Bt6603-Genetic-Engin

Total Page:16

File Type:pdf, Size:1020Kb

Bt6603-Genetic-Engin BT 6603 Genetic Engg and Genomics (VI sem) Department of Biotechnology 2018-19 DEPARTMENT OF BIOTECHNOLOGY Faculty Name : Ms. K. Ramya Faculty Code : HTS 1277 Subject Name : Genetic Engineering and Genomics Subject Code : BT6603 Year & Semester : III & VI BT 6603 Genetic Engg and Genomics (VI sem) Department of Biotechnology 2018-19 DEPARTMENT OF BIOTECHNOLOGY COURSE DETAILS Faculty Name : Ms. K. Ramya Faculty Code: HTS 1277 Subject Name: Genetic Engineering and Genomics Subject Code: BT6603 Department: Biotechnology Year & Semester: III & VI COURSE OUTCOMES On completion of this course, the students will be able to CO No Course Outcomes Knowledge Level Understand about the cloning of commercially important genes and production of C315.1 recombinant proteins K2 C315.2 Understand about the construction and screening of DNA libraries K2 C315.3 Discuss about the gene and genome sequencing techniques K2 C315.4 Explain about the microarrays, analysis of gene expression and proteomics K2 C315.5 Understandarticulate the applications of genome analysis and genomics K2 Mapping of Course Outcomes with Program Outcomes and Program Specific Outcomes BT6602 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 PSO4 C315.1 2 - - - - - - - - - - 3 - - - - C315.2 2 - - - - - - - - - - - - - - - C315.3 2 - - - - - - - - - - - - - - - C315.4 2 - - - - 3 3 - - - - 3 - - - - C315.5 1 - - - - 3 3 - - - - 3 - - - - BT6602 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 PSO4 C315 2 - - - - 3 3 - - - - 3 - - 3 - K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 - Create Mapping Relevancy 1: Slight (Low) 2: Moderate (Medium) 3 Substantial (High) - : No correlation BT 6603 Genetic Engg and Genomics (VI sem) Department of Biotechnology 2018-19 BT6603 GENETIC ENGINEERING AND GENOMICS UNIT-I PART A 1. State four safety guidelines in creating rDNA. i Care should be taken that novel organism created should not be normal ii. Treatment with alkaline phosphatase to increase the number of recombinants iii. Appropriate insert and vector size should be selected. iv. Proper technique for increasing the transformation efficiency should be selected. 2. What are the basic properties of a plasmid vector? (MAY 2014) Low molecular weight, ability to confer readily selectable phenotypic trait on host cells, single sites for a large number of restriction endonuclease preferably in genes with a readily scorable phentotype. 3. What are DNA modifying enzymes? Give one example.(DEC ‘2010) (May’ 2012,2016) These are the enzymes that are involved in the degradation synthesis and alteration of nucleic acids.DNA ligase - An enzyme which seals single stranded nicks between adjacent nucleotides in a duplex DNA chain. Alkaline phosphatase - Removes the 5’ phosphates and replaces it by hydroxyl group. 4. What are isoschizomers and Neoschizomers? Give any two examples.(DEC’2013, 2015) Isoschizomers are the enzymes obtained from different sources but recognizes the same target.Ex-SmaI ,XmaI. Neoschizomers are restriction enzymes that recognize the same nucleotide sequence as their prototype but cleave at a different site. For example:Prototype MaeII A^CGT produces DNA fragments with a 2-base 5' extension Neoschizomer TaiI ACGT^ produces DNA fragments with a 4-base 3' extension 5. If you add ligase to alkaline phosphates treated vector does the ligation takes place? Justify your answer. No. because the phosphate group at 5 end is replaced by hydroxyl group, so phosphodiester linkage is not formed. 6. Define restriction endonuclease.(MAY 2013,2014), (Dec' 2016) Nuclease that recognizes specific nucleotide sequences in a DNA molecule and cleaves or nicks the DNA particular site. 7. State the difference between 3 types of restriction endonuclease Type I – recognizes and cleaves the DNA upto 1000 bp away from the site. Type II – recognizes and cleaves at specific target site. Type III- recognizes and cleaves at 26-30 bp away from the target size. 8. Give few examples for restriction endonuclease. (MAY 2013), (Dec' 2016). Sma I, Hae III, Hind III, Bam HI. 9. Difference between cohesive sticky ends & blunt end. S.NO STICKY END BLUNT END Cut he bases around the center Cut he bases at the of symmetry center of symmetry Promotes effective ligation Ligation efficiency is 2. less BT 6603 Genetic Engg and Genomics (VI sem) Department of Biotechnology 2018-19 Eg.GAATTC → G GAATTC → GAA AATTC TTC 3. CTTAAG CTTAA CTTAAG CTT G AAG 10. Give the steps involved in creating a recombinant plasmid. Isolation of gene of interest, selection of vector, cutting vector with restriction enzyme, joining with DNA ligase, transformation, screening and expression of the cloned genes. 11. Draw a neat diagram of plasmid vector. 