Non-Supersymmetric Ads and the Swampland
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TASI Lectures on String Compactification, Model Building
CERN-PH-TH/2005-205 IFT-UAM/CSIC-05-044 TASI lectures on String Compactification, Model Building, and Fluxes Angel M. Uranga TH Unit, CERN, CH-1211 Geneve 23, Switzerland Instituto de F´ısica Te´orica, C-XVI Universidad Aut´onoma de Madrid Cantoblanco, 28049 Madrid, Spain angel.uranga@cern,ch We review the construction of chiral four-dimensional compactifications of string the- ory with different systems of D-branes, including type IIA intersecting D6-branes and type IIB magnetised D-branes. Such models lead to four-dimensional theories with non-abelian gauge interactions and charged chiral fermions. We discuss the application of these techniques to building of models with spectrum as close as possible to the Stan- dard Model, and review their main phenomenological properties. We finally describe how to implement the tecniques to construct these models in flux compactifications, leading to models with realistic gauge sectors, moduli stabilization and supersymmetry breaking soft terms. Lecture 1. Model building in IIA: Intersecting brane worlds 1 Introduction String theory has the remarkable property that it provides a description of gauge and gravitational interactions in a unified framework consistently at the quantum level. It is this general feature (beyond other beautiful properties of particular string models) that makes this theory interesting as a possible candidate to unify our description of the different particles and interactions in Nature. Now if string theory is indeed realized in Nature, it should be able to lead not just to `gauge interactions' in general, but rather to gauge sectors as rich and intricate as the gauge theory we know as the Standard Model of Particle Physics. -
Non-Holomorphic Cycles and Non-BPS Black Branes Arxiv
Non-Holomorphic Cycles and Non-BPS Black Branes Cody Long,1;2 Artan Sheshmani,2;3;4 Cumrun Vafa,1 and Shing-Tung Yau2;5 1Jefferson Physical Laboratory, Harvard University Cambridge, MA 02138, USA 2Center for Mathematical Sciences and Applications, Harvard University Cambridge, MA 02139, USA 3Institut for Matematik, Aarhus Universitet 8000 Aarhus C, Denmark 4 National Research University Higher School of Economics, Russian Federation, Laboratory of Mirror Symmetry, Moscow, Russia, 119048 5Department of Mathematics, Harvard University Cambridge, MA 02138, USA We study extremal non-BPS black holes and strings arising in M-theory compactifica- tions on Calabi-Yau threefolds, obtained by wrapping M2 branes on non-holomorphic 2-cycles and M5 branes on non-holomorphic 4-cycles. Using the attractor mechanism we compute the black hole mass and black string tension, leading to a conjectural for- mula for the asymptotic volumes of connected, locally volume-minimizing representa- tives of non-holomorphic, even-dimensional homology classes in the threefold, without arXiv:2104.06420v1 [hep-th] 13 Apr 2021 knowledge of an explicit metric. In the case of divisors we find examples where the vol- ume of the representative corresponding to the black string is less than the volume of the minimal piecewise-holomorphic representative, predicting recombination for those homology classes and leading to stable, non-BPS strings. We also compute the central charges of non-BPS strings in F-theory via a near-horizon AdS3 limit in 6d which, upon compactification on a circle, account for the asymptotic entropy of extremal non- supersymmetric 5d black holes (i.e., the asymptotic count of non-holomorphic minimal 2-cycles). -
Lectures on D-Branes
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server CPHT/CL-615-0698 hep-th/9806199 Lectures on D-branes Constantin P. Bachas1 Centre de Physique Th´eorique, Ecole Polytechnique 91128 Palaiseau, FRANCE [email protected] ABSTRACT This is an introduction to the physics of D-branes. Topics cov- ered include Polchinski’s original calculation, a critical assessment of some duality checks, D-brane scattering, and effective worldvol- ume actions. Based on lectures given in 1997 at the Isaac Newton Institute, Cambridge, at the Trieste Spring School on String The- ory, and at the 31rst International Symposium Ahrenshoop in Buckow. June 1998 1Address after Sept. 1: Laboratoire de Physique Th´eorique, Ecole Normale Sup´erieure, 24 rue Lhomond, 75231 Paris, FRANCE, email : [email protected] Lectures on D-branes Constantin Bachas 1 Foreword Referring in his ‘Republic’ to stereography – the study of solid forms – Plato was saying : ... for even now, neglected and curtailed as it is, not only by the many but even by professed students, who can suggest no use for it, never- theless in the face of all these obstacles it makes progress on account of its elegance, and it would not be astonishing if it were unravelled. 2 Two and a half millenia later, much of this could have been said for string theory. The subject has progressed over the years by leaps and bounds, despite periods of neglect and (understandable) criticism for lack of direct experimental in- put. To be sure, the construction and key ingredients of the theory – gravity, gauge invariance, chirality – have a firm empirical basis, yet what has often catalyzed progress is the power and elegance of the underlying ideas, which look (at least a posteriori) inevitable. -
