Anatomy of Skull by : Dr

Total Page:16

File Type:pdf, Size:1020Kb

Anatomy of Skull by : Dr Anatomy of skull By : Dr. Hassna B. Jawad At the end of the lecture you should be able to: • Identify basic anatomical features of the skull • recognize different bones of skull • Identify outer bony features of each bone of the skull The human skull is the bony structure that forms the head in the human skeleton. It supports the structures of the face and forms a cavity for the brain. The skull consists of two parts: 1. Neurocranium : cranial bones (braincase) form the protective cranial cavity that surrounds and houses the brain and brainstem. 2. Viscerocranium ( facial bones ):formed by bones supporting the face. Except for the mandible, all of the bones of the skull are joined by synarthrodial (immovable) joints . Sometimes there can be extra bone pieces within the suture known as sutural bones. The human skull is consisted of 22 bones 8 cranial bones and14 facial skeleton bones. Cranial bones : 2 temporal bones, 2 parietal bones, 1occipital ,1 sphenoid, 1ethmoid and 1 frontal bones. Facial bones, 2 nasal conchae, 2 nasal bones, 2 maxilla, 2 palatine bones, 2 zygomatic bones, 2lacrimal bones , 1 vomer and 1 mandible. In the cranial bones, the layers of compact tissue are known as the tables of the skull; the outer one is thick and tough; the inner is thin, dense, and brittle, and hence is termed the vitreous (glass-like) table. 1 Anatomy of skull By : Dr. Hassna B. Jawad These bones are enclosing between a cancellous bone called the diploë, and this, in the nasal region of the skull, becomes absorbed so as to leave spaces filled with air–the paranasal sinuses between the two tables. The skull bones, with a few exceptions, are connected by immovable joints called sutures: *Lambdoid suture - between (occipital and parietal bones) * Sagittal suture between the two parietal bones . *Coronal suture – between ( frontal and parietal bones) *Squamous suture –( parietal & temporal) *Fronto-nasal suture - (frontal & nasal bones). 2 Anatomy of skull By : Dr. Hassna B. Jawad Cranial Bones are: 1. Frontal Bone: Single bone contribute to the anterior, superior and lateral surface of the skull, It consists of the following part: 1. Frontal part underlies forehead ,contains; *frontal (metopic) suture - suture between the frontal bones that usually disappears by age 8 years. *supraorbital margin - edge of the frontal part that forms the superior borer of the orbits. *supra orbital foramen: Opening or notch in the middle of the supraorbital margin. *superciliary arches - thickened ridges over the supraorbital margins that supports the eyebrows. 2. Orbital Part forms the roof of the orbit. *lacrimal fossa - depression on the inferior surface of the orbital part that accommodates the lacrimal gland. 3. The nasal part, the smallest, part articulates with the nasal bone and the frontal process of the maxilla to form the root of nose. 3 Anatomy of skull By : Dr. Hassna B. Jawad 3. Parietal bone : The parietal bones ( wall ) are two bones when joined together at a fibrous joint, form the sides and roof of the cranium. Each bone is roughly quadrilateral in form, and has two surfaces, four borders, and four angles. External surface: is convex, smooth, and marked by: * parietal eminence *superior & inferior temporal lines Internal surface : is concave; contains depressions corresponding to the cerebral convolutions, and grooves for the ramifications of the middle meningeal artery 4 Anatomy of skull By : Dr. Hassna B. Jawad 5 Anatomy of skull By : Dr. Hassna B. Jawad 3.Occipital bone: Single bone contributes to the posterior, lateral and inferior surfaces of the cranium, situated at the back and lower part of the skull. It is trapezoidal in shape and curved on itself. It is pierced by a large oval opening, the foramen magnum, through which the cranial cavity communicates with the vertebral canal. The curved, expanded plate behind the foramen magnum is named the squama occipitalis. The thick, somewhat quadrilateral piece in front of the foramen is called the basilar part of occipital bone, - the basioccipital. On either side of the foramen are the lateral condyloid parts of occipital bone. It contains the following structures: 1.Foramen magnum - large circular opening that connects the cranial and spinal cavities. 2.Occipital condyles - processes that articulate with the first cervical vertebra. 3.External occipital protuberance - midline bump on the external surface. 4.Jugular notch - together with the temporal bone forms the jugular foramen. 5.Hypoglossal canal - openings superior to the occipital condyles through which the hypoglossal nerves. 6.Superior and inferior nuchal line : transvers lines at the external surface of occipital bone for attachment of muscles . 