Update of the Human and Mouse Fanconi Anemia Genes Hongbin Dong1, Daniel W
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Structure and Function of the Human Recq DNA Helicases
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2005 Structure and function of the human RecQ DNA helicases Garcia, P L Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-34420 Dissertation Published Version Originally published at: Garcia, P L. Structure and function of the human RecQ DNA helicases. 2005, University of Zurich, Faculty of Science. Structure and Function of the Human RecQ DNA Helicases Dissertation zur Erlangung der naturwissenschaftlichen Doktorw¨urde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultat¨ der Universitat¨ Z ¨urich von Patrick L. Garcia aus Unterseen BE Promotionskomitee Prof. Dr. Josef Jiricny (Vorsitz) Prof. Dr. Ulrich H ¨ubscher Dr. Pavel Janscak (Leitung der Dissertation) Z ¨urich, 2005 For my parents ii Summary The RecQ DNA helicases are highly conserved from bacteria to man and are required for the maintenance of genomic stability. All unicellular organisms contain a single RecQ helicase, whereas the number of RecQ homologues in higher organisms can vary. Mu- tations in the genes encoding three of the five human members of the RecQ family give rise to autosomal recessive disorders called Bloom syndrome, Werner syndrome and Rothmund-Thomson syndrome. These diseases manifest commonly with genomic in- stability and a high predisposition to cancer. However, the genetic alterations vary as well as the types of tumours in these syndromes. Furthermore, distinct clinical features are observed, like short stature and immunodeficiency in Bloom syndrome patients or premature ageing in Werner Syndrome patients. Also, the biochemical features of the human RecQ-like DNA helicases are diverse, pointing to different roles in the mainte- nance of genomic stability. -
What Is Fanconi Anemia and How Is It Diagnosed
Fanconi anemia and its diagnosis: Fanconi anemia (FA), named for the Swiss pediatrician Guido Fanconi, is an inherited disorder that can lead to bone marrow failure (aplastic anemia), leukemia and/or solid tumors, with oral and gynecologic tumors being the most common. FA is almost exclusively a recessive disorder: if both parents carry a defect (mutation) in the same FA gene, each of their children has a 25% chance of inheriting the defective gene from both parents. When this happens, the child will have FA. While the total number of FA patients is not documented worldwide, scientists estimate that the carrier frequency (carriers are people carrying a defect in one copy of a particular FA gene, whose other copy of that same FA gene is normal) for FA in the U.S. is 1 in 181. The incidence rate, or the likelihood of a child being born with FA, is about 1 in 131,000 in the U.S., with approximately 31 babies born with FA each year. Scientists have now discovered 19 FA genes [FANCA, -B, -C, -D1 (also known as BRCA2), D2, E, F, G, I, J, L, M, N, O, P, Q, RAD51, BRCA1, and T]. Mutations in these genes account for more than 95% of reported Fanconi anemia cases. Mutations in FANCA, FANCC and FANCG are the most common and account for approximately 85% of FA patients worldwide. FANCD1, FANCD2, FANCE, FANCF and FANCL account for 10%, while the remaining FA genes, FANCB, FANCI, FANCJ, FANCM, FANCN, FANCO, FANCP, and FANCQ represent less than 5%. Some individuals with FA do not appear to have mutations in these 19 genes, so we anticipate that additional FA genes will be discovered in the future. -
Regulation of DNA Cross-Link Repair by the Fanconi Anemia/BRCA Pathway
Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway Hyungjin Kim and Alan D. D’Andrea1 Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA The maintenance of genome stability is critical for sur- and quadradials, a phenotype widely used as a diagnostic vival, and its failure is often associated with tumorigen- test for FA. esis. The Fanconi anemia (FA) pathway is essential for At least 15 FA gene products constitute a common the repair of DNA interstrand cross-links (ICLs), and a DNA repair pathway, the FA pathway, which resolves germline defect in the pathway results in FA, a cancer ICLs encountered during replication (Fig. 1A). Specifi- predisposition syndrome driven by genome instability. cally, eight FA proteins (FANCA/B/C/E/F/G/L/M) form Central to this pathway is the monoubiquitination of a multisubunit ubiquitin E3 ligase complex, the FA core FANCD2, which coordinates multiple DNA repair activ- complex, which activates the monoubiquitination of ities required for the resolution of ICLs. Recent studies FANCD2 and FANCI after genotoxic stress or in S phase have demonstrated how the FA pathway coordinates three (Wang 2007). The FANCM subunit initiates the pathway critical DNA repair processes, including nucleolytic in- (Fig. 1B). It forms a heterodimeric complex with FAAP24 cision, translesion DNA synthesis (TLS), and homologous (FA-associated protein 24 kDa), and the complex resem- recombination (HR). Here, we review recent advances in bles an XPF–ERCC1 structure-specific endonuclease pair our understanding of the downstream ICL repair steps (Ciccia et al. -
Open Full Page
CCR PEDIATRIC ONCOLOGY SERIES CCR Pediatric Oncology Series Recommendations for Childhood Cancer Screening and Surveillance in DNA Repair Disorders Michael F. Walsh1, Vivian Y. Chang2, Wendy K. Kohlmann3, Hamish S. Scott4, Christopher Cunniff5, Franck Bourdeaut6, Jan J. Molenaar7, Christopher C. Porter8, John T. Sandlund9, Sharon E. Plon10, Lisa L. Wang10, and Sharon A. Savage11 Abstract DNA repair syndromes are heterogeneous disorders caused by around the world to discuss and develop cancer surveillance pathogenic variants in genes encoding proteins key in DNA guidelines for children with cancer-prone disorders. Herein, replication and/or the cellular response to DNA damage. The we focus on the more common of the rare DNA repair dis- majority of these syndromes are inherited in an autosomal- orders: ataxia telangiectasia, Bloom syndrome, Fanconi ane- recessive manner, but autosomal-dominant and X-linked reces- mia, dyskeratosis congenita, Nijmegen breakage syndrome, sive disorders also exist. The clinical features of patients with DNA Rothmund–Thomson syndrome, and Xeroderma pigmento- repair syndromes are highly varied and dependent on the under- sum. Dedicated syndrome registries and a combination of lying genetic cause. Notably, all patients have elevated risks of basic science and clinical research have led to important in- syndrome-associated cancers, and many of these cancers present sights into the underlying biology of these disorders. Given the in childhood. Although it is clear that the risk of cancer is rarity of these disorders, it is recommended that centralized increased, there are limited data defining the true incidence of centers of excellence be involved directly or through consulta- cancer and almost no evidence-based approaches to cancer tion in caring for patients with heritable DNA repair syn- surveillance in patients with DNA repair disorders. -
The Role of SLX4 and Its Associated Nucleases in DNA Interstrand Crosslink Repair Wouter S
Nucleic Acids Research, 2018 1 doi: 10.1093/nar/gky1276 The role of SLX4 and its associated nucleases in DNA interstrand crosslink repair Wouter S. Hoogenboom, Rick A.C.M. Boonen and Puck Knipscheer* Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gky1276/5255686 by guest on 28 December 2018 Oncode Institute, Hubrecht Institute–KNAW and University Medical Center Utrecht, Utrecht, The Netherlands Received May 17, 2018; Revised December 11, 2018; Editorial Decision December 12, 2018; Accepted December 13, 2018 ABSTRACT the cancer predisposition syndrome Fanconi anemia (FA) that is caused by biallelic mutations in any one of the 22 A key step in the Fanconi anemia pathway of DNA currently known FA genes. Cells from FA patients are re- interstrand crosslink (ICL) repair is the ICL unhook- markably sensitive to ICL inducing agents, consistent with ing by dual endonucleolytic incisions. SLX4/FANCP the FA proteins being involved in the repair of DNA inter- is a large scaffold protein that plays a central role strand crosslinks (6,7). Indeed, it has been shown that ex- in ICL unhooking. It contains multiple domains that ogenous ICLs, for example caused by cisplatin, are repaired interact with many proteins including three different by the FA pathway (8). Although the source of the endoge- endonucleases and also acts in several other DNA nous ICL that requires the FA pathway for its repair is cur- repair pathways. While it is known that its interaction rently not known, genetic evidence points towards reactive with the endonuclease XPF-ERCC1 is required for its aldehydes (9–13). -
