Introduction to String Theory

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to String Theory Introduction to String Theory Angel M. Uranga Contents I Introductory Overview 1 1 Motivation 3 1.1 Standard Model and beyond . 3 1.1.1 Our Model of Elementary Particles and Interactions . 3 1.1.2 Theoretical questions raised by this description . 5 1.1.3 Some proposals for physics beyond the Standard Model 7 1.1.4 String theory as a theory beyond the Standard Model . 13 2 Overview of string theory in perturbation theory 15 2.1 Basic ideas . 15 2.1.1 What are strings? . 15 2.1.2 The worldsheet . 17 2.1.3 String interactions . 19 2.1.4 Critical dimension . 23 2.1.5 Overview of closed bosonic string theory . 24 2.1.6 String theory in curved spaces . 26 2.1.7 Compactification . 31 2.2 Superstrings and Heterotic string phenomenology . 34 2.2.1 Superstrings . 34 2.2.2 Heterotic string phenomenology . 39 2.2.3 The picture of our world as a heterotic string compact- ification . 40 2.2.4 Phenomenological features and comparison with other proposals beyond the standard model . 42 3 Overview of string theory beyond perturbation theory 45 3.1 The problem . 45 3.2 Non-perturbative states in string theory . 47 i ii CONTENTS 3.2.1 Non-perturbative states in field theory . 47 3.2.2 Non-perturbative p-brane states in string theory . 52 3.2.3 Duality in string theory . 55 3.3 D-branes . 62 3.3.1 What are D-branes . 62 3.3.2 Worldvolume theory . 64 3.3.3 D-branes in string theory . 66 3.3.4 D-branes as probes of spacetime . 69 3.3.5 D-branes and gauge field theories . 71 3.4 Our world as a brane-world model . 72 4 Quantization of the closed bosonic string 77 4.1 Worldsheet action . 77 4.1.1 The Nambu-Goto action . 78 4.1.2 The Polyakov action . 78 4.1.3 Symmetries of Polyakov action . 79 4.2 Light-cone quantization . 80 4.2.1 Light-cone gauge fixing . 80 4.2.2 Gauge-fixed Polyakov action, Hamiltonian . 83 4.2.3 Oscillator expansions . 85 4.2.4 Light spectrum . 88 4.2.5 Lessons . 89 4.2.6 Final comments . 90 5 Modular invariance 91 5.1 Generalities . 91 5.2 Worldsheet coordinatization in light-cone gauge . 92 5.3 The computation . 93 5.3.1 Structure of the amplitude in operator formalism . 93 5.3.2 The momentum piece . 95 5.3.3 The oscillator piece . 95 5.4 Modular invariance . 96 5.4.1 Modular group of T2 . 96 5.4.2 Modular invariance of the partition function . 99 5.4.3 UV behaviour of the string amplitude . 100 CONTENTS iii 6 Toroidal compactification of closed bosonic string theory 105 6.1 Motivation . 105 6.2 Toroidal compactification in field theory . 106 6.3 Toroidal compactification in string theory . 110 6.3.1 Quantization and spectrum . 111 6.3.2 α0 effects I: Enhanced gauge symmetries . 117 6.3.3 α0 effects II: T-duality . 120 6.3.4 Additional comments . 123 7 Type II Superstrings 125 7.1 Superstrings . 125 7.1.1 Fermions on the worldsheet . 125 7.1.2 Boundary conditions . 127 7.1.3 Spectrum of states for NS and R fermions . 128 7.1.4 Modular invariance . 133 7.1.5 Type II superstring partition function . 135 7.1.6 GSO projection . 135 7.1.7 Light spectrum . 136 7.2 Type 0 superstrings . 140 7.3 Bosonization∗ . 141 8 Heterotic superstrings 145 8.1 Heterotic superstrings in bosonic formulation . 145 8.1.1 Heteroticity . 145 8.1.2 Hamiltonian quantization . 146 8.1.3 Modular invariance and lattices . 