoclassical economics plays in the ongoing pillage du tiers monde, new and revived counter-theses are necessary for more effective economic analysis. Resumé L’économie est sans doute la plus importante des branches de la science sociale en raison de son rôle fondamental et de son importance dans la prise de décision humaine.
    [Show full text]