6 Anatomy of skull By : Dr. Hassna B. Jawad 4.Temporal Bones: The temporal bones are overlaid by the sides of the head known as the temple sand house the structures of the ears. The lower seven cranial nerves and the major vessels to and from the brain traverse the temporal bone. It is Paired bone contribute to the lateral and inferior walls of the cranium. It consists of the following parts : A. Squamous part: The squamous part is the largest and most superiorly positioned relative to the rest of the bone ,forms the lateral surface that borders the squamous suture. *Zygomatic process - forms the inferior margin of the squamous part with the temporal process of the zygomatic bone forms the zygomatic arch (cheekbone). *Mandibular fossa - depression on the inferior base of the zygomatic process that articulates with the mandible. *Articular tubercle - elevation anterior to the mandibular fossa. B. Tympanic part This part is the region that surrounds the external acoustic meatus or external auditory canal. This passageway ends as a tympanic membrane. It contains the following structures: *External acoustic meatus. *Styloid processes - sharp process near the mastoid process to which ligaments and tendons attached *Stylomastoid foramen - through which the facial nerve passes. *Jugular fossa - depression on the temporal bone that together with the jugular notch of the occipital bone forms the jugular foramen . *Carotid canal - passageway by which the internal carotid artery penetrates the skull and reaches the brain. *Foramen lacerum - This is not an opening in the living skull as it is closed by hyaline cartilage . *Internal acoustic meatus - canal on the medial side of the petrous part through which nerves and vessels supplying the inner ear and the facial nerve pass.. C. Petrous part is pyramidal shaped at the base of the skull between the sphenoid and occipital bones. Directed medially, forward, and a little upward. D. Mastoid portion……………………………………………………………………. Lies posterior and inferior to sequamous part. 7 Anatomy of skull By : Dr. Hassna B. Jawad 4. Sphenoid bone : Single bone consists of the following structures: A. Body: the central portion of the sphenoid. it contains the following: *hypophyseal fossa: The sella turcica ("Turkish saddle") that forms a bony enclosure around the pituitary gland The anterior boundary of the sella turcica is completed by two small eminences, one on either side, called the anterior clinoid processes, *Tuberculum sellae - anterior border of the sella turcica *.Optic groove - groove directly anterior to the tuberculum sellae. *Optic canals - openings at either end of the optic groove through which the optic nerves pass. *Dorsum sella - square-shaped plate of bone, form the posterior boundary of sella turcica , ending at its superior angles in two tubercles, the posterior clinoid processes which acts to deepen the sella turcica, and give attachment to the tentorium cerebell , B. Lesser Wings Wing-like extensions anterior to the sella turcica with anterior medial and lateral clenoid Process. C. Greater Wings Large wing-like processes that extend laterally from the body of sphenoid and consisted of *sphenoidal spine: sharp process strengthens the side of the skull *pterygoid process: This process form plates that permit muscle attachment. It extends downward on either side of the body( medial and lateral pterygoid processes) 8 Anatomy of skull By : Dr. Hassna B. Jawad *Pterygoid canals at the base of pterygoid processes. 9 Anatomy of skull By : Dr. Hassna B. Jawad 5. Ethmoid Bone: The ethmoid bone is an anterior unpaired cranial bone located between the eyes. It contributes to the medial wall of the orbit, the roof of nasal cavity, and a part of nasal septum. It separates the nasal cavity from the brain. It is located at the roof of the nose, between the two orbits. The cubical bone is lightweight due to a spongy construction. It contains: 1. Cribriform plate - superior surface of the ethmoid perforated by olfactory foramina through which the olfactory nerves pass. 2. Crista galli - prominent ridge in the middle of the cribriform plate and an attachment point for the flax cerebri. 3. Lateral masses - bony masses attached on either side of the cribriform plate. includes: superior and middle nasal conchae 4. Ethmoid labyrinth - cells in the interior of the lateral masses that open into the nasal cavity 5. Perpendicular plate - bony partition underneath the cribriform plate that forms part of the nasal septum. MCQ: 1.The suture that separates the parietal bones from the occipital bone is the a. Coronal suture b. Lambdoid suture c. Sagittal suture d. Squamous suture 2. Which of these bones does NOT articulate with the sphenoid bone? a. Ethmoid bone b. Frontal bone c. Parietal bone 10 Anatomy of skull By : Dr. Hassna B. Jawad d. Occipital bone e. Nasal bone 3. The foramen magnum is present in the ____________ bone. a. Frontal b. Occipital c. Parietal d. Sphenoid e. Temporal 11 .