148 8.1.4 Spectrum . 151 8.2 Heterotic strings in the fermionic formulation . 154 8.3 Spacetime Non-susy heterotic string theories . 158 8.4 A few words on anomalies . 159 8.4.1 What is an anomaly? . 159 8.4.2 Anomalies in string theory and Green-Schwarz mech- anism . 162 9 Open strings 165 9.1 Generalities . 165 9.2 Open bosonic string . 167 9.2.1 Light-cone gauge . 167 iv CONTENTS 9.2.2 Boundary conditions . 168 9.2.3 Hamiltonian . 169 9.2.4 Oscillator expansions . 170 9.2.5 Spectrum . 171 9.2.6 Open-closed duality . 172 9.3 Chan-Paton factors . 175 9.4 Open superstrings . 177 9.4.1 Hamiltonian quantization . 177 9.4.2 Spectrum for NS and R sectors . 179 9.4.3 GSO projection . 180 9.4.4 Open-closed duality . 180 9.4.5 RR tadpole cancellation condition . 181 10 Type I superstring 185 10.1 Unoriented closed strings . 185 10.1.1 Generalities . 185 10.1.2 Unoriented closed bosonic string . 187 10.1.3 Unoriented closed superstring theory IIB/Ω . 188 10.2 Unoriented open strings . 191 10.2.1 Action of Ω on open string sectors . 191 10.2.2 Spectrum . 192 10.3 Type I superstring . 193 10.3.1 Computation of RR tadpoles . 193 10.4 Final comments . 200 11 Toroidal compactification of superstrings 203 11.1 Motivation . 203 11.2 Type II superstrings . 203 11.2.1 Circle compactification . 203 11.2.2 T-duality for type II theories . 208 11.2.3 Compactification of several dimensions . 210 11.3 Heterotic superstrings . 215 11.3.1 Circle compactification without Wilson lines . 215 11.3.2 Compactification with Wilson lines . 218 11.3.3 Field theory description of Wilson lines . 218 11.3.4 String theory description . 221 11.4 Toroidal compactification of type I superstring . 226 11.4.1 Circle compactification without Wilson lines . 227 CONTENTS v 11.4.2 T-duality . 229 11.4.3 Toroidal compactification and T-duality in type I with Wilson lines . 234 11.5 Final comments . 238 12 Calabi-Yau compactification of superstrings. Heterotic string phenomenology 239 12.1 Motivation . 239 12.1.1 Supersymmetry and holonomy . 240 12.1.2 Calabi-Yau manifolds . 242 12.2 Type II string theories on Calabi-Yau spaces . 246 12.2.1 Supersymmetry . 246 12.2.2 KK reduction of p-forms . 247 12.2.3 Spectrum . 248 12.2.4 Mirror symmetry . 249 12.3 Compactification of heterotic strings on Calabi-Yau threefolds 250 12.3.1 General considerations . 250 12.3.2 Spectrum . 253 12.3.3 Phenomenological features of these models . 257 13 Orbifold compactification 261 13.1 Introduction . 261 13.1.1 Motivation . 261 13.1.2 The geometry of orbifolds . 262 13.1.3 Generalities of string theory on orbifolds . 265 6 13.2 Type II string theory on T =Z3 . 268 13.2.1 Geometric interpretation . 274 6 13.3 Heterotic string compactification on T =Z3 . 275 13.3.1 Gauge bundles for orbifolds . 275 13.3.2 Computation of the spectrum . 276 13.3.3 Final comments . 279 14 Non-perturbative states in string theory 281 14.1 Motivation . 281 14.2 p-branes in string theory . 281 14.2.1 p-brane solutions . 283 14.2.2 Dirac charge quantization condition . 287 14.2.3 BPS property . 288 vi CONTENTS 14.3 Duality for type II string theories . 289 14.3.1 Type IIB SL(2; Z) duality . 290 14.3.2 Toroidal compactification and U-duality . 291 14.4 Final comments . 294 .1 Some similar question in the simpler context of field theory . 295 .1.1 States in field theory . 295 .1.2 BPS bounds . ..