Encyclopedia of Life Sciences
DNA repair: Disorders Lehmann, Alan R and O‟Driscoll, Mark Alan R Lehmann and Mark O‟Driscoll Genome Damage and Stability Centre University of Sussex Falmer, Brighton BN1 9RQ UK Encyclopedia of Life Sciences DNA Repair: Disorders Abstract Deoxyribonucleic acid inside cells is being damaged continually. Cells have evolved a series of complex mechanisms to repair all types of damage. Deficiencies in these repair pathways can result in several different genetic disorders. In many cases these are associated with a greatly elevated incidence of specific cancers. Other disorders do not show increased cancer susceptibility, but instead they present with neurological abnormalities or immune defects. Features of premature ageing also often result. These disorders indicate that DNA repair and damage response processes protect us from cancer and are important for the maintenance of a healthy condition. Keywords: UV light; xeroderma pigmentosum; ataxia telangiectasia; cancer; immunodeficiency; DNA repair. Key concepts DNA is damaged continually from both endogenous and exogenous sources. Cells have evolved many different ways for repairing different types of damage Genetic defects in these pathways result in different disorders Defective DNA repair often results in an increased mutation frequency and consequent elevated incidence of cancer. Many of the DNA repair disorders are highly cancer-prone. The central nervous system appears to be particularly sensitive to DNA breaks. Several disorders caused by defective break repair are associated with neurological abnormalities including mental retardation, ataxia and microcephaly. Development of immunological diversity uses some of the enzymes required to repair double-strand breaks. Disorders caused by defects in this process are associated with immune deficiencies. -
Role of Deubiquitinating Enzymes in DNA Repair Younghoon Kee University of South Florida, [email protected]
University of South Florida Scholar Commons Cell Biology, Microbiology, and Molecular Biology Cell Biology, Microbiology, and Molecular Biology Faculty Publications 2-15-2016 Role of Deubiquitinating Enzymes in DNA Repair Younghoon Kee University of South Florida, [email protected] Tony T. Huang New York University School of Medicine Follow this and additional works at: http://scholarcommons.usf.edu/bcm_facpub Part of the Biology Commons, and the Cell and Developmental Biology Commons Scholar Commons Citation Kee, Younghoon and Huang, Tony T., "Role of Deubiquitinating Enzymes in DNA Repair" (2016). Cell Biology, Microbiology, and Molecular Biology Faculty Publications. 30. http://scholarcommons.usf.edu/bcm_facpub/30 This Article is brought to you for free and open access by the Cell Biology, Microbiology, and Molecular Biology at Scholar Commons. It has been accepted for inclusion in Cell Biology, Microbiology, and Molecular Biology Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. crossmark MINIREVIEW Role of Deubiquitinating Enzymes in DNA Repair Younghoon Kee,a Tony T Huangb Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, USAa; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USAb Both proteolytic and nonproteolytic functions of ubiquitination are essential regulatory mechanisms for promoting DNA repair and the DNA damage response in mammalian cells. Deubiquitinating enzymes (DUBs) have emerged as key players in the main- tenance of genome stability. In this minireview, we discuss the recent findings on human DUBs that participate in genome main- tenance, with a focus on the role of DUBs in the modulation of DNA repair and DNA damage signaling. -
FANCJ Regulates the Stability of FANCD2/FANCI Proteins and Protects Them from Proteasome and Caspase-3 Dependent Degradation