12. Which type of restriction enzyme is used for creating rDNA? (May’ 2012) Justify? Type II restriction enzyme because they produce cleavage at or near host specificity site. 13. What are Biotin and Avidin? What is their role in rDNA technology? (DEC’ 2010). Avidin is a tetrameric biotin-binding protein produced in the oviducts of birds, reptiles and amphibians deposited in the whites of their eggs. Biotin, historically known as Vitamin H is a water-soluble B-complex vitamin (vitamin B7) discovered by Bateman in 1916. It is composed of a ureido (tetrahydroimidizalone) ring fused with a tetrahydrothiophene ring. A valeric acid substituent is attached to one of the carbon atoms of the tetrahydrothiophene ring. Biotin is a coenzyme in the metabolism of fatty acids and leucine, and it plays a role in gluconeogenesis. Their role in rDNA technology is for tagging purpose. 14. What is RCGM and mention its role (MAY’ 2010) Review Committee on Genetic Modification (India). Monitors research projects safety aspects 15. Differentiate a promoter and an enhancer (MAY’ 2011), (Dec' 2016) Enhancer DNA sequences bind transcription factors called enhancer-binding proteins which increase the rate of transcription. Enhancer sequences may be kilobases away from the gene they influence. An enhancer complex may interact with promoter complexes by bringing the sites into direct contact. Promoter a regulatory region of DNA located upstream of a gene, providing a control point for regulated gene transcription 16. Give a name of a modifying enzyme that helps in converting blunt end DNA to sticky ends (MAY’ 2011, 2012) Terminal transferase 17. What is meant by expression vector? (May’ 2012), (Dec' 2016) Plasmids or phages carrying promoter regions to cause expression of inserted DNA sequences 18. Define Cosmid.(MAY 2013), (Dec' 2016). A vector designed to allow cloning of large segments of foreign DNA. They are hybrids BT 6603 Genetic Engg and Genomics (VI sem) Department of Biotechnology 2018-19 composed of the COS sites of lambda inserted into a plasmid. Helps in joining the 2 DNA fragments. 19. What are the requirements for an efficient prokaryotic expression vector? (DEC’2013), (Dec' 2016) Constructing the optimal promoter, optimizing translation initiation, maintenance of the stability of mRNA, effect of codon size ,transcription termination, plasmid copy number ,plasmid stability and host cell physiology. 20. Differentiate adaptors from linkers.(DEC’ 2010), (MAY’ 2010, 2014)) Linkers are short stretches of double stranded DNA of length 8-14 bp and have recognition site for 3-8 RE. These linkers are ligated to blunt end DNA by ligase. Adapters are linkers with cohesive ends or a linker digested with RE, before ligation. The most widely used definition is cut linkers also called as adapters. 21. What are phagemids? How are they different from cosmids? (DEC’ 2010) A phagemid or phasmid is a type of cloning vector developed as a hybrid of the filamentous phage M13 and plasmids to produce a vector that can grow as a plasmid, and also be packaged as single stranded DNA in viral particles. Phagemids contain an origin of replication (ori) for double stranded replication, as well as an f1 ori to enable single stranded replication and packaging into phage particles. Many commonly used plasmids contain an f1 ori and are thus phagemids. Phagemids: F1 origin cloned into a plasmid Cosmids: Cos sites cloned into a plasmid 22. Name any two eukaryotic Transcription factors. Give their functions. (MAY 2013), (Dec' 2016) General transcription factors of the pre-initiation complex are required for the expression of all structural genes transcribed by RNA polymerase II (Ex): TFIID → TBP + TFIIA, TFIIB, TFIIF, TFIIE,TFIIH Specific transcription factors bind to proximal promoter DNA sequences or distal enhancer elements. (Ex): homeodomain proteins, p53, etc 23. Name any two special features of pBR 322. (MAY 2013) pBR322 is 4361 base pairs in length and contains the replicon of plasmid pMB1, the ampR gene, encoding the ampicillin resistance protein (source plasmid RSF2124) and the tetR gene, encoding the tetracycline resistance protein (source plasmid pSC101). The plasmid has unique restriction sites for more than forty restriction enzymes. 11 of these 40 sites lie within the tetR gene. There are 2 sites for restriction enzymes HindIII and ClaI within the promoter of the tetR gene. There are 6 key restriction sites inside the ampR gene. The origin of replication or ori site in this plasmid is pMB1 (a close relative of ColE1). 24. What are the applications of polylinkers. (Dec 2014) A multiple cloning site (MCS), also called a polylinker, is a short segment of DNA which contains many (up to ~20) restriction sites - a standard feature of engineered plasmids. Restriction sites within an MCS are typically unique, occurring only once within a given plasmid. MCSs are commonly used during procedures involving molecular cloning or subcloning. Extremely useful in biotechnology, bioengineering, and BT 6603 Genetic Engg and Genomics (VI sem) Department of Biotechnology 2018-19 molecular genetics, MCSs let a molecular biologist insert a piece of DNA or several pieces of DNA into the region of the MCS. This can be used to create transgenic organisms, also known as genetically modified organisms (GMOs). 25. Write briefly about genetic makeup of T4 phage.