Recommended publications
  • String Theory in Magnetic Monopole Backgrounds
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server EFI-98-58, ILL-(TH)-98-06 hep-th/9812027 String Theory in Magnetic Monopole Backgrounds David Kutasov1,FinnLarsen1, and Robert G. Leigh2 1Enrico Fermi Institute, University of Chicago, 5640 S. Ellis Av., Chicago, IL 60637 2Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801 We discuss string propagation in the near-horizon geometry generated by Neveu-Schwarz fivebranes, Kaluza-Klein monopoles and fundamental strings. When the fivebranes and KK monopoles are wrapped around a compact four-manifold , the geometry is AdS S3/ZZ and the M 3 × N ×M spacetime dynamics is expected to correspond to a local two dimensional conformal field theory. We determine the moduli space of spacetime CFT’s, study the spectrum of the theory and compare the chiral primary operators obtained in string theory to supergravity expectations. 12/98 1. Introduction It is currently believed that many (perhaps all) vacua of string theory have the prop- erty that their spacetime dynamics can be alternatively described by a theory without gravity [1,2,3,4]. This theory is in general non-local, but in certain special cases it is ex- pected to become a local quantum field theory (QFT). It is surprising that string dynamics can be equivalent to a local QFT. A better understanding of this equivalence would have numerous applications to strongly coupled gauge theory, black hole physics and a non- perturbative formulation of string theory. An important class of examples for which string dynamics is described by local QFT is string propagation on manifolds that include an anti-de-Sitter spacetime AdSp+1[3,5,6].
    [Show full text]
  • TASI Lectures on String Compactification, Model Building
    CERN-PH-TH/2005-205 IFT-UAM/CSIC-05-044 TASI lectures on String Compactification, Model Building, and Fluxes Angel M. Uranga TH Unit, CERN, CH-1211 Geneve 23, Switzerland Instituto de F´ısica Te´orica, C-XVI Universidad Aut´onoma de Madrid Cantoblanco, 28049 Madrid, Spain angel.uranga@cern,ch We review the construction of chiral four-dimensional compactifications of string the- ory with different systems of D-branes, including type IIA intersecting D6-branes and type IIB magnetised D-branes. Such models lead to four-dimensional theories with non-abelian gauge interactions and charged chiral fermions. We discuss the application of these techniques to building of models with spectrum as close as possible to the Stan- dard Model, and review their main phenomenological properties. We finally describe how to implement the tecniques to construct these models in flux compactifications, leading to models with realistic gauge sectors, moduli stabilization and supersymmetry breaking soft terms. Lecture 1. Model building in IIA: Intersecting brane worlds 1 Introduction String theory has the remarkable property that it provides a description of gauge and gravitational interactions in a unified framework consistently at the quantum level. It is this general feature (beyond other beautiful properties of particular string models) that makes this theory interesting as a possible candidate to unify our description of the different particles and interactions in Nature. Now if string theory is indeed realized in Nature, it should be able to lead not just to `gauge interactions' in general, but rather to gauge sectors as rich and intricate as the gauge theory we know as the Standard Model of Particle Physics.
    [Show full text]
  • Lectures on D-Branes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server CPHT/CL-615-0698 hep-th/9806199 Lectures on D-branes Constantin P. Bachas1 Centre de Physique Th´eorique, Ecole Polytechnique 91128 Palaiseau, FRANCE [email protected] ABSTRACT This is an introduction to the physics of D-branes. Topics cov- ered include Polchinski’s original calculation, a critical assessment of some duality checks, D-brane scattering, and effective worldvol- ume actions. Based on lectures given in 1997 at the Isaac Newton Institute, Cambridge, at the Trieste Spring School on String The- ory, and at the 31rst International Symposium Ahrenshoop in Buckow. June 1998 1Address after Sept. 1: Laboratoire de Physique Th´eorique, Ecole Normale Sup´erieure, 24 rue Lhomond, 75231 Paris, FRANCE, email : [email protected] Lectures on D-branes Constantin Bachas 1 Foreword Referring in his ‘Republic’ to stereography – the study of solid forms – Plato was saying : ... for even now, neglected and curtailed as it is, not only by the many but even by professed students, who can suggest no use for it, never- theless in the face of all these obstacles it makes progress on account of its elegance, and it would not be astonishing if it were unravelled. 2 Two and a half millenia later, much of this could have been said for string theory. The subject has progressed over the years by leaps and bounds, despite periods of neglect and (understandable) criticism for lack of direct experimental in- put. To be sure, the construction and key ingredients of the theory – gravity, gauge invariance, chirality – have a firm empirical basis, yet what has often catalyzed progress is the power and elegance of the underlying ideas, which look (at least a posteriori) inevitable.
