SGI-DNA-Bioxp-Lucigen-Webinar

Total Page:16

File Type:pdf, Size:1020Kb

SGI-DNA-Bioxp-Lucigen-Webinar Accelerate your Research with Synthetic DNA and Hands-free Cloning Brought to you in collaboration with Lucigen and SGI-DNA Introduction Julie K. Robinson Synthetic Genomics, SGI-DNA Sr. Product Manager, Synthetic Biology The Potential of Synthetic Biology C O P Y R I G H T © 2 0 1 7 S Y N T H E T I C G E N O M I C S , I N C. | 2 Synthetic Genomics Collaborative Efforts Advance C O P Y R I G H T © 2 0 1 7 S Y N T H E T I C G E N O M I C S , I N C. | 3 Advancing Genomic Research Solutions, SGI-DNA Reagents Instruments ● Gibson Assembly® enables rapid assembly ● BioXp™ 3200 – an automated, benchtop of multiple DNA fragments genomics workstation ● Vmax electrocompetent cells for protein ● Create genes, genetic elements and complex expression genetic sequences ● Uses electronically transmitted sequence to build genes Services Bioinformatics ● Synthesize custom DNA of varying size ● Expert bioinformatics support, which and complexity includes whole genome annotation, gene expression analysis, and other types of ● Utilizes patented Gibson Assembly® sequence design method and error correction technology ● Archetype® software enables ‘omics-based ● Cell engineering services understanding of data to enable researchers ● NGS and plasmid preparation services to discover, analyze and build genes C O P Y R I G H T © 2 0 1 7 S Y N T H E T I C G E N O M I C S , I N C. | 4 Common Genomic applications Applications of DNA Cloning Study of Genomes & Transgenic Gene Expression Gene Therapy Organisms Biopharmaceutical Recombinant Protein Cell Engineering Research Production C O P Y R I G H T © 2 0 1 7 S Y N T H E T I C G E N O M I C S , I N C. | 6 Synthetic Biology Applications: Gene and Genome Modification Genome Modification Synthetic Biology provides precision in genome modification C O P Y R I G H T © 2 0 1 7 S Y N T H E T I C G E N O M I C S , I N C. | 7 Synthetic Biology Applications : Variant Library Construction Traditional Library Construction Prep DNA Mutagenesis Clone Transform Screen Synthetic Library Construction Design Clone Transform Screen Synthetic variant libraries allow a systematic method providing a greater pool of possible variants C O P Y R I G H T © 2 0 1 7 S Y N T H E T I C G E N O M I C S , I N C. | 8 Cloning and the BioXp™ System The Gibson Assembly® Method Largest Synthetic Construct to date 1.2 Mbp Mycoplasma Genome Developed in 2009 by Dr. Daniel Gibson to construct the first synthetic cell. Gibson Assembly® method has become a mainstay in many synthetic biology labs due to its ease-of-use, robustness, and flexibility. C O P Y R I G H T © 2 0 1 7 S Y N T H E T I C G E N O M I C S , I N C. | 10 Gibson Assembly® Cloning: Faster & More Efficient Than Traditional Cloning C O P Y R I G H T © 2 0 1 7 S Y N T H E T I C G E N O M I C S , I N C. | 11 BioXp™ 3200 System Overview BioXp™ Overview The BioXp™ system is the world’s first DNA printer. This personal genomic work station provides rapid hands-free applications from building synthetic DNA, directly cloning these fragments in an overnight run and constructs libraries for Next Generation Sequencing all in a 2 x 2 foot space on your benchtop. The BioXp™ system is evolving to provide additional capabilities along the genomic workflow. BioXp™ current applications: • BioXp Tiles – builds 400 bp to 1800 bp DNA fragments • pUCGA Cloning – direct assembly & cloning into a subcloning vector • Custom Cloning – direct assembly cloning into customer vector • NGS Library Construction Kit – builds libraries for Illumina Next Generation Sequencing platform BioXp™ 3200 System; a true genomic workstation to accelerate genomic discovery. C O P Y R I G H T © 2 0 1 7 S Y N T H E T I C G E N O M I C S , I N C. | 13 BioXp™ System Benefits • Each run offers up to 32 reactions • Hands-free assembly and cloning of 400 bp to 1.8 kb DNA fragments • Provides workflow control in obtaining DNA fragments and clones • Compatible with multiple cloning techniques • Streamlines genomic processing • Faster turnaround time than conventional methods • Simple to use – Loading the deck and starting a run