Recommended publications
  • Gibson Assembly Cloning Guide, Second Edition
    Gibson Assembly® CLONING GUIDE 2ND EDITION RESTRICTION DIGESTFREE, SEAMLESS CLONING Applications, tools, and protocols for the Gibson Assembly® method: • Single Insert • Multiple Inserts • Site-Directed Mutagenesis #DNAMYWAY sgidna.com/gibson-assembly Foreword Contents Foreword The Gibson Assembly method has been an integral part of our work at Synthetic Genomics, Inc. and the J. Craig Venter Institute (JCVI) for nearly a decade, enabling us to synthesize a complete bacterial genome in 2008, create the first synthetic cell in 2010, and generate a minimal bacterial genome in 2016. These studies form the framework for basic research in understanding the fundamental principles of cellular function and the precise function of essential genes. Additionally, synthetic cells can potentially be harnessed for commercial applications which could offer great benefits to society through the renewable and sustainable production of therapeutics, biofuels, and biobased textiles. In 2004, JCVI had embarked on a quest to synthesize genome-sized DNA and needed to develop the tools to make this possible. When I first learned that JCVI was attempting to create a synthetic cell, I truly understood the significance and reached out to Hamilton (Ham) Smith, who leads the Synthetic Biology Group at JCVI. I joined Ham’s team as a postdoctoral fellow and the development of Gibson Assembly began as I started investigating methods that would allow overlapping DNA fragments to be assembled toward the goal of generating genome- sized DNA. Over time, we had multiple methods in place for assembling DNA molecules by in vitro recombination, including the method that would later come to be known as Gibson Assembly.
    [Show full text]
  • The Transgenic Core Facility
    Genetic modification of the mouse Ben Davies Wellcome Trust Centre for Human Genetics Genetically modified mouse models • The genome projects have provided us only with a catalogue of genes - little is know regarding gene function • Associations between disease and genes and their variants are being found yet the biological significance of the association is frequently unclear • Genetically modified mouse models provides a powerful method of assaying gene function in the whole organism Sequence Information Human Mutation Gene of Interest Mouse Model Reverse Genetics Phenotype Gene Function How to study gene function Human patients: • Patients with gene mutations can help us understand gene function • Human’s don’t make particularly willing experimental organisms • An observational science and not an experimental one • Genetic make-up of humans is highly variable • Difficult to pin-point the gene responsible for the disease in the first place Mouse patients: • Full ability to manipulate the genome experimentally • Easy to maintain in the laboratory – breeding cycle is approximately 2 months • Mouse and human genomes are similar in size, structure and gene complement • Most human genes have murine counterparts • Mutations that cause disease in human gene, generally produce comparable phentoypes when mutated in mouse • Mice have genes that are not represented in other model organisms e.g. C. elegans, Drosophila – genes of the immune system What can I do with my gene of interest • Gain of function – Overexpression of a gene of interest “Transgenic
    [Show full text]
  • Review on Applications of Genetic Engineering and Cloning in Farm Animals
    Journal of Dairy & Veterinary Sciences ISSN: 2573-2196 Review Article Dairy and Vet Sci J Volume 4 Issue 1 - October 2017 Copyright © All rights are reserved by Ayalew Negash DOI: 10.19080/JDVS.2017.04.555629 Review on Applications of Genetic Engineering And Cloning in Farm animals Eyachew Ayana1, Gizachew Fentahun2, Ayalew Negash3*, Fentahun Mitku1, Mebrie Zemene3 and Fikre Zeru4 1Candidate of Veterinary medicine, University of Gondar, Ethiopia 2Candidate of Veterinary medicine, Samara University, Ethiopia 3Lecturer at University of Gondar, University of Gondar, Ethiopia 4Samara University, Ethiopia Submission: July 10, 2017; Published: October 02, 2017 *Corresponding author: Ayalew Negash, Lecturer at University of Gondar, College of Veterinary Medicine