FANCJ regulates the stability of FANCD2/FANCI proteins and protects them from proteasome and caspase-3 dependent degradation Komaraiah Palle, Ph.D. (Kumar) Assistant Professor of Oncologic Sciences Abraham Mitchell Cancer Research Scholar Mitchell Cancer Institute University of South Alabama Outline • Fanconi anemia (FA) pathway • Role of FA pathway in Genome maintenance • FANCJ and FANCD2 functional relationship • FANCJ-mediated DDR in response to Fork-stalling Fanconi Anemia • Rare, inherited blood disorder. • 1:130,000 births Guido Fanconi 1892-1979 • Affects men and women equally. • Affects all racial and ethnic groups – higher incidence in Ashkenazi Jews and Afrikaners Birth Defects Fanconi anemia pathway • FA is a rare chromosome instability syndrome • Autosomal recessive disorder (or X-linked) • Developmental abnormalities • 17 complementation groups identified to date • FA pathway is involved in DNA repair • Increased cancer susceptibility - many patients develop AML - in adults solid tumors Fanconi Anemia is an aplastic anemia FA patients are prone to multiple types of solid tumors • Increased incidence and earlier onset cancers: oral cavity, GI and genital and reproductive tract head and neck breast esophagus skin liver brain Why? FA is a DNA repair disorder • FA caused by mutations in 17 genes: FANCA FANCF FANCM FANCB FANCG/XRCC9 FANCN/PALB2 FANCC FANCI RAD51C/FANCO FANCD1/BRCA2 FANCJ SLX4/FANCP FANCD2 FANCL ERCC2/XPF/FANCQ FANCE BRCA1/FANCS • FA genes function in DNA repair processes • FA patient cells are highly sensitive -
Fanconi Anemia, Bloom Syndrome and Breast Cancer
A multiprotein complex in DNA damage response network of Fanconi anemia, Bloom syndrome and Breast cancer Weidong Wang Lab of Genetics, NIA A Multi-protein Complex Connects Two Genomic Instability Diseases: Bloom Syndrome and Fanconi Anemia Bloom Syndrome . Genomic Instability: -sister-chromatid exchange . Cancer predisposition . Mutation in BLM, a RecQ DNA Helicase . BLM participates in: HR-dependent DSB repair Recovery of stalled replication forks . BLM works with Topo IIIa and RMI to Suppress crossover recombination Courtesy of Dr. Ian Hickson A Multi-protein Complex Connects Two Genomic Instability Diseases: Bloom Syndrome and Fanconi Anemia P I l o r t n o BLM IP kDa C HeLa BLAP 250 Nuclear Extract 200- BLM* FANCA* 116- TOPO IIIα* 97- BLAP 100 MLH1* BLM IP BLAP 75 * 66- RPA 70 IgG H 45- * 30- RPA32 IgG L 20- * 12- RPA14 Meetei et al. MCB 2003 A Multi-protein Complex Connects Two Genomic Instability Diseases: Bloom Syndrome and Fanconi Anemia P I A C N A F BLM IP HeLa FANCM= FAAP 250 BLAP 250 Nuclear Extract BLM* BLM* * FANCA* FANCA TOPO IIIα* TOPO IIIα* FAAP 100 BLAP 100 FANCB= FAAP 95 MLH1 FANCA IP BLM IP BLAP 75 BLAP 75 RPA70*/FANCG* RPA 70* FANCC*/FANCE* IgG H FANCL= FAAP 43 FANCF* RPA32* IgG L Meetei et al. MCB 2003 Meetei et al. Nat Genet. 2003, 2004, 2005 BRAFT-a Multisubunit Machine that Maintains Genome Stability and is defective in Fanconi anemia and Bloom syndrome BRAFT Super-complex Fanconi Anemia Bloom Syndrome Core Complex Complex 12 polypeptides 7 polypeptides FANCA BLM Helicase (HJ, fork, D-loop), fork FANCC regression, dHJ dissolution Topo IIIα Topoisomerase, FANCE dHJ dissolution FANCF BLAP75 RMI1 FANCG Stimulates dHJ dissolution. -
HEREDITARY CANCER PANELS Part I
Pathology and Laboratory Medicine Clinic Building, K6, Core Lab, E-655 2799 W. Grand Blvd. HEREDITARY CANCER PANELS Detroit, MI 48202 855.916.4DNA (4362) Part I- REQUISITION Required Patient Information Ordering Physician Information Name: _________________________________________________ Gender: M F Name: _____________________________________________________________ MRN: _________________________ DOB: _______MM / _______DD / _______YYYY Address: ___________________________________________________________ ICD10 Code(s): _________________/_________________/_________________ City: _______________________________ State: ________ Zip: __________ ICD-10 Codes are required for billing. When ordering tests for which reimbursement will be sought, order only those tests that are medically necessary for the diagnosis and treatment of the patient. Phone: _________________________ Fax: ___________________________ Billing & Collection Information NPI: _____________________________________ Patient Demographic/Billing/Insurance Form is required to be submitted with this form. Most genetic testing requires insurance prior authorization. Due to high insurance deductibles and member policy benefits, patients may elect to self-pay. Call for more information (855.916.4362) Bill Client or Institution Client Name: ______________________________________________________ Client Code/Number: _____________ Bill Insurance Prior authorization or reference number: __________________________________________ Patient Self-Pay Call for pricing and payment options Toll -