takes <5 minutes The BioXp™ benefits focus to automate to help scientists accelerate genomic discovery C O P Y R I G H T © 2 0 1 7 S Y N T H E T I C G E N O M I C S , I N C. | 14 BioXp™ Product Types BioXp™ Tile BioXp™ pUCGA Cloning BioXp™ Custom Cloning BioXp™ NGS Library Prep • Linear ds DNA fragment • Cloned DNA fragment • Cloned DNA fragment • 8 rxn, 16 rxn formats • Customer sequence • Customer sequence • Customer sequence • Genomic or Plasmid DNA • No modifications • pUCGA Amp • Customer vector • 5 hour prep time • Pool of DNA • Pool of Clones • Pool of Clones • Illumina compatible • TAT 3-5 days • TAT 3-5 days • TAT 3- 5 days • $40 - $50 / RXN • 0.11 – 0.14 bp • 0.15 bp – 0.18 bp • Intro price 0.15 bp Downstream: Cloning options: Downstream: Downstream: • Illumina sequencing • Any cloning method • Transform • Transform • Customer designs DNA • Confirm Full length • Confirm Full length • Sequence Verify • Sequence Verify • Subclone into vector of choice • Ready to use BioXp™ products add flexibility to streamline tedious benchwork. C O P Y R I G H T © 2 0 1 7 S Y N T H E T I C G E N O M I C S , I N C. | 15 How do I engage with the BioXp? BioXp™ 3200 System Workflow Submit the sequences you’d like to build. Day 0 SGIDNA reviews the sequence, designs the Day 4/5 oligos and creates your custom kit. The BioXp kit is shipped to you in 3 – 5 days. You can load the instrument and start the job in about 10 minutes to run overnight. Day 5/6 Your DNA fragments or cloning reaction is ready for your downstream workflow. Day 5/6 C O P Y R I G H T © 2 0 1 7 S Y N T H E T I C G E N O M I C S , I N C. | 17 Modular BioXp™ Deck Key Components: • Thermocycler DNA purification • Chilled locations • 8-Well strip holder • DNA purification BioXp™ deck provides great flexibility and simplicity with a modular design C O P Y R I G H T © 2 0 1 7 S Y N T H E T I C G E N O M I C S , I N C. | 18 Customized BioXp™ Product Map Page 1 Outlines Project details, location of Tiles or clones in the Recovery plate Green – high likelihood of successful assembly Red – more challenging construct to assemble Page 2 Reagent components included in kit Match correct sizes of materials Module A – store at +4C Module B/C – store at -20C Product map outlines sequences and included reagents. C O P Y R I G H T © 2 0 1 7 S Y N T H E T I C G E N O M I C S , I N C. | 19 BioXp™ Tiles Current BioXp™ Compatibility Guidelines BioXp™ 3200 DNA Construct Specifications Size Ranges 400 bp to 1800 bp DNA Fragments GC Rich Complexity 400 bp to 1 kb, 20 – 70% GC > 1 kb to 1.8 kb, 40 – 60% GC Composition A, T, C or G residues only Sequence Complexity Low sequence complexity (i.e. tandem repeats etc) Sequence analysis will determine best approach for assembly Fidelity Error corrected to minimize the occurrence of mutations Yield Approximate yield: 200 ng of purified, linear dsDNA PCR product. Actual yield varies per construct. Cloning results in a completed cloning reaction ready to transform. Format 96-well plate format in final volume of 45 µl in TE. Sequences outside of compatibility range can be built by SGI-DNA Synthesis Team. C O P Y R I G H T © 2 0 1 7 S Y N T H E T I C G E N O M I C S , I N C. | 21 BioXp™ system builds a range of DNA fragments C ------- 40% GC ----------- C --------- 45% GC -------- Construct Size (bp) control 1416 1 430 2 660 3 890 C ----------- 55% GC ------- C ---------- 60% GC---------- 4 1120 5 1350 6 1580 7 1810 ladder 2-log C O P Y R I G H T © 2 0 1 7 S Y N T H E T I C G E N O M I C S , I N C. | 22 BioXp™ Cloning BioXp™ Custom Cloning Overview The BioXp™ 3200 is the first and only automated cloning system that allows scientists to build synthetic genes and clone them directly into their vector of choice hands-free in their lab. .Eliminates subcloning .Up to 32 custom cloning reaction sizes into 1 – 4 vectors in a single run .Job yields both tile and cloned product .Single button processing (approx. 18 hours) .Supports DNA samples with low and high 400 bp – 1 kb, GC (20 -70%) ; >1 kb - 1.8 kb, GC (40 - 60%) .Protocols, QC methods provided on the the BioXp™ Custom Cloning web page C O P Y R I G H T © 2 0 1 7 S Y N T H E T I C G E N O M I C S , I N C.