Recommended publications
  • Temporo-Mandibular Joint (Tmj) Dysfunction
    Office: (310) 423-1220 BeverlyHillsENT.com Fax: (310) 423-1230 TEMPORO-MANDIBULAR JOINT (TMJ) DYSFUNCTION You may not have heard of it, but you use it hundreds of times every day. It is the Temporo- Mandibular Joint (TMJ), the joint where the mandible (the lower jaw) joins the temporal bone of the skull, immediately in front of the ear on each side of your head. You move the joint every time you chew or swallow. You can locate this joint by putting your finger on the triangular structure in front of your ear. Then move your finger just slightly forward and press firmly while you open your jaw all the way and shut it. The motion you feel is the TMJ. You can also feel the joint motion in your ear canal. These maneuvers can cause considerable discomfort to a patient who is having TMJ trouble, and physicians use these maneuvers with patients for diagnosis. TMJ Dysfunction can cause the following symptoms: Ear pain Sore jaw muscles Temple/cheek pain Jaw popping/clicking Locking of the jaw Difficulty in opening the mouth fully Frequent head/neck aches The pain may be sharp and searing, occurring each time you swallow, yawn, talk, or chew, or it may be dull and constant. It hurts over the joint, immediately in front of the ear, but pain can also radiate elsewhere. It often causes spasms in the adjacent muscles that are attached to the bones of the skull, face, and jaws. Then, pain can be felt at the side of the head (the temple), the cheek, the lower jaw, and the teeth.
    [Show full text]
  • Direct Sagittal CT in the Evaluation of Temporal Bone Disease
    371 Direct Sagittal CT in the Evaluation of Temporal Bone Disease 1 Mahmood F. Mafee The human temporal bone is an extremely complex structure. Direct axial and coronal Arvind Kumar2 CT sections are quite satisfactory for imaging the anatomy of the temporal bone; Christina N. Tahmoressi1 however, many relationships of the normal and pathologic anatomic detail of the Barry C. Levin2 temporal bone are better seen with direct sagittal CT sections. The sagittal projection Charles F. James1 is of interest to surgeons, as it has the advantage of following the plane of surgical approach. This article describes the advantages of using direct sagittal sections for Robert Kriz 1 1 studying various diseases of the temporal bone. The CT sections were obtained with Vlastimil Capek the aid of a new headholder added to our GE CT 9800 scanner. The direct sagittal projection was found to be extremely useful for evaluating diseases involving the vertical segment of the facial nerve canal, vestibular aqueduct, tegmen tympani, sigmoid sinus plate, sinodural angle, carotid canal, jugular fossa, external auditory canal, middle ear cavity, infra- and supra labyrinthine air cells, and temporo­ mandibular joint. CT has contributed greatly to an understanding of the complex anatomy and spatial relationship of the minute structures of the hearing and balance organs, which are packed into a small pyramid-shaped petrous temporal bone [1 , 2]. In the past 6 years, high-resolution CT scanning has been rapidly replacing standard tomography and has proved to be the diagnostic imaging method of choice for studying the normal and pathologic details of the temporal bone [3-14].