and science, University of Gondar, P.O. 196, Gondar, Ethiopia, Email: Abstract Genetic engineering involves producing transgenic animal’s models by using different techniques such as exogenous pronuclear DNA highly applicable and crucial technology which involves increasing animal production and productivity, increases animal disease resistance andmicroinjection biomedical in application. zygotes, injection Cloning ofinvolves genetically the production modified embryonicof animals thatstem are cells genetically into blastocysts identical and to theretrovirus donor nucleus.mediated The gene most transfer. commonly It is applied and recent technique is somatic cell nuclear transfer in which the nucleus from body cell is transferred to an egg cell to create an embryo that is virtually identical to the donor nucleus. There are different applications of cloning which includes: rapid multiplication of desired livestock, and post-natal viabilities. Beside to this Food safety, animal welfare, public and social acceptance and religious institutions are the most common animal conservation and research model.
    [Show full text]
  • Schematic and Time Line for the Generation of Knockout Mice Aurora Burds Connor, Feb 2007
    Schematic and Time Line for the Generation of Knockout Mice Aurora Burds Connor, Feb 2007 Making the DNA construct Time Line (in your lab) The Transgenic Facility also has a “Beginner’s Guide to Gene Targeting” on the website in Methods. We are also happy to assist with advice and reagents to help you make an effective targeting construct. It is recommended that you contact Aurora ([email protected]) early in the process. Acquire the genomic DNA for your gene or locus of interest You can either screen a 129/Sv genomic library 1-3 months or use genomic databases, public BACs and PCR for a C57BL/6 background Make a DNA construct. DNA from the genomic locus (orange) flanks the DNA to be inserted (blue) and it is placed in a bacterial plasmid. This construct is designed to add new pieces of DNA into the mouse genome at a 3-6 months desired locus. In a knockout experiment, the new DNA will replace the normal gene. Linearize the construct and give it to the Rippel ES Cell Facility at MIT Generating Targeted ES Cells Time Line (done by the Facility) Day 0 Insert the DNA into embryonic stem cells (ES cells) via electroporation. In the cells, the homologous pieces of DNA recombine. This inserts new DNA from the construct into the desired locus, usually replacing a portion of the original genome. Place the ES cells in selective media, allowing for the growth of cells containing the DNA construct. - The DNA construct has a drug-resistance marker Day 1-10 - Very few of the cells take up the construct – cells that do not will die because they are not resistant to the drug added to the media.
    [Show full text]
  • Production of Lentiviral Vectors Using Novel, Enzymatically Produced, Linear DNA
    Gene Therapy (2019) 26:86–92 https://doi.org/10.1038/s41434-018-0056-1 ARTICLE Production of lentiviral vectors using novel, enzymatically produced, linear DNA 1 2,3 4 4 4 Rajvinder Karda ● John R. Counsell ● Kinga Karbowniczek ● Lisa J. Caproni ● John P. Tite ● Simon N. Waddington1,5 Received: 17 October 2018 / Revised: 27 November 2018 / Accepted: 5 December 2018 / Published online: 14 January 2019 © The Author(s) 2019. This article is published with open access Abstract The manufacture of large quantities of high-quality DNA is a major bottleneck in the production of viral vectors for gene therapy. Touchlight Genetics has developed a proprietary abiological technology that addresses the major issues in commercial DNA supply. The technology uses ‘rolling-circle’ amplification to produce large quantities of concatameric DNA that is then processed to create closed linear double-stranded DNA by enzymatic digestion. This novel form of DNA, Doggybone™ DNA (dbDNA™), is structurally distinct from plasmid DNA. Here we compare lentiviral vectors production from dbDNA™ and plasmid DNA. Lentiviral vectors were administered to neonatal mice via intracerebroventricular fi 1234567890();,: 1234567890();,: injection. Luciferase expression was quanti ed in conscious mice continually by whole-body bioluminescent imaging. We observed long-term luciferase expression using dbDNA™-derived vectors, which was comparable to plasmid-derived lentivirus vectors. Here we have demonstrated that functional lentiviral vectors can be produced using the novel dbDNA™ configuration for delivery in vitro and in vivo. Importantly, this could enable lentiviral vector packaging of complex DNA sequences that have previously been incompatible with bacterial propagation systems, as dbDNA™ technology could circumvent such restrictions through its phi29-based rolling-circle amplification.