Recommended publications
  • Improving DNA Plasmid Production in Escherichia Coli
    Improving DNA Plasmid Production in Escherichia Coli by ADAM SINGER (Under the Direction of Mark A. Eiteman) ABSTRACT The ability to produce large quantities of plasmid DNA is imperative for wide scale availability of DNA vaccines. Large scale, high yield production relies on the synergy between host strain, plasmid, medium and production scheme. Screening as many variables as quickly and cost effectively as possible is the goal. In this study, Escherichia coli strains were transformed with two plasmids and screened for plasmid yield in shake flasks in chemically defined medium supplemented with either glucose or glycerol. High yield candidates were grown in feed batch fermentations at two specific growth rates, µ = 0.14 h-1 and µ = 0.24 h-1. As predicted, high production in shake flasks was predictive of high production in fermentations. Using our media and process, we were able to reach volumetric yields of approximately 600 mg/L and specific yields of approximately 17.82 mg/g, regardless of growth rate. We were also able to increase productivity (mg/Lh) over 30%. INDEX WORDS: E. coli, fed-batch, gene therapy, plasmid production Improving DNA Plasmid Production in Escherichia Coli by ADAM SINGER B.S., Biological Engineering, University of Georgia, 1998 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2007 © 2007 Adam Singer All Rights Reserved Improving DNA Plasmid Production in Escherichia Coli by ADAM SINGER Major Professor: Mark A. Eiteman Committee: Elliot Altman Sidney Kushner Electronic Version Approved: Maureen Grasso Dean of the Graduate School The University of Georgia August 2007 iv DEDICATION To my wife Dana and my daughter Sydney-Rose.
    [Show full text]
  • Synthesis of a Contiguous 32-Kb Polyketide Synthase Gene Cluster
    Total synthesis of long DNA sequences: Synthesis of a contiguous 32-kb polyketide synthase gene cluster Sarah J. Kodumal, Kedar G. Patel, Ralph Reid, Hugo G. Menzella, Mark Welch, and Daniel V. Santi* Kosan Biosciences, Inc., 3832 Bay Center Place, Hayward, CA 94545 Communicated by Robert M. Stroud, University of California, San Francisco, CA, September 17, 2004 (received for review July 19, 2004) To exploit the huge potential of whole-genome sequence infor- Our efforts to this end stemmed from a desire to develop mation, the ability to efficiently synthesize long, accurate DNA heterologous expression of large polyketide synthase (PKS) sequences is becoming increasingly important. An approach pro- genes in Escherichia coli. Type I modular PKS genes encode the posed toward this end involves the synthesis of Ϸ5-kb segments of giant enzymes (among the largest proteins known) that synthe- DNA, followed by their assembly into longer sequences by con- size polyketide natural products such as erythromycin, epothi- ventional cloning methods [Smith, H. O., Hutchinson, C. A., III, lone, and tacrolimus (12). These genes reside within the high Pfannkoch, C. & Venter, J. C. (2003) Proc. Natl. Acad. Sci. USA 100, GϩC genomes of the actinomycete and myxobacterial groups of 15440–15445]. The major current impediment to the success of this prokaryotes and encode proteins with multiple sets, or modules, tactic is the difficulty of building the Ϸ5-kb components accurately, of active sites (domains). Each module catalyzes the assembly of efficiently, and rapidly from short synthetic oligonucleotide build- a specific two-carbon-unit component of the polyketide product. ing blocks.