    [Show full text]
  • Clinical Indicators: Acoustic Neuroma Surgery
    Clinical Indicators: Acoustic Neuroma Surgery Approach Procedure CPT Days1 Infratemporal post-auricular approach to middle cranial fossa 61591 90 Transtemporal approach to posterior cranial fossa 61595 90 Transcochlear approach to posterior cranial fossa 61596 90 Transpetrosal approach to posterior cranial fossa 61598 90 Craniectomy for cerebellopontine angle tumor 61520 90 Craniectomy, transtemporal for excision of cerebellopontine angle 61526 90 tumor Combined with middle/posterior fossa craniotomy/ 61530 90 craniectomy Definitive Procedure CPT Days Resection of neoplasm, petrous apex, intradural, including dural 61606 90 repair Resection of neoplasm, posterior cranial fossa, intradural, including 61616 90 repair Microdissection, intracranial 61712 90 Stereotactic radiosurgery 61793 90 Decompression internal auditory canal 69960 90 Removal of tumor, temporal bone middle fossa approach 69970 90 Repair Procedure CPT Days Secondary repair of dura for CSF leak, posterior fossa, by free tissue 61618 90 graft Secondary repair of dura for CSF leak, by local or regional flap or 61619 90 myocutaneous flap Decompression facial nerve, intratemporal; lateral to geniculate 69720 90 ganglion Total facial nerve decompression and/or repair (may include graft) 69955 90 Abdominal fat graft 20926 90 Fascia lata graft; by stripper 20920 90 Fascia lata graft; by incision and area exposure, complex or sheet 20922 90 Intraoperative Nerve Monitoring Procedure CPT Days Auditory nerve monitoring, setup 92585 90 1 RBRVS Global Days Intraoperative neurophysiology testing, hourly 95920 90 Facial nerve monitoring, setup 95925 90 Indications 1. History a) Auditory complaints • hearing loss • fullness • distorted sound perception b) Tinnitus • ringing • humming • hissing • crickets c) Disequilibrium • unsteadiness • dizziness • imbalance • vertigo d) Headache e) Fifth and seventh cranial nerve symptoms • facial pain • facial tingling, numbness • tics • weakness f) Family history of neurofibromatosis type II g) Diplopia h) Dysarthria, dysphasia, aspiration, hoarseness 2.
    [Show full text]
  • A Morphological Study of Jugular Foramen
    Vikas. C. Desai et al /J. Pharm. Sci. & Res. Vol. 9(4), 2017, 456-458 A Morphological Study of Jugular Foramen Vikas. C. Desai1, Pavan P Havaldar2 1. Asst. Prof, Department of Dentistry, BLDE University’s,Shri. B. M. Patil Medical College Hospital and Research Centre,Bijapur – 586103, Karnataka State. 2. Assistant Professor of Anatomy, Gadag Institute of Medical Sciences, Mallasamudra, Mulgund Road, Gadag, Karnataka, India. Abstract Jugular foramen is a large aperture in the base of the skull. It is located behind the carotid canal and is formed by the petrous part of the temporal bone and behind by the occipital bone. The jugular foramen is the main route of venous outflow from the skull and is characterised by laterality based on the predominance of one of the sides. Sigmoid sinus continues as internal jugular vein in posterior part of jugular foramen. Ligation of the internal jugular is sometimes performed during radical neck dissection with the risk of venous infarction, which some adduce to be due to ligation of the dominant internal jugular vein. It is generally said that although the Jugular foramen is larger on the right side compared to the left, its size as well as its height and volume vary in different racial groups and sexes. The foramen’s complex shape, its formation by two bones, and the numerous nerves and venous channels that pass through it further compound its anatomy. The present study was undertaken in 263(526 sides) different medical and dental institutions in Karnataka, India. Out of 263 skulls in 61.21% of cases the right foramina were larger than the left, in 13.68% of cases the left foramina were larger than the right and in 25.09% cases were equal on both sides.