Pitp Lectures
MIFPA-10-34 PiTP Lectures Katrin Becker1 Department of Physics, Texas A&M University, College Station, TX 77843, USA [email protected] Contents 1 Introduction 2 2 String duality 3 2.1 T-duality and closed bosonic strings .................... 3 2.2 T-duality and open strings ......................... 4 2.3 Buscher rules ................................ 5 3 Low-energy effective actions 5 3.1 Type II theories ............................... 5 3.1.1 Massless bosons ........................... 6 3.1.2 Charges of D-branes ........................ 7 3.1.3 T-duality for type II theories .................... 7 3.1.4 Low-energy effective actions .................... 8 3.2 M-theory ................................... 8 3.2.1 2-derivative action ......................... 8 3.2.2 8-derivative action ......................... 9 3.3 Type IIB and F-theory ........................... 9 3.4 Type I .................................... 13 3.5 SO(32) heterotic string ........................... 13 4 Compactification and moduli 14 4.1 The torus .................................. 14 4.2 Calabi-Yau 3-folds ............................. 16 5 M-theory compactified on Calabi-Yau 4-folds 17 5.1 The supersymmetric flux background ................... 18 5.2 The warp factor ............................... 18 5.3 SUSY breaking solutions .......................... 19 1 These are two lectures dealing with supersymmetry (SUSY) for branes and strings. These lectures are mainly based on ref. [1] which the reader should consult for original references and additional discussions. 1 Introduction To make contact between superstring theory and the real world we have to understand the vacua of the theory. Of particular interest for vacuum construction are, on the one hand, D-branes. These are hyper-planes on which open strings can end. On the world-volume of coincident D-branes, non-abelian gauge fields can exist. -
Black Brane Evaporation Through D-Brane Bubble Nucleation
HIP-2021-20/TH Black brane evaporation through D-brane bubble nucleation Oscar Henriksson∗ Department of Physics and Helsinki Institute of Physics P.O. Box 64, FI-00014 University of Helsinki, Finland Abstract We study the process of black brane evaporation through the emission of D-branes. Gravi- tational solutions describing black branes in asymptotically anti-de Sitter spacetimes, which are holographically dual to field theory states at finite temperature and density, have previously been found to exhibit an instability due to brane nucleation. Working in the setting of D3-branes on the conifold, we construct static Euclidean solutions describing this nucleation to leading order | D3-branes bubbling off the horizon. Furthermore, we analyze the late-time dynamics of such a D3-brane bubble as it expands and find a steady-state solution including the wall profile and its speed. CONTENTS I. Introduction 2 II. Gravity solutions and field theory dual 3 III. The D3-brane effective action 4 IV. Bubble nucleation 6 arXiv:2106.13254v1 [hep-th] 24 Jun 2021 V. Late time expansion 8 VI. Discussion 11 Acknowledgments 12 References 12 ∗ oscar.henriksson@helsinki.fi 1 I. INTRODUCTION Black holes are unstable to evaporation due to Hawking radiation. Though this fact is on firm theoretical footing, there are still many open questions regarding the precise details of this evaporation, some of which may require a complete theory of quantum gravity to settle. String theory is a strong candidate for such a theory. Besides strings, this framework also introduces other extended objects known as branes. These dynamical objects also gravitate, and a large number of them can be described in the supergravity limit of string theory as a black brane. -
Chaos in Matrix Models and Black Hole Evaporation
LLNL-JRNL-681857 UCB-PTH-16/01 SU-ITP-16/02 YITP-16-5 Chaos in Matrix Models and Black Hole Evaporation Evan Berkowitz,a1 Masanori Hanadabcd2 and Jonathan Maltzeb3 a Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore CA 94550, USA bStanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305, USA cYukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan dThe Hakubi Center for Advanced Research, Kyoto University, Yoshida Ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan e Berkeley Center for Theoretical Physics, University of California at Berkeley, Berkeley, CA 94720, USA Abstract Is the evaporation of a black hole described by a unitary theory? In order to shed light on this question |especially aspects of this question such as a black hole's negative specific heat|we consider the real-time dynamics of a solitonic object in matrix quantum mechanics, which can be interpreted as a black hole (black zero-brane) via holography. We point out that the chaotic nature of the system combined with the flat directions of its potential naturally leads to the emission of D0-branes from the black brane, which is suppressed in the large N limit. Simple arguments show that the black zero-brane, like the Schwarzschild black hole, arXiv:1602.01473v3 [hep-th] 15 Jan 2019 has negative specific heat, in the sense that the temperature goes up when it evaporates by emitting D0-branes. While the largest Lyapunov exponent grows during the evaporation, the Kolmogorov-Sinai entropy decreases. These are consequences of the generic properties of matrix models and gauge theory. -