    [Show full text]
  • Gibson Assembly Cloning Guide, Second Edition
    Gibson Assembly® CLONING GUIDE 2ND EDITION RESTRICTION DIGESTFREE, SEAMLESS CLONING Applications, tools, and protocols for the Gibson Assembly® method: • Single Insert • Multiple Inserts • Site-Directed Mutagenesis #DNAMYWAY sgidna.com/gibson-assembly Foreword Contents Foreword The Gibson Assembly method has been an integral part of our work at Synthetic Genomics, Inc. and the J. Craig Venter Institute (JCVI) for nearly a decade, enabling us to synthesize a complete bacterial genome in 2008, create the first synthetic cell in 2010, and generate a minimal bacterial genome in 2016. These studies form the framework for basic research in understanding the fundamental principles of cellular function and the precise function of essential genes. Additionally, synthetic cells can potentially be harnessed for commercial applications which could offer great benefits to society through the renewable and sustainable production of therapeutics, biofuels, and biobased textiles. In 2004, JCVI had embarked on a quest to synthesize genome-sized DNA and needed to develop the tools to make this possible. When I first learned that JCVI was attempting to create a synthetic cell, I truly understood the significance and reached out to Hamilton (Ham) Smith, who leads the Synthetic Biology Group at JCVI. I joined Ham’s team as a postdoctoral fellow and the development of Gibson Assembly began as I started investigating methods that would allow overlapping DNA fragments to be assembled toward the goal of generating genome- sized DNA. Over time, we had multiple methods in place for assembling DNA molecules by in vitro recombination, including the method that would later come to be known as Gibson Assembly.
    [Show full text]
  • The Transgenic Core Facility
    Genetic modification of the mouse Ben Davies Wellcome Trust Centre for Human Genetics Genetically modified mouse models • The genome projects have provided us only with a catalogue of genes - little is know regarding gene function • Associations between disease and genes and their variants are being found yet the biological significance of the association is frequently unclear • Genetically modified mouse models provides a powerful method of assaying gene function in the whole organism Sequence Information Human Mutation Gene of Interest Mouse Model Reverse Genetics Phenotype Gene Function How to study gene function Human patients: • Patients with gene mutations can help us understand gene function • Human’s don’t make particularly willing experimental organisms • An observational science and not an experimental one • Genetic make-up of humans is highly variable • Difficult to pin-point the gene responsible for the disease in the first place Mouse patients: • Full ability to manipulate the genome experimentally • Easy to maintain in the laboratory – breeding cycle is approximately 2 months • Mouse and human genomes are similar in size, structure and gene complement • Most human genes have murine counterparts • Mutations that cause disease in human gene, generally produce comparable phentoypes when mutated in mouse • Mice have genes that are not represented in other model organisms e.g. C. elegans, Drosophila – genes of the immune system What can I do with my gene of interest • Gain of function – Overexpression of a gene of interest “Transgenic
    [Show full text]
  • Review on Applications of Genetic Engineering and Cloning in Farm Animals
    Journal of Dairy & Veterinary Sciences ISSN: 2573-2196 Review Article Dairy and Vet Sci J Volume 4 Issue 1 - October 2017 Copyright © All rights are reserved by Ayalew Negash DOI: 10.19080/JDVS.2017.04.555629 Review on Applications of Genetic Engineering And Cloning in Farm animals Eyachew Ayana1, Gizachew Fentahun2, Ayalew Negash3*, Fentahun Mitku1, Mebrie Zemene3 and Fikre Zeru4 1Candidate of Veterinary medicine, University of Gondar, Ethiopia 2Candidate of Veterinary medicine, Samara University, Ethiopia 3Lecturer at University of Gondar, University of Gondar, Ethiopia 4Samara University, Ethiopia Submission: July 10, 2017; Published: October 02, 2017 *Corresponding author: Ayalew Negash, Lecturer at University of Gondar, College of Veterinary Medicine and science, University of Gondar, P.O. 196, Gondar, Ethiopia, Email: Abstract Genetic engineering involves producing transgenic animal’s models by using different techniques such as exogenous pronuclear DNA highly applicable and crucial technology which involves increasing animal production and productivity, increases animal disease resistance andmicroinjection biomedical in application. zygotes, injection Cloning ofinvolves genetically the production modified embryonicof animals thatstem are cells genetically into blastocysts identical and to theretrovirus donor nucleus.mediated The gene most transfer. commonly It is applied and recent technique is somatic cell nuclear transfer in which the nucleus from body cell is transferred to an egg cell to create an embryo that is virtually identical to the donor nucleus. There are different applications of cloning which includes: rapid multiplication of desired livestock, and post-natal viabilities. Beside to this Food safety, animal welfare, public and social acceptance and religious institutions are the most common animal conservation and research model.