    [Show full text]
  • Transient Gene Expression Following DNA Transfer to Plant Cells: the Phenomenon; Its Causes and Some Applications
    Transient Gene Expression Following DNA Transfer to Plant Cells: The Phenomenon; Its Causes and Some Applications. A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Cellular and Molecular Biology in the University of Canterbury. RICHARD JOHN WELD 2000 1 ..... ACKNOWLEDGEMENTS ..... I would like to thank Dr Jack Heinemann, Dr Colin Eady and Dr Sandra Jackson for their supervision of this project, for their criticism and their encouragement. I would also like to thank Dr Ross Bicknell for his advice and support. I acknowledge the generosity of Dr Jim Haseloff for the gift of plasmid pBINmgfp5-ER, Dr Ed Morgan for the gift of Nicotiana plumbaginifolia suspension cells and advice on their culture, Dr Steve Scofield for the gift ofpSLJll 01, Dr Nicole Houba-Herin for the gift ofpNT103 andpNT804, Dr Jerzy Paszkowski for the gift ofpMDSBAR, Dr Andrew Gleave for the gift ofpART8 and pART7, Dr n Yoder for the gift ofpAL144 and Dr Bernie Carroll for information on the construction of pSLJ3 621. This project was made possible by funds provided by a FfRST Doctoral Fellowship provided through the New' Zealand Institute for Crop and Food Research and a University of Canterbury Doctoral Scholarship. I would like to offer my grateful thanks to all those staff and students of the Plant and Microbial Sciences Department and those staff and students at the New Zealand Institute for Crop and Food Research at Lincoln who have assisted me in various ways during the course of my research and to those who have offered their friendship, support and encouragement.
    [Show full text]
  • P[Acman]: a BAC Transgenic Platform for Targeted Insertion of Large DNA
    RESEARCH ARTICLE specific integration using the integrase of bac- teriophage fC31 has been demonstrated in Drosophila (11). fC31-integrase mediates recom- P[acman]: A BAC Transgenic Platform bination between an engineered “docking” site, containing a phage attachment (attP) site, in the fly genome, and a bacterial attachment (attB) for Targeted Insertion of Large DNA site in the injected plasmid. Three pseudo-attP docking sites were identified within the Dro- Fragments in D. melanogaster sophila genome, potentially bypassing desired integration events in engineered attP sites. For- Koen J. T. Venken,1 Yuchun He,2,3 Roger A. Hoskins,4 Hugo J. Bellen1,2,3,5* tunately, they did not seem receptive to attB plasmids, because all integration events were at We describe a transgenesis platform for Drosophila melanogaster that integrates three recently the desired attP sites (11). Thus, recovery of large developed technologies: a conditionally amplifiable bacterial artificial chromosome (BAC), DNA fragments by gap repair into a low-copy recombineering, and bacteriophage fC31–mediated transgenesis. The BAC is maintained at low plasmid containing an attB site, followed by copy number, facilitating plasmid maintenance and recombineering, but is induced to high copy fC31-mediated transformation, might allow the number for plasmid isolation. Recombineering allows gap repair and mutagenesis in bacteria. Gap integration of any DNA fragment into any en- repair efficiently retrieves DNA fragments up to 133 kilobases long from P1 or BAC clones. fC31- gineered attP docking site dispersed throughout mediated transgenesis integrates these large DNA fragments at specific sites in the genome, the fly genome. allowing the rescue of lethal mutations in the corresponding genes.