What Lattice Theorists Can Do for Superstring/M-Theory
July 26, 2016 0:28 WSPC/INSTRUCTION FILE review˙2016July23 International Journal of Modern Physics A c World Scientific Publishing Company What lattice theorists can do for superstring/M-theory MASANORI HANADA Yukawa Institute for Theoretical Physics Kyoto University, Kyoto 606-8502, JAPAN The Hakubi Center for Advanced Research Kyoto University, Kyoto 606-8501, JAPAN Stanford Institute for Theoretical Physics Stanford University, Stanford, CA 94305, USA [email protected] The gauge/gravity duality provides us with nonperturbative formulation of superstring/M-theory. Although inputs from gauge theory side are crucial for answering many deep questions associated with quantum gravitational aspects of superstring/M- theory, many of the important problems have evaded analytic approaches. For them, lattice gauge theory is the only hope at this moment. In this review I give a list of such problems, putting emphasis on problems within reach in a five-year span, including both Euclidean and real-time simulations. Keywords: Lattice Gauge Theory; Gauge/Gravity Duality; Quantum Gravity. PACS numbers:11.15.Ha,11.25.Tq,11.25.Yb,11.30.Pb Preprint number:YITP-16-28 1. Introduction During the second superstring revolution, string theorists built a beautiful arXiv:1604.05421v2 [hep-lat] 23 Jul 2016 framework for quantum gravity: the gauge/gravity duality.1, 2 It claims that superstring/M-theory is equivalent to certain gauge theories, at least about certain background spacetimes (e.g. black brane background, asymptotically anti de-Sitter (AdS) spacetime). Here the word ‘equivalence’ would be a little bit misleading, be- cause it is not clear how to define string/M-theory nonperturbatively; superstring theory has been formulated based on perturbative expansions, and M-theory3 is defined as the strong coupling limit of type IIA superstring theory, where the non- perturbative effects should play important roles. -
VISCOSITY and BLACK HOLES 1 Introduction the Discovery Of
VISCOSITY AND BLACK HOLES D.T. SON Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550, USA We review recent applications of the AdS/CFT correspondence in strongly coupled systems, in particular the quark gluon plasma. 1 Introduction The discovery of Hawking radiation1 confirmed that black holes are endowed with thermody- namic properties such as entropy and temperature, as first suggested by Bekenstein2 based on the analogy between black hole physics and equilibrium thermodynamics. For black branes, i.e., black holes with translationally invariant horizons, thermodynamics can be extended to hydrodynamics|the theory that describes long-wavelength deviations from thermal equilibrium. Thus, black branes possess hydrodynamic properties of continuous fluids and can be character- ized by kinetic coefficients such as viscosity, diffusion constants, etc. From the perspective of the holographic principle3;4, the hydrodynamic behavior of a black-brane horizon is identified with the hydrodynamic behavior of the dual theory. In this talk, we argue that in theories with gravity duals, the ratio of the shear viscosity to the volume density of entropy is equal to a universal value of ~=4π. A lot of attention has been given to this fact due to the discovery of a perfect liquid behavior at RHIC. We will also review recent attempts to extend AdS/CFT correspondence to nonrelativistic systems. 2 Dimension of η=s The standard textbook definition of the shear viscosity is as follows. Take two large parallel plates separated by a distance d. The space between the two plates is filled with a fluid. Let one plate moves relative to the other with a velocity v. -
Holography and Compactification
PUPT-1872 ITFA-99-14 Holography and Compactification Herman Verlinde Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 and Institute for Theoretical Physics, University of Amsterdam Valckenierstraat 65, 1018 XE Amsterdam Abstract arXiv:hep-th/9906182v1 24 Jun 1999 Following a recent suggestion by Randall and Sundrum, we consider string compactification scenarios in which a compact slice of AdS-space arises as a subspace of the compactifica- tion manifold. A specific example is provided by the type II orientifold equivalent to type I theory on (orbifolds of) T 6, upon taking into account the gravitational backreaction of the D3-branes localized inside the T 6. The conformal factor of the four-dimensional metric depends exponentially on one of the compact directions, which, via the holographic corre- spondence, becomes identified with the renormalization group scale in the uncompactified world. This set-up can be viewed as a generalization of the AdS/CFT correspondence to boundary theories that include gravitational dynamics. A striking consequence is that, in this scenario, the fundamental Planck size string and the large N QCD string appear as (two different wavefunctions of) one and the same object. 1 Introduction In string theory, when considered as a framework for unifying gravity and quantum mechan- ics, the fundamental strings are naturally thought of as Planck size objects. At much lower energies, such as the typical weak or strong interaction scales, the strings have lost all their internal structure and behave just as ordinary point-particles. The physics in this regime is therefore accurately described in terms of ordinary local quantum field theory, decoupled from the planckian realm of all string and quantum gravitational physics. -