    [Show full text]
  • Schematic and Time Line for the Generation of Knockout Mice Aurora Burds Connor, Feb 2007
    Schematic and Time Line for the Generation of Knockout Mice Aurora Burds Connor, Feb 2007 Making the DNA construct Time Line (in your lab) The Transgenic Facility also has a “Beginner’s Guide to Gene Targeting” on the website in Methods. We are also happy to assist with advice and reagents to help you make an effective targeting construct. It is recommended that you contact Aurora ([email protected]) early in the process. Acquire the genomic DNA for your gene or locus of interest You can either screen a 129/Sv genomic library 1-3 months or use genomic databases, public BACs and PCR for a C57BL/6 background Make a DNA construct. DNA from the genomic locus (orange) flanks the DNA to be inserted (blue) and it is placed in a bacterial plasmid. This construct is designed to add new pieces of DNA into the mouse genome at a 3-6 months desired locus. In a knockout experiment, the new DNA will replace the normal gene. Linearize the construct and give it to the Rippel ES Cell Facility at MIT Generating Targeted ES Cells Time Line (done by the Facility) Day 0 Insert the DNA into embryonic stem cells (ES cells) via electroporation. In the cells, the homologous pieces of DNA recombine. This inserts new DNA from the construct into the desired locus, usually replacing a portion of the original genome. Place the ES cells in selective media, allowing for the growth of cells containing the DNA construct. - The DNA construct has a drug-resistance marker Day 1-10 - Very few of the cells take up the construct – cells that do not will die because they are not resistant to the drug added to the media.
    [Show full text]
  • Production of Lentiviral Vectors Using Novel, Enzymatically Produced, Linear DNA
    Gene Therapy (2019) 26:86–92 https://doi.org/10.1038/s41434-018-0056-1 ARTICLE Production of lentiviral vectors using novel, enzymatically produced, linear DNA 1 2,3 4 4 4 Rajvinder Karda ● John R. Counsell ● Kinga Karbowniczek ● Lisa J. Caproni ● John P. Tite ● Simon N. Waddington1,5 Received: 17 October 2018 / Revised: 27 November 2018 / Accepted: 5 December 2018 / Published online: 14 January 2019 © The Author(s) 2019. This article is published with open access Abstract The manufacture of large quantities of high-quality DNA is a major bottleneck in the production of viral vectors for gene therapy. Touchlight Genetics has developed a proprietary abiological technology that addresses the major issues in commercial DNA supply. The technology uses ‘rolling-circle’ amplification to produce large quantities of concatameric DNA that is then processed to create closed linear double-stranded DNA by enzymatic digestion. This novel form of DNA, Doggybone™ DNA (dbDNA™), is structurally distinct from plasmid DNA. Here we compare lentiviral vectors production from dbDNA™ and plasmid DNA. Lentiviral vectors were administered to neonatal mice via intracerebroventricular fi 1234567890();,: 1234567890();,: injection. Luciferase expression was quanti ed in conscious mice continually by whole-body bioluminescent imaging. We observed long-term luciferase expression using dbDNA™-derived vectors, which was comparable to plasmid-derived lentivirus vectors. Here we have demonstrated that functional lentiviral vectors can be produced using the novel dbDNA™ configuration for delivery in vitro and in vivo. Importantly, this could enable lentiviral vector packaging of complex DNA sequences that have previously been incompatible with bacterial propagation systems, as dbDNA™ technology could circumvent such restrictions through its phi29-based rolling-circle amplification.