    [Show full text]
  • SGI-DNA-Bioxp-Lucigen-Webinar
    Accelerate your Research with Synthetic DNA and Hands-free Cloning Brought to you in collaboration with Lucigen and SGI-DNA Introduction Julie K. Robinson Synthetic Genomics, SGI-DNA Sr. Product Manager, Synthetic Biology The Potential of Synthetic Biology C O P Y R I G H T © 2 0 1 7 S Y N T H E T I C G E N O M I C S , I N C. | 2 Synthetic Genomics Collaborative Efforts Advance C O P Y R I G H T © 2 0 1 7 S Y N T H E T I C G E N O M I C S , I N C. | 3 Advancing Genomic Research Solutions, SGI-DNA Reagents Instruments ● Gibson Assembly® enables rapid assembly ● BioXp™ 3200 – an automated, benchtop of multiple DNA fragments genomics workstation ● Vmax electrocompetent cells for protein ● Create genes, genetic elements and complex expression genetic sequences ● Uses electronically transmitted sequence to build genes Services Bioinformatics ● Synthesize custom DNA of varying size ● Expert bioinformatics support, which and complexity includes whole genome annotation, gene expression analysis, and other types of ● Utilizes patented Gibson Assembly® sequence design method and error correction technology ● Archetype® software enables ‘omics-based ● Cell engineering services understanding of data to enable researchers ● NGS and plasmid preparation services to discover, analyze and build genes C O P Y R I G H T © 2 0 1 7 S Y N T H E T I C G E N O M I C S , I N C. | 4 Common Genomic applications Applications of DNA Cloning Study of Genomes & Transgenic Gene Expression Gene Therapy Organisms Biopharmaceutical Recombinant Protein Cell Engineering Research Production C O P Y R I G H T © 2 0 1 7 S Y N T H E T I C G E N O M I C S , I N C.
    [Show full text]
  • Qiaprep® Miniprep Handbook
    December 2020 QIAprep® Miniprep Handbook For purification of molecular biology–grade DNA Plasmid DNA Large plasmid DNA (>10 kb) Low-copy plasmid DNA and cosmids Plasmid DNA prepared by other methods Sample to Insight__ Contents Kit Contents ................................................................................................................ 4 Storage ..................................................................................................................... 6 Intended Use .............................................................................................................. 6 Safety Information ....................................................................................................... 7 Quality Control ........................................................................................................... 7 Introduction ................................................................................................................ 8 Low throughput ................................................................................................ 8 High throughput ............................................................................................... 8 Applications using QIAprep-purified DNA ........................................................... 9 Automated purification of DNA on QIAcube instruments ....................................... 9 Principle ........................................................................................................ 10 Using LyseBlue reagent ..................................................................................
    [Show full text]
  • Dna Expression Construct Dna-Expressionskonstrukt Produit De Recombinaison D’Adn Utilisable À Des Fins D’Expression Génique
    (19) TZZ Z_T (11) EP 2 655 620 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/11 (2006.01) C12N 15/09 (2006.01) 12.08.2015 Bulletin 2015/33 C12N 15/85 (2006.01) (21) Application number: 11801756.5 (86) International application number: PCT/EP2011/073984 (22) Date of filing: 23.12.2011 (87) International publication number: WO 2012/085282 (28.06.2012 Gazette 2012/26) (54) DNA EXPRESSION CONSTRUCT DNA-EXPRESSIONSKONSTRUKT PRODUIT DE RECOMBINAISON D’ADN UTILISABLE À DES FINS D’EXPRESSION GÉNIQUE (84) Designated Contracting States: • KIM YOUNGMI ET AL: "Superior structure AL AT BE BG CH CY CZ DE DK EE ES FI FR GB stability and selectivity of hairpin nucleic acid GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO probes with an L-DNA stem.", NUCLEIC ACIDS PL PT RO RS SE SI SK SM TR RESEARCH 2007 LNKD- PUBMED: 17959649, vol. 35, no. 21, 2007, pages 7279-7287, XP007920248, (30) Priority: 23.12.2010 GB 201021873 ISSN: 1362-4962 • JUNJI KAWAKAMI ET AL: "Thermodynamic (43) Date of publication of application: Analysis of Duplex Formation of the Heterochiral 30.10.2013 Bulletin 2013/44 DNA with L-Deoxyadenosine", ANALYTICAL SCIENCES, vol. 21, no. 2, 1 February 2005 (73) Proprietor: Mologen AG (2005-02-01), pages 77-82, XP55019354, ISSN: 14195 Berlin (DE) 0910-6340, DOI: 10.2116/analsci.21.77 • URATAH ET AL: "SYNTHESIS AND PROPERTIES (72) Inventors: OF MIRROR-IMAGE DNA", NUCLEIC ACIDS • SCHROFF, Matthias RESEARCH, OXFORD UNIVERSITY PRESS, 14195 Berlin (DE) SURREY, GB, vol.