Insights Into Regulation of Human RAD51 Nucleoprotein Filament Activity During
Insights into Regulation of Human RAD51 Nucleoprotein Filament Activity During Homologous Recombination Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ravindra Bandara Amunugama, B.S. Biophysics Graduate Program The Ohio State University 2011 Dissertation Committee: Richard Fishel PhD, Advisor Jeffrey Parvin MD PhD Charles Bell PhD Michael Poirier PhD Copyright by Ravindra Bandara Amunugama 2011 ABSTRACT Homologous recombination (HR) is a mechanistically conserved pathway that occurs during meiosis and following the formation of DNA double strand breaks (DSBs) induced by exogenous stresses such as ionization radiation. HR is also involved in restoring replication when replication forks have stalled or collapsed. Defective recombination machinery leads to chromosomal instability and predisposition to tumorigenesis. However, unregulated HR repair system also leads to similar outcomes. Fortunately, eukaryotes have evolved elegant HR repair machinery with multiple mediators and regulatory inputs that largely ensures an appropriate outcome. A fundamental step in HR is the homology search and strand exchange catalyzed by the RAD51 recombinase. This process requires the formation of a nucleoprotein filament (NPF) on single-strand DNA (ssDNA). In Chapter 2 of this dissertation I describe work on identification of two residues of human RAD51 (HsRAD51) subunit interface, F129 in the Walker A box and H294 of the L2 ssDNA binding region that are essential residues for salt-induced recombinase activity. Mutation of F129 or H294 leads to loss or reduced DNA induced ATPase activity and formation of a non-functional NPF that eliminates recombinase activity. DNA binding studies indicate that these residues may be essential for sensing the ATP nucleotide for a functional NPF formation. -
Complex Interacts with WRN and Is Crucial to Regulate Its Response to Replication Fork Stalling
Oncogene (2012) 31, 2809–2823 & 2012 Macmillan Publishers Limited All rights reserved 0950-9232/12 www.nature.com/onc ORIGINAL ARTICLE The RAD9–RAD1–HUS1 (9.1.1) complex interacts with WRN and is crucial to regulate its response to replication fork stalling P Pichierri, S Nicolai, L Cignolo1, M Bignami and A Franchitto Department of Environment and Primary Prevention, Istituto Superiore di Sanita`, Rome, Italy The WRN protein belongs to the RecQ family of DNA preference toward substrates that mimic structures helicases and is implicated in replication fork restart, but associated with stalled replication forks (Brosh et al., how its function is regulated remains unknown. We show 2002; Machwe et al., 2006) and WS cells exhibit that WRN interacts with the 9.1.1 complex, one of enhanced instability at common fragile sites, chromo- the central factors of the replication checkpoint. This somal regions especially prone to replication fork interaction is mediated by the binding of the RAD1 stalling (Pirzio et al., 2008). How WRN favors recovery subunit to the N-terminal region of WRN and is of stalled forks and prevents DNA breakage upon instrumental for WRN relocalization in nuclear foci and replication perturbation is not fully understood. It has its phosphorylation in response to replication arrest. We been suggested that WRN might facilitate replication also find that ATR-dependent WRN phosphorylation restart by either promoting recombination or processing depends on TopBP1, which is recruited by the 9.1.1 intermediates at stalled forks in a way that counteracts complex in response to replication arrest. Finally, we unscheduled recombination (Franchitto and Pichierri, provide evidence for a cooperation between WRN and 2004; Pichierri, 2007; Sidorova, 2008).