    [Show full text]
  • A Visual Demonstration of Plasmid DNA Preparation from Bacteria
    HOW-TO-'DO-IT A Visual Demonstration of Plasmid DNA Preparation from Bacteria * RALPH L. KEIL, LAURA K. PALMER Downloaded from http://online.ucpress.edu/abt/article-pdf/71/6/363/55200/20565332.pdf by guest on 02 October 2021 Unprecedented advances in unraveling mysteries of life have disease, or other areas the students or instructor want to develop. occurred as a result of the molecular biology revolution. Some Since many students know someone with diabetes (in many cases major achievements of this revolution include new methods for the they know a classmate who has diabetes or one of them may even production of therapeutic compounds, insights into mechanisms suffer from the disease), this example provides an opportunity to of gene function and regulation, and the complete sequencing of get students to actively participate in discussion, regardless of their the genomes of numerous organisms including humans. A critical academic abilities. foundation of this revolution is the ability to use the bacterium An alternative introduction is to discuss consequences of Escherichia coli (E. coli) as a factory to produce large amounts of sequencing the entire three billion base pairs of DNA of the virtually any DNA of interest by inserting it into a small, extrachro human genome (http://www.ornl.gov/sci/techresources/Human mosomal circle of DNA called a plasmid. The ease and reproducibil Genome/home.shtml). The current and potential uses of this ity of plasmid DNA isolation from bacteria permits numerous labs technology in forensic science, health care, and business decisions to conduct molecular biology experiments and greatly accelerates are all areas that may be discussed depending on what focus the progress in understanding complex biological processes.
    [Show full text]
  • Control of Ph During Plasmid Preparation by Alkaline Lysis of Escherichia Coli
    Analytical Biochemistry 378 (2008) 224–225 Contents lists available at ScienceDirect Analytical Biochemistry journal homepage: www.elsevier.com/locate/yabio Notes & Tips Control of pH during plasmid preparation by alkaline lysis of Escherichia coli Cheri Cloninger, Marilyn Felton 1, Bonnie Paul 1, Yasuko Hirakawa, Stan Metzenberg * Department of Biology, California State University, Northridge, Northridge, CA 91330, USA article info abstract Article history: Alkaline lysis of Escherichia coli is usually the method of choice for plasmid preparation, but ‘‘ghost bands” Received 9 March 2008 of denatured supercoiled DNA can result if the pH is too high or the period of lysis is too long. By replacing Available online 11 April 2008 the usual sodium hydroxide lysis solution with an arginine buffer prepared in the range of pH 11.4 to 12.0, we were able to stabilize the pH during lysis and obtain plasmid that is suitably pure for restriction digestion and DNA sequencing. Ó 2008 Elsevier Inc. All rights reserved. The extraction of plasmids from Escherichia coli is one of the most 2. To each 1 ml of cell suspension, 1 ml of a lysis solution consist- commonly used methods in molecular biology, and detergent lysis of ing of 1% (w/v) sodium dodecyl sulfate (SDS) and 0.5 M L-argi- cells in 0.1 M sodium hydroxide (NaOH,2 final) is the most wide- nine (pH 11.7) is added, and the tube is capped and rocked spread approach [1,2]. The alkalinity denatures the chromosomal briefly to mix. The lysate is allowed to sit undisturbed for 5 min.