    [Show full text]
  • Modification of Bacterial Artificial Chromosomes Through Chi-Stimulated Homologous Recombination and Its Application in Zebrafish Transgenesis
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 5121–5126, April 1998 Genetics Modification of bacterial artificial chromosomes through Chi-stimulated homologous recombination and its application in zebrafish transgenesis JASON R. JESSEN*, ANMING MENG*, RAMSAY J. MCFARLANE†,BARRY H. PAW‡,LEONARD I. ZON‡, GERALD R. SMITH†, AND SHUO LIN*§ *Institute of Molecular Medicine and Genetics and Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912; †Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and ‡Howard Hughes Medical Institute, Division of HematologyyOncology, Children’s Hospital, Harvard Medical School, Boston, MA 02115 Communicated by Leonard S. Lerman, Massachusetts Institute of Technology, Cambridge, MA, February 24, 1998 (received for review October 28, 1997) ABSTRACT The modification of yeast artificial chromo- introduction of mutations that mimic genetic defects (8). somes through homologous recombination has become a Given the large cloning capacity of YACs (9), it is also possible useful genetic tool for studying gene function and enhanc- to perform unique in vivo studies on gene regulation. However, erypromoter activity. However, it is difficult to purify intact despite the ease of modifying YACs, the production of trans- yeast artificial chromosome DNA at a concentration sufficient genic animals with such large molecules of DNA is a formi- for many applications. Bacterial artificial chromosomes dable task. Methods aimed at improving both the yield and (BACs) are vectors that can accommodate large DNA frag- integrity of purified YAC DNA have been established (10, 11), ments and can easily be purified as plasmid DNA. We report yet it is still difficult to purify YAC DNA that is both herein a simple procedure for modifying BACs through ho- structurally intact and at a concentration sufficient for many mologous recombination using a targeting construct contain- experimental applications including zebrafish transgenesis.
    [Show full text]
  • Bacterial Transfer of Large Functional Genomic DNA Into Human Cells
    Gene Therapy (2005) 12, 1559–1572 & 2005 Nature Publishing Group All rights reserved 0969-7128/05 $30.00 www.nature.com/gt RESEARCH ARTICLE Bacterial transfer of large functional genomic DNA into human cells A Laner1,7, S Goussard2,7, AS Ramalho3, T Schwarz1, MD Amaral3,4, P Courvalin2, D Schindelhauer1,5,6 and C Grillot-Courvalin2 1Department of Medical Genetics, Childrens Hospital, Ludwig Maximilians University, Munich, Germany; 2Unite´ des Agents Antibacte´riens, Institut Pasteur, Paris, France; 3Centre of Human Genetics, National Institute of Health Dr Ricardo Jorge, Lisboa, Portugal; 4Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisboa, Lisboa, Portugal; 5Institute of Human Genetics, Technical University, Munich, Germany; and 6Livestock Biotechnology, Life Sciences Center Weihenstephan, Freising, Germany Efficient transfer of chromosome-based vectors into mam- and transferred into HT1080 cells where it was transcribed, malian cells is difficult, mostly due to their large size. Using a and correctly spliced, indicating transfer of an intact and genetically engineered invasive Escherichia coli vector, functional locus of at least 80 kb. These results demonstrate alpha satellite DNA cloned in P1-based artificial chromosome that bacteria allow the cloning, propagation and transfer of was stably delivered into the HT1080 cell line and efficiently large intact and functional genomic DNA fragments and their generated human artificial chromosomes de novo. Similarly, subsequent direct delivery into cells for functional analysis. a large genomic cystic fibrosis transmembrane conductance Such an approach opens new perspectives for gene therapy. regulator (CFTR) construct of 160 kb containing a portion of Gene Therapy (2005) 12, 1559–1572. doi:10.1038/ the CFTR gene was stably propagated in the bacterial vector sj.gt.3302576; published online 23 June 2005 Keywords: gene delivery; bacterial E.
    [Show full text]