The First Law of Black Brane Mechanics
DAMTP-2001-67 hep-th/0107228 THE FIRST LAW OF BLACK BRANE MECHANICS Paul K. Townsend and Marija Zamaklar DAMTP, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK ABSTRACT We obtain ADM and Komar surface integrals for the energy density, tension and angular momentum density of stationary p-brane solutions of Einstein’s equations. We use them to derive a Smarr-type formula for the energy den- sity and thence a first law of black brane mechanics. The intensive variable conjugate to the worldspace p-volume is an ‘effective’ tension that equals the ADM tension for uncharged branes, but vanishes for isotropic boost-invariant charged branes. 1 Introduction The status of energy in General Relativity is rather special because, for a general space- time, there is no coordinate-independent meaning to the energy in a given local region of a spacelike hypersurface. However, if the spacetime is asymptotically flat then it is possible to define a total energy, which can be expressed as an integral at spatial infinity: the ADM integral [1]. Consider an asymptotically flat spacetime, of d =1+n dimensions, for which the asymptotic form of the metric, in cartesian coordinates xM =(t; xi)(i =1;:::;n)is g η + h (1) MN ∼ MN MN where η is the Minkowski metric and h is a perturbation with the appropriate fall-off at spatial infinity needed to make the energy integral converge. We shall suppose that the action takes the form1 1 I = ddx det gR + I(mat) : (2) 2 Z p− The matter stress-tensor is 2 δI(mat) T (mat) = ; (3) MN −√ det g δgMN − and the Einstein field equation is (mat) GMN = TMN : (4) The ADM energy integral in these conventions is 1 E = dSi (@jhij @ihjj) : (5) 2 I − ∞ In the special case of a stationary asymptotically flat spacetime, for which there exists a normalized timelike Killing vector field k, the energy in any volume V with boundary @V can be expressed as the Komar integral [2] n 1 M N E(V )= − dSMND k : (6) − 4(n 2) Z − @V where dSMN is the co-dimension 2 surface element on the (n 1)-dimensional boundary @V of V . -
University of Groningen Seven-Branes and Instantons In
University of Groningen Seven-branes and instantons in type IIB supergravity Hartong, Jelle IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2008 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Hartong, J. (2008). Seven-branes and instantons in type IIB supergravity. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 27-09-2021 Introduction The subject of this thesis will be introduced. The studies performed in the coming chapters attempt to improve on the understanding of certain aspects of string theory. Here, I will give a personal point of view on the subject of string theory after which I will briefly sketch the most elementary properties of string theory that allow me to further introduce the subject of this thesis. -
Thermal Giant Gravitons
NORDITA-2012-53 NSF-KITP-12-128 Thermal Giant Gravitons Jay Armas 1, Troels Harmark 2, Niels A. Obers 1, Marta Orselli 1 and Andreas Vigand Pedersen 1 1 The Niels Bohr Institute, Copenhagen University Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark 2 NORDITA Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden [email protected], [email protected], [email protected] [email protected], [email protected] Abstract 5 We study the giant graviton solution as the AdS5 × S background is heated up to finite temperature. The analysis employs the thermal brane probe technique based on the blackfold approach. We focus mainly on the thermal giant graviton corresponding to a thermal D3- brane probe wrapped on an S3 moving on the S5 of the background at finite temperature. We find several interesting new effects, including that the thermal giant graviton has a minimal possible value for the angular momentum and correspondingly also a minimal possible radius of the S3. We compute the free energy of the thermal giant graviton in the low temperature arXiv:1207.2789v2 [hep-th] 3 Aug 2012 regime, which potentially could be compared to that of a thermal state on the gauge theory side. Moreover, we analyze the space of solutions and stability of the thermal giant graviton and find that, in parallel with the extremal case, there are two available solutions for a given temperature and angular momentum, one stable and one unstable. In order to write down the equations of motion, action and conserved charges for the thermal giant graviton we present a slight generalization of the blackfold formalism for charged black branes.