    [Show full text]
  • Molecular Biology Services Price List Denmark; Valid from 01.09.2017
    Molecular Biology Services Price List Denmark; valid from 01.09.2017 Gene Synthesis Service Delivery times for Gene Synthesis Service: Standard Genes up to 1000 bp: 6 business days; guaranteed: 12 business days Standard Genes ≤ 3000 bp: 15 - 20 business days Standard Genes > 3000 bp: 4 additional business days/kb; Subcloning: additional 5 - 10 business days Express Genes up to 1000 bp: 4 business days Express Genes up to 1500 bp: 6 business days; up to 2000 bp: 7 days; Express Genes up to 3000 bp: 11 business days; up to 4000 bp: 13 days; Express subcloning: 4 business days Delivery time for complex gene varies. Dependent on the complexity of the gene, usually it takes 5-10 business days longer than estimated for standard genes. Part ID Service Description Price [DKK] 5001-000010 Short Standard Genes (≤ 500 bp) 1,125.00 / gene 5001-000016 Standard Genes (501-1000 bp) 2.40 / base pair 5001-000012 Long Standard Genes (1001-3000bp) 2.40 / base pair 5001-000019 Long Standard Genes (3001-4000bp) 2.70 / base pair 5001-000119 Long Standard Gene (4001-5000bp) 3.00 / base pair 5001-000219 Long Standard Gene (5001-6000bp) 3.15 / base pair 5001-000319 Long Standard Gene (6001-7000bp) 3.53 / base pair 5001-000419 Long Standard Gene (7001-8000bp) 3.53 / base pair 5001-000519 Long Standard Gene (8001-9000bp) 3.53 / base pair 5001-000619 Long Standard Gene (9001-10000bp) 3.53 / base pair 5001-000719 Long Standard Gene > 10 kb on request 5001-000021 Complex Genes on request 5001-000230 Express Fee Short Standard Gene (≤ 500 bp) 3,000.00 / gene 5001-000232
    [Show full text]
  • PA00XCSB.Pdf
    Leidos Proprietary 1. EXECUTIVE SUMMARY A summary of efforts for the planned, ongoing, and completed projects for the Malaria Vaccine Development Program (MVDP) contract for this reporting period are herein detailed. A compiled Gantt chart including activities associated with each of the projects has been created and included as an attachment to this report. Ongoing projects that will continue through FY2019 include two vaccine development projects, the CSP vaccine development project (CSP Vaccine) and liver stage vaccine development project (Liver Stage Vaccine), as well as the clinical study with RH5 (RH5.1 Clinical Study), the latter to assess long-term immunogenicity in RH5.1/AS01 vaccinees. Of note is that while both the CSP and the liver stage vaccine development projects were initiated as epitope-based projects, these have since been realigned to target whole proteins; therefore, the project names have also been realigned to remove “epitope-based.” Expansion of work on the RCR complex into a vaccine development project (RCR Complex) occurred in early FY2019 and this project will continue until the end date of the contract. Lastly, a new project, the RH5.1 human monoclonal antibody identification and development project (RH5.1 Human mAb), was initiated in early FY2019 and will continue until the end date of the contract. Two projects were completed in FY2019, the blood stage epitope-based vaccine development project and the PD1 blockade inhibitor project (PD1 Block Inh). Leidos continues to seek collaborators for information exchange under NDA, reagent exchange under MTA, and collaboration under CRADA, to expand our body of knowledge and access to reagents with minimal cost to the program.
    [Show full text]
  • Genomic/Plasmid Dna and Rna)
    NPTEL – Bio Technology – Genetic Engineering & Applications MODULE 4- LECTURE 1 ISOLATION AND PURIFICATION OF NUCLEIC ACIDS (GENOMIC/PLASMID DNA AND RNA) 4-1.1. Introduction Every gene manipulation procedure requires genetic material like DNA and RNA. Nucleic acids occur naturally in association with proteins and lipoprotein organelles. The dissociation of a nucleoprotein into nucleic acid and protein moieties and their subsequent separation, are the essential steps in the isolation of all species of nucleic acids. Isolation of nucleic acids is followed by quantitation of nucleic acids generally done by either spectrophotometric or by using fluorescent dyes to determine the average concentrations and purity of DNA or RNA present in a mixture. Isolating the genetic material (DNA) from cells (bacterial, viral, plant or animal) involves three basic steps- • Rupturing of cell membrane to release the cellular components and DNA • Separation of the nucleic acids from other cellular components • Purification of nucleic acids 4-1.2. Isolation and Purification of Genomic DNA Genomic DNA is found in the nucleus of all living cells with the structure of double- stranded DNA remaining unchanged (helical ribbon). The isolation of genomic DNA differs in animals and plant cells. DNA isolation from plant cells is difficult due to the presence of cell wall, as compared to animal cells. The amount and purity of extracted DNA depends on the nature of the cell. The method of isolation of genomic DNA from a bacterium comprises following steps (Figure 4-1.2.)- 1. Bacterial culture growth and harvest. 2. Cell wall rupture and cell extract preparation. Joint initiative of IITs and IISc – Funded by MHRD Page 1 of 57 NPTEL – Bio Technology – Genetic Engineering & Applications 3.
    [Show full text]