    [Show full text]
  • Implications to Occipital Headache
    The Journal of Neuroscience, March 6, 2019 • 39(10):1867–1880 • 1867 Neurobiology of Disease Non-Trigeminal Nociceptive Innervation of the Posterior Dura: Implications to Occipital Headache X Rodrigo Noseda, Agustin Melo-Carrillo, Rony-Reuven Nir, Andrew M. Strassman, and XRami Burstein Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115 Current understanding of the origin of occipital headache falls short of distinguishing between cause and effect. Most preclinical studies involving trigeminovascular neurons sample neurons that are responsive to stimulation of dural areas in the anterior 2/3 of the cranium and the periorbital skin. Hypothesizing that occipital headache may involve activation of meningeal nociceptors that innervate the posterior 1⁄3 of the dura, we sought to map the origin and course of meningeal nociceptors that innervate the posterior dura overlying the cerebellum. Using AAV-GFP tracing and single-unit recording techniques in male rats, we found that neurons in C2–C3 DRGs innervate the dura of the posterior fossa; that nearly half originate in DRG neurons containing CGRP and TRPV1; that nerve bundles traverse suboccipital muscles before entering the cranium through bony canals and large foramens; that central neurons receiving nociceptive information from the posterior dura are located in C2–C4 spinal cord and that their cutaneous and muscle receptive fields are found around the ears, occipital skin and neck muscles; and that administration of inflammatory mediators to their dural receptive field, sensitize their responses to stimulation of the posterior dura, peri-occipital skin and neck muscles. These findings lend rationale for the common practice of attempting to alleviate migraine headaches by targeting the greater and lesser occipital nerves with anesthetics.
    [Show full text]
  • Frontosphenoidal Synostosis: a Rare Cause of Unilateral Anterior Plagiocephaly
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Childs Nerv Syst (2007) 23:1431–1438 DOI 10.1007/s00381-007-0469-4 ORIGINAL PAPER Frontosphenoidal synostosis: a rare cause of unilateral anterior plagiocephaly Sandrine de Ribaupierre & Alain Czorny & Brigitte Pittet & Bertrand Jacques & Benedict Rilliet Received: 30 March 2007 /Published online: 22 September 2007 # Springer-Verlag 2007 Abstract Conclusion Frontosphenoidal synostosis must be searched Introduction When a child walks in the clinic with a in the absence of a coronal synostosis in a child with unilateral frontal flattening, it is usually associated in our anterior unilateral plagiocephaly, and treated surgically. minds with unilateral coronal synostosis. While the latter might be the most common cause of anterior plagiocephaly, Keywords Craniosynostosis . Pediatric neurosurgery. it is not the only one. A patent coronal suture will force us Anterior plagiocephaly to consider other etiologies, such as deformational plagio- cephaly, or synostosis of another suture. To understand the mechanisms underlying this malformation, the development Introduction and growth of the skull base must be considered. Materials and methods There have been few reports in the Harmonious cranial growth is dependent on patent sutures, literature of isolated frontosphenoidal suture fusion, and and any craniosynostosis might lead to an asymmetrical we would like to report a series of five cases, as the shape of the skull. The anterior skull base is formed of recognition of this entity is important for its treatment. different bones, connected by sutures, fusing at different ages. The frontosphenoidal suture extends from the end of Presented at the Consensus Conference on Pediatric Neurosurgery, the frontoparietal suture, anteriorly and inferiorly in the Rome, 1–2 December 2006.