    [Show full text]
  • Pitp Lectures
    MIFPA-10-34 PiTP Lectures Katrin Becker1 Department of Physics, Texas A&M University, College Station, TX 77843, USA [email protected] Contents 1 Introduction 2 2 String duality 3 2.1 T-duality and closed bosonic strings .................... 3 2.2 T-duality and open strings ......................... 4 2.3 Buscher rules ................................ 5 3 Low-energy effective actions 5 3.1 Type II theories ............................... 5 3.1.1 Massless bosons ........................... 6 3.1.2 Charges of D-branes ........................ 7 3.1.3 T-duality for type II theories .................... 7 3.1.4 Low-energy effective actions .................... 8 3.2 M-theory ................................... 8 3.2.1 2-derivative action ......................... 8 3.2.2 8-derivative action ......................... 9 3.3 Type IIB and F-theory ........................... 9 3.4 Type I .................................... 13 3.5 SO(32) heterotic string ........................... 13 4 Compactification and moduli 14 4.1 The torus .................................. 14 4.2 Calabi-Yau 3-folds ............................. 16 5 M-theory compactified on Calabi-Yau 4-folds 17 5.1 The supersymmetric flux background ................... 18 5.2 The warp factor ............................... 18 5.3 SUSY breaking solutions .......................... 19 1 These are two lectures dealing with supersymmetry (SUSY) for branes and strings. These lectures are mainly based on ref. [1] which the reader should consult for original references and additional discussions. 1 Introduction To make contact between superstring theory and the real world we have to understand the vacua of the theory. Of particular interest for vacuum construction are, on the one hand, D-branes. These are hyper-planes on which open strings can end. On the world-volume of coincident D-branes, non-abelian gauge fields can exist.
    [Show full text]
  • String Theory University of Cambridge Part III Mathematical Tripos
    Preprint typeset in JHEP style - HYPER VERSION January 2009 String Theory University of Cambridge Part III Mathematical Tripos Dr David Tong Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 OWA, UK http://www.damtp.cam.ac.uk/user/tong/string.html [email protected] –1– Recommended Books and Resources J. Polchinski, String Theory • This two volume work is the standard introduction to the subject. Our lectures will more or less follow the path laid down in volume one covering the bosonic string. The book contains explanations and descriptions of many details that have been deliberately (and, I suspect, at times inadvertently) swept under a very large rug in these lectures. Volume two covers the superstring. M. Green, J. Schwarz and E. Witten, Superstring Theory • Another two volume set. It is now over 20 years old and takes a slightly old-fashioned route through the subject, with no explicit mention of conformal field theory. How- ever, it does contain much good material and the explanations are uniformly excellent. Volume one is most relevant for these lectures. B. Zwiebach, A First Course in String Theory • This book grew out of a course given to undergraduates who had no previous exposure to general relativity or quantum field theory. It has wonderful pedagogical discussions of the basics of lightcone quantization. More surprisingly, it also has some very clear descriptions of several advanced topics, even though it misses out all the bits in between. P. Di Francesco, P. Mathieu and D. S´en´echal, Conformal Field Theory • This big yellow book is a↵ectionately known as the yellow pages.
    [Show full text]
  • Flux Backgrounds, Ads/CFT and Generalized Geometry Praxitelis Ntokos
    Flux backgrounds, AdS/CFT and Generalized Geometry Praxitelis Ntokos To cite this version: Praxitelis Ntokos. Flux backgrounds, AdS/CFT and Generalized Geometry. Physics [physics]. Uni- versité Pierre et Marie Curie - Paris VI, 2016. English. NNT : 2016PA066206. tel-01620214 HAL Id: tel-01620214 https://tel.archives-ouvertes.fr/tel-01620214 Submitted on 20 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Spécialité : Physique École doctorale : « Physique en Île-de-France » réalisée à l’Institut de Physique Thèorique CEA/Saclay présentée par Praxitelis NTOKOS pour obtenir le grade de : DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Sujet de la thèse : Flux backgrounds, AdS/CFT and Generalized Geometry soutenue le 23 septembre 2016 devant le jury composé de : M. Ignatios ANTONIADIS Examinateur M. Stephano GIUSTO Rapporteur Mme Mariana GRAÑA Directeur de thèse M. Alessandro TOMASIELLO Rapporteur Abstract: The search for string theory vacuum solutions with non-trivial fluxes is of particular importance for the construction of models relevant for particle physics phenomenology. In the framework of the AdS/CFT correspondence, four-dimensional gauge theories which can be considered to descend from N = 4 SYM are dual to ten- dimensional field configurations with geometries having an asymptotically AdS5 factor.
    [Show full text]
  • Holography and Compactification
    PUPT-1872 ITFA-99-14 Holography and Compactification Herman Verlinde Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 and Institute for Theoretical Physics, University of Amsterdam Valckenierstraat 65, 1018 XE Amsterdam Abstract arXiv:hep-th/9906182v1 24 Jun 1999 Following a recent suggestion by Randall and Sundrum, we consider string compactification scenarios in which a compact slice of AdS-space arises as a subspace of the compactifica- tion manifold. A specific example is provided by the type II orientifold equivalent to type I theory on (orbifolds of) T 6, upon taking into account the gravitational backreaction of the D3-branes localized inside the T 6. The conformal factor of the four-dimensional metric depends exponentially on one of the compact directions, which, via the holographic corre- spondence, becomes identified with the renormalization group scale in the uncompactified world. This set-up can be viewed as a generalization of the AdS/CFT correspondence to boundary theories that include gravitational dynamics. A striking consequence is that, in this scenario, the fundamental Planck size string and the large N QCD string appear as (two different wavefunctions of) one and the same object. 1 Introduction In string theory, when considered as a framework for unifying gravity and quantum mechan- ics, the fundamental strings are naturally thought of as Planck size objects. At much lower energies, such as the typical weak or strong interaction scales, the strings have lost all their internal structure and behave just as ordinary point-particles. The physics in this regime is therefore accurately described in terms of ordinary local quantum field theory, decoupled from the planckian realm of all string and quantum gravitational physics.
    [Show full text]
  • Introduction to String Theory
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Introduction to String Theory Thomas Mohaupt Friedrich-Schiller Universit¨at Jena, Max-Wien-Platz 1, D-07743 Jena, Germany Abstract. We give a pedagogical introduction to string theory, D-branes and p-brane solutions. 1 Introductory remarks These notes are based on lectures given at the 271-th WE-Haereus-Seminar ‘Aspects of Quantum Gravity’. Their aim is to give an introduction to string theory for students and interested researches. No previous knowledge of string theory is assumed. The focus is on gravitational aspects and we explain in some detail how gravity is described in string theory in terms of the graviton excitation of the string and through background gravitational fields. We include Dirichlet boundary conditions and D-branes from the beginning and devote one section to p-brane solutions and their relation to D-branes. In the final section we briefly indicate how string theory fits into the larger picture of M-theory and mention some of the more recent developments, like brane world scenarios. The WE-Haereus-Seminar ‘Aspects of Quantum Gravity’ covered both main approaches to quantum gravity: string theory and canonical quantum gravity. Both are complementary in many respects. While the canonical approach stresses background independence and provides a non-perturbative framework, the cor- nerstone of string theory still is perturbation theory in a fixed background ge- ometry. Another difference is that in the canonical approach gravity and other interactions are independent from each other, while string theory automatically is a unified theory of gravity, other interactions and matter.
    [Show full text]
  • Classical String Theory
    PROSEMINAR IN THEORETICAL PHYSICS Classical String Theory ETH ZÜRICH APRIL 28, 2013 written by: DAVID REUTTER Tutor: DR.KEWANG JIN Abstract The following report is based on my talk about classical string theory given at April 15, 2013 in the course of the proseminar ’conformal field theory and string theory’. In this report a short historical and theoretical introduction to string theory is given. This is fol- lowed by a discussion of the point particle action, leading to the postulation of the Nambu-Goto and Polyakov action for the classical bosonic string. The equations of motion from these actions are derived, simplified and generally solved. Subsequently the Virasoro modes appearing in the solution are discussed and their algebra under the Poisson bracket is examined. 1 Contents 1 Introduction 3 2 The Relativistic String4 2.1 The Action of a Classical Point Particle..........................4 2.2 The General p-Brane Action................................6 2.3 The Nambu Goto Action..................................7 2.4 The Polyakov Action....................................9 2.5 Symmetries of the Action.................................. 11 3 Wave Equation and Solutions 13 3.1 Conformal Gauge...................................... 13 3.2 Equations of Motion and Boundary Terms......................... 14 3.3 Light Cone Coordinates................................... 15 3.4 General Solution and Oscillator Expansion......................... 16 3.5 The Virasoro Constraints.................................. 19 3.6 The Witt Algebra in Classical String Theory........................ 22 2 1 Introduction In 1969 the physicists Yoichiro Nambu, Holger Bech Nielsen and Leonard Susskind proposed a model for the strong interaction between quarks, in which the quarks were connected by one-dimensional strings holding them together. However, this model - known as string theory - did not really succeded in de- scribing the interaction.