    [Show full text]
  • Livestock ID Product Catalog Int Ide Cover Ins Not Pr Do Table of Contents
    Livestock ID Product Catalog INSIDE COVER DO NOT PRINT Table of Contents Z Tags Z1 No-Snag-Tag® Premium Tags .........................................02 Z Tags The New Z2 No-Tear-Tag™ System .....................................04 We’ve joined forces to bring you Temple Tag Herdsman® Two Piece Tags ........................................06 the best tags in the business. Z Tags Feedlot Tags..........................................................................08 Datamars is a worldwide leader in high-performance livestock identification Temple Tag Feeder Tags ...................................................................10 systems. With its state-of-the-art global manufacturing facilities and Temple Tag Original Tag .................................................................. 12 worldwide technical expertise, Datamars has added Temple Tag® and Z Tags® Temple Tag CalfHerder™ Tag ............................................................ 13 to the company’s global portfolio of world-class brands. Temple Tag FaStocker® Tag ..............................................................14 ComfortEar® Radio Frequency Identification Tags (RFID) ...........16 Datamars can bring you new and improved products faster than ever before. Temple Tag & Z Tags Taggers and Accessories .............................18 But one thing hasn’t changed, and that’s our unwavering commitment to America’s livestock producers. Temple Tag & Z Tags Custom Tag Decoration ..............................20 Temple Tag & Z Tags Hot Stamp Machines ...................................
    [Show full text]
  • Neurocranial Histomorphometrics
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2012 Neurocranial Histomorphometrics Lindsay Hines Trammell University of Tennessee-Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Biological and Physical Anthropology Commons Recommended Citation Trammell, Lindsay Hines, "Neurocranial Histomorphometrics. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1359 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Lindsay Hines Trammell entitled "Neurocranial Histomorphometrics." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Anthropology. Murray K. Marks, Major Professor We have read this dissertation and recommend its acceptance: Joanne L. Devlin, David A. Gerard, Walter E. Klippel, David G. Anderson (courtesy member) Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2012 Neurocranial Histomorphometrics Lindsay Hines Trammell University of Tennessee-Knoxville, [email protected] This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange.
    [Show full text]
  • Skeletal System
    1 Name___________________________________ Date____________________________________ Laboratory Report Skeletal system: Axial skeleton and bony landmarks: Review each bone and landmark/s during lab. Skull- Cranial Bones: Frontal Bone supraorbital foramen frontal sinuses supraorbital margins glabella Parietal Bones sagittal suture coronal suture squamous suture lambdoid suture Temporal Bones zygomatic process mandibular fossa external auditory meatus mastoid process styloid process internal acoustic meatus carotid canal jugular foramen Occipital Bone: foramen magnum external occipital protuberance nuchal lines (superior and inferior) occipital condyle hypoglossal canal condylar canal Sphenoid: sella turcica tuberculum sellae dorsum sellae hypophyseal fossa greater wing lesser wing optic foramen superior orbital fissure pterygoid processes Foramen associated with the sphenoid: foramen ovale foramen lacerum* foramen rotundum foramen spinosum *found between sphenoid, temporal and occipital bones Ethmoid Bone: crista galli cribiform plate perpendicular plate cribiform/olfactory foramina superior nasal conchae/turbinates middle nasal conchae/turbinates 2 Skull- Facial Bones: Nasal Bones Palatine Bones Inferior Nasal chonchae/turbinates Vomer Maxillae: Intermaxillary suture Infraorbital foramen alveolar processes incisive foramen Zygomatic Bones temporal arch zygomaticofacial foramen Lacrimal Bones lacrimal fossa Mandible body rami angle condyloid process coronoid process mandibular foramen mental foramen alveolar process mandiubular condyles mandiubular notch Orbits (eye sockets) Formed by seven skull bones: 3 cranial; 4 facial: Frontal Sphenoid Ethmoid Zygomatic Maxillae Lacrimal Palatine Associated structures include: optic foramen superior orbital fissure inferior orbital fissure Bones associated with the skull Hyoid Bone: greater cornu lesser cornu body Auditory Ossicles: Malleus Incus Stapes 3 1. Label the following illustration of the skull (anterior view): 4 2. Label the following illustration of the skull (midsagittal view): 5 3.