    [Show full text]
  • Arxiv:Hep-Th/0110227V1 24 Oct 2001 Elivrac Fpbae.Orcnieain a Eextended Be Can Considerations Branes
    REMARKS ON WEYL INVARIANT P-BRANES AND Dp-BRANES J. A. Nieto∗ Facultad de Ciencias F´ısico-Matem´aticas de la Universidad Aut´onoma de Sinaloa, C.P. 80010, Culiac´an Sinaloa, M´exico Abstract A mechanism to find different Weyl invariant p-branes and Dp-branes actions is ex- plained. Our procedure clarifies the Weyl invariance for such systems. Besides, by consid- ering gravity-dilaton effective action in higher dimensions we also derive a Weyl invariant action for p-branes. We argue that this derivation provides a geometrical scenario for the arXiv:hep-th/0110227v1 24 Oct 2001 Weyl invariance of p-branes. Our considerations can be extended to the case of super-p- branes. Pacs numbers: 11.10.Kk, 04.50.+h, 12.60.-i October/2001 ∗[email protected] 1 1.- INTRODUCTION It is known that, in string theory, the Weyl invariance of the Polyakov action plays a central role [1]. In fact, in string theory subjects such as moduli space, Teichmuler space and critical dimensions, among many others, are consequences of the local diff x Weyl symmetry in the partition function associated to the Polyakov action. In the early eighties there was a general believe that the Weyl invariance was the key symmetry to distinguish string theory from other p-branes. However, in 1986 it was noticed that such an invariance may be also implemented to any p-brane and in particular to the 3-brane [2]. The formal relation between the Weyl invariance and p-branes was established two years later independently by a number of authors [3].
    [Show full text]
  • University of Groningen Seven-Branes and Instantons In
    University of Groningen Seven-branes and instantons in type IIB supergravity Hartong, Jelle IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2008 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Hartong, J. (2008). Seven-branes and instantons in type IIB supergravity. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 27-09-2021 Introduction The subject of this thesis will be introduced. The studies performed in the coming chapters attempt to improve on the understanding of certain aspects of string theory. Here, I will give a personal point of view on the subject of string theory after which I will briefly sketch the most elementary properties of string theory that allow me to further introduce the subject of this thesis.
    [Show full text]
  • Low Energy Physics from Type IIB String Theory
    Katholieke Universiteit Leuven Faculteit der Wetenschapp en Instituut vo or Theoretische Fysica Low energy physics from typ e IIB string theory Frederik Denef Promotor Prof Dr W Tro ost Pro efschrift ingediend voor het b ehalen van de graad van Do ctor in de Wetenschapp en Deze thesis kwam tot stand met de nanciele steun van het Fonds voor Wetenschapp elijk Onderzo ek Een geest een en al logica is als een mes dat een en al lemmet is Het doet de hand die het gebruikt bloeden Tagore De wijze waarop het eten wordt opgediend is minstens even belangrijk als de wijze waarop het wordt toebereid Ons Kookboek KVLV Vo orwo ord Een thesis schrijf je niet alleen Ik b en daarom iedereen die de vo orbije zes entwintig jaar heeft bijgedragen tot het tot stand komen van dit werk bijzonder dankbaar In de eerste plaats denk ik daarbij natuurlijk aan mijn promotor Walter Tro ost voor het op gang brengen en aanwakkeren van mijn interesse in string theorie en theoretische fysica in het algemeen vo or zijn advies hulp en aanmo edi ging en om me te laten meegenieten van zijn scherp e fysische inzichten humor en relativeringsvermogen Ook Toine Van Pro eyen zou ik sp eciaal willen bedanken omwille van wat hij mij op wetenschapp elijk en menselijk vlak heeft bijgebracht voor de internationale contacten en vo or zijn no oit tanende gedrevenheid waaraan het instituut wellicht een gro ot deel van haar huidige internationale uitstraling te danken heeft Heel wat collegafysici ben ik bovendien dankbaar voor de soms verduisterende maar meestal verhelderende uiteenzettingen
    [Show full text]