    [Show full text]
  • Morfofunctional Structure of the Skull
    N.L. Svintsytska V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 Ministry of Public Health of Ukraine Public Institution «Central Methodological Office for Higher Medical Education of MPH of Ukraine» Higher State Educational Establishment of Ukraine «Ukranian Medical Stomatological Academy» N.L. Svintsytska, V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 2 LBC 28.706 UDC 611.714/716 S 24 «Recommended by the Ministry of Health of Ukraine as textbook for English- speaking students of higher educational institutions of the MPH of Ukraine» (minutes of the meeting of the Commission for the organization of training and methodical literature for the persons enrolled in higher medical (pharmaceutical) educational establishments of postgraduate education MPH of Ukraine, from 02.06.2016 №2). Letter of the MPH of Ukraine of 11.07.2016 № 08.01-30/17321 Composed by: N.L. Svintsytska, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor V.H. Hryn, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor This textbook is intended for undergraduate, postgraduate students and continuing education of health care professionals in a variety of clinical disciplines (medicine, pediatrics, dentistry) as it includes the basic concepts of human anatomy of the skull in adults and newborns. Rewiewed by: O.M. Slobodian, Head of the Department of Anatomy, Topographic Anatomy and Operative Surgery of Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Doctor of Medical Sciences, Professor M.V.
    [Show full text]
  • Lab Manual Axial Skeleton Atla
    1 PRE-LAB EXERCISES When studying the skeletal system, the bones are often sorted into two broad categories: the axial skeleton and the appendicular skeleton. This lab focuses on the axial skeleton, which consists of the bones that form the axis of the body. The axial skeleton includes bones in the skull, vertebrae, and thoracic cage, as well as the auditory ossicles and hyoid bone. In addition to learning about all the bones of the axial skeleton, it is also important to identify some significant bone markings. Bone markings can have many shapes, including holes, round or sharp projections, and shallow or deep valleys, among others. These markings on the bones serve many purposes, including forming attachments to other bones or muscles and allowing passage of a blood vessel or nerve. It is helpful to understand the meanings of some of the more common bone marking terms. Before we get started, look up the definitions of these common bone marking terms: Canal: Condyle: Facet: Fissure: Foramen: (see Module 10.18 Foramina of Skull) Fossa: Margin: Process: Throughout this exercise, you will notice bold terms. This is meant to focus your attention on these important words. Make sure you pay attention to any bold words and know how to explain their definitions and/or where they are located. Use the following modules to guide your exploration of the axial skeleton. As you explore these bones in Visible Body’s app, also locate the bones and bone markings on any available charts, models, or specimens. You may also find it helpful to palpate bones on yourself or make drawings of the bones with the bone markings labeled.
    [Show full text]
  • Lab Week 7 Part 1 Radius and Ulna
    11/7/2018 Lab Week 7 Part 1 Radius and Ulna Part 1 Activities 1. Observe bones and structures from list 2. Bones of the Forearm worksheet in packet 3. Bones of the Pectoral Girdle and Upper Limbs worksheet in packet Part 2 Femur, Tibia, & Fibula 1 11/7/2018 Part 2 Activities 1. Observe bones and structures from list 2. Bones of the Lower Limbs worksheet in packet 3. Bones of the Pelvic Girdle and Lower Limbs worksheet in packet Functions of the Skull • Support • Movement Part 3 • Protection Skull Notes may be found in your packet: SS 27-28 The Skull The Skull 22 bones, 2 groups 2. Facial bones (14 bones) 1. Cranial bones (8) • Framework of face • Enclose the brain in the cranial cavity • Cavities for special sense organs of sight, taste, and • Provide sites of attachment for head and neck muscles smell • • Provide support Openings for air and food passage • Sites of attachment for teeth and muscles of facial expression 2 11/7/2018 Sutures Bones of cranium (cranial vault) • Immovable joints Coronal suture – Become more complex with age Squamous • Fontanelles suture – Soft regions of connective tissue holding bones together at birth • Permits – Brain growth Lambdoid Facial suture bones – Entry into birth canal Occipitomastoid – Normally replaced by bone by about 1 year of age suture Cranial and facial divisions of the skull Foramina Sinuses • Allow passage of blood vessels and nerves • Cavities lined with mucous membranes & ciliated epithelium – • About 85 named openings (foramina, canals, Frontal sinus – Sphenoidal sinus fissures) – Maxillary